Wahid

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Wahid as PDF for free.

More details

  • Words: 815
  • Pages: 3
Nama Kelas Prodi Tugas

: : : :

Narti La Baco A Matematika Teori Bilangan

1. buktikan bahwa: n n n n n n n −1   +   +   + .......... . =   +   +   + .......... . = 2 o 2 4 1 3 5

Penyelesaian: n n n n n n =   +   +   +   + .......... . +   2 0 1 2 3 n n n n n n n               +   +   +..........+ =   +   +   +……….= 2 n −1 0 2 4       1  3 5  n n n n n n n n n Dapat juga kita tulis:   +   -   +   +   -   +   +   -   +……….= 2 n −1 0  1  1  2 3 2 4 5  5   n  n n   n   n   n  n n n n n   +   +   +   +   +……….+   + +  =   +   +   0 1 2 3 5  1  3 5   1   3   5 

Misalkan:

 n   n      n n     2 n =  2k +1  +  2k +1       n  2 n =2  2k +1     n  2 n =  2k +1     n   ;k
(

)

1

2. Tunjukkan bahwa 1+2+3+……….+n=

n +1 2

Penyelesaian: 2! 2! 2! 1 +1 2 = = =1 = = 2 2 2!( 2 −2 )! 2!. 0! 2!. 1! 3! 3! 3.2! 2 +1 3 = = =3 n = 2 maka: = = 2 2 2!(3 −2 )! 2!. 1! 2!. 1 4! 4! 4.3.2! 3 +1 4 = = =6 n = 3 maka: = = 2!. 2! 2 2 2!( 4 −2 )! 2!. 2!

n = 1 maka:

untuk n = n +1 (benar)  ( n + 1) + 1  n + 2  = 2 2   Untuk n = 1 (benar) n = 1 maka:

2! 2! 2! 1 +1 2 = = =1 (TERBUKTI) = = ( ) 2 ! 2 − 2 ! 2 !. 0 ! 2 !. 1! 2 2 n

3. Hitunglah ;

∑12 (k+2) k (k+1) k =1

Penyelesaian: n

n

∑12 (k+2) k (k+1)

=

k =1

∑ k =1

(12k+24) ( k 2 + k )

n

=

∑ k =1

(12(1)+24) ( 12 +1 )

= (12+24) (2) = (36) (2) = 72

5. Nyatakan hasil penjumlahan berikut dengan notasi kombinasi dari: 1.2+2.3+3.4+……….+n(n+1)

Penyelesaian:

2

Untuk 1.2 =1C n2 = 1 =1

2! ( 2 −1)!

2.1! 1!

=1.2 n

Untuk 2.3 =2C 3 =2 =2

3! (3 −1)!

3.2! 2!

=2.3 Untuk 3.4 =3C 4 =3 n

=3

4! ( 4 −1)!

4.3! 3!

=3.4 Untuk n(n+1) =nC ( n +1) = n n

=n

( n +1)! ( n +1 −1)!

( n +1). n! n!

= n( n +1)

3

Related Documents