WORKSHOP 3 BREAK FORMING
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-1
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-2
● Model Description ● A flat sheet is formed into an angled bracket by punching it
through a hole in a rigid table. The cylindrical punch drives the sheet (workpiece) to a total stroke of 0.3 inch. The punch then returns to its original position. This exercise makes use of simple, straightforward movements of rigid bodies.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-3
● Objective ● Illustrate setting up of a multi-step analysis and the use of rigid
surfaces charged with shaping a malleable workpiece.
● Required ● break_forming.igs
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-4
●
Suggested Exercise Steps 1. 2. 3. 4. 5. 6. 7.
Import the geometry from an IGES file. Mesh the workpiece. Create the material properties. Apply boundary conditions, and contact bodies. Create two Loadcases. Create and submit the analysis job. Post-process results.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-5
Step 1. Files: Save As a
Open a new database named bracket: a. Open the FILES menu. b. Click SAVE AS. c. Enter SELECTION: <work_directory>\brack et d. Click OK. e. Click RETURN.
b
c d In this document: [Enter] means clicking the key on the keyboard (“carriage return”). RETURN refers to MSC Marc Mentat’s button with such a label (below).
e MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-6
Step 2. Files: Import / Iges a
Import the IGES file: a. Open the FILES menu. b. Click INTERFACES IMPORT. c. Click IGES. d. Select break_forming.igs. e. Click OK. f. Click MAIN.
c
b f In this document: [Enter] means clicking the key on the keyboard (“carriage return”). RETURN refers to MSC Marc Mentat’s button with such a label (below).
d
e MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-7
Step 3. Mesh Generation: Convert / Surfaces to Elements c a
Create mesh for the model: a. Click MESH GENERATION. b. Click CONVERT. c. Click DIVISIONS, d. Enter the number of convert divisions in U and V : 80 6 [Enter]. e. Click SURFACES TO ELEMENTS. f. Select surface 1 as shown in the picture and right-click to end list. g. Click RETURN.
e g b f
When selecting list entities, pressing the right mouse button (with the cursor anywhere inside the viewport) is equivalent to clicking on Mentat’s END LIST (#).
d MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-8
Step 4. Mesh Generation: Sweep / All
Remove duplicate nodes: a. Click SWEEP. b. Click ALL. c. Click RETURN. d. Click RENUMBER. e. Click ALL. f. Click MAIN.
b
c
e
d
a MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
f WS3-9
Step 5. Material Properties: New / Tables / Plastic_Strain c d a
Create the material properties: a. Click MATERIAL PROPERTIES twice. b. Click TABLES. c. Click NEW. d. Click 1 INDEP. VARIABLE.
b
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-10
Step 5. Material Properties: New / Tables / Plastic_Strain (Cont.)
e e. Click Table TYPE. f. Click eq_plastic_strain.
f
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-11
Step 5. Material Properties: New / Tables / Plastic_Strain (Cont.) h
h
g. Click DATA POINTS: ADD and then enter the data from the table below: Strain
Stress
0
50000
0.1
63000
0.2
69000
0.3
74000
0.5
83000
0.8
94000
1.0
100000
g
h. Click FIT. i. Click RETURN.
i MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-12
Step 6. Material Properties: New / Isotropic a b
c
d
e
a. Click NEW. b. Click NAME. c. Enter material name : steel [Enter]. d. Click ISOTROPIC. e. Click YOUNG’S MODULUS. f. Enter value for ‘youngs_modulus’ : 3e7 [Enter]. g. Similarly, input ‘poissons_ratio’ : 0.3 [Enter], ‘mass density’ : 0.00074 [Enter]. h. Select ELASTIC-PLASTIC.
h
f g MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-13
Step 6. Material Properties: New / Isotropic (Cont.)
i.
Click INITIAL YIELD STRESS.
j.
Enter value for ‘yield_stress’ : 1 [Enter].
i
k
k. Click TABLE (PLASTIC STRAIN). l.
m
Select table1.
m. Click OK on both the sub forms.
l
j MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-14
Step 6. Material Properties: New / Isotropic (Cont.)
n. Click ELEMENTS ADD. o. Click ALL EXIST. p. Click TABLES.
p n
o
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-15
Step 7. Create Punch Position History Table b
a
Create the Punch position history: a. Click NEW. b. Make sure it is 1 INDEP. VAR. c. Click TYPE. d. Click time. e. Click DATA POINTS: ADD f. Enter tabular data point : 0, 0 [Enter] 0.5, -0.3 [Enter] 1, 0 [Enter]. g. Click FIT. h. Click MAIN.
g c d
e
f
h MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-16
Step 8. Boundary Conditions: New/Mechanical/Fixed Displacement
b c a e Create the Symmetry Boundary Condition: a. Click BOUNDARY CONDITIONS. b. Click NEW. c. Click NAME. d. Enter boundary condition name : symmetry_x [Enter] e. Click MECHANICAL. f. Click FIXED DISPLACEMENT. g. Select DISPLACEMENT X. h. Click OK.
f
g
h
d MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-17
Step 8. Boundary Conditions: New/Mechanical/Fixed Displacement (Cont.)
i.
Click NODES ADD.
j.
Select all the nodes on the x=0 line.
k. Click END LIST (#). l.
Click RETURN.
j i
k MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
l WS3-18
Step 9. Boundary Conditions: New / Mechanical / Gravity Load a b
Create a loading for the gravity: a.
Click NEW.
b.
Click NAME.
c.
Enter boundary condition name : gravity [Enter].
d.
Click MECHANICAL.
e.
Click GRAVITY LOAD.
f.
Select ACCELERATION Y.
g.
Enter value for y: -386.4 [Enter].
h.
Click OK.
d
e
f h
c
g MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-19
Step 9. Boundary Conditions: New / Mechanical / Gravity Load (Cont.)
i. Click ELEMENTS ADD. j. Click ALL EXIST. k. Click MAIN.
i
j
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
k WS3-20
Step 10. Contact: New / Contact Bodies / Deformable
e Create a deformable contact body: a. Click CONTACT.
c
b. Click CONTACT BODIES. c.
Click DEFORMABLE.
d. Click OK. e. Click NAME. f.
Enter contact body name : workpiece [Enter].
g.
Click ELEMENTS ADD.
a g b
h. Click ALL: EXIST.
h d
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
f WS3-21
Step 11. Plot: Label / Curves a
Label curves: a.
Click PLOT.
b.
Unselect the following: DRAW: NODES DRAW: POINTS
c.
Select CURVES: SETTINGS.
d.
Select LABELS.
e.
Click REGEN.
f.
Click RETURN on both the subforms.
b d b c
e f
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-22
Step 12. Contact: New / Contact Bodies / Rigid c
a b
Create rigid body:
f
e
d
a. Click NEW. b. Click NAME. c. Enter contact body name : punch [Enter].
i
g
d. Click RIGID. e. Click POSITION. f. Click PARAMETERS for Position.
h
g. Click POSITION: Y h. Enter value for ‘py’: 1 [Enter]. i.
Click TABLE.
j.
Select table2.
k. Click OK on the Subforms.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
j
k WS3-23
Step 12. Contact: New / Contact Bodies / Rigid (Cont.)
l.
Click CURVES: ADD.
m. Select the circular curve. n. Click END LIST (#).
l
m
n MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-24
Step 12. Contact: New / Contact Bodies / Rigid (Cont.) o p
r o. Click NEW. p. Click NAME. q. Enter contact body name : table [Enter].
t
r. Click RIGID. s. Click OK.
s
t. Click CURVES: ADD u. Pick all curves except the circle.
q
v. Click END LIST (#).
u
v
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-25
Step 12. Contact: New / Contact Bodies / Rigid (Cont.)
w. Click ID Contact. x. Click FLIP CURVES. y. Pick the following curves:1, 3, 4, 5, 7 and click END LIST (#). z. Click MAIN.
y w x
y z MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-26
y
Step 13. Loadcases: New / Mechanical / Static b c a
e
d
g
Create load cases: a. Click LOADCASES. b. Click NAME. c. Enter loadcase name : push [Enter].
j
d. Click MECHANICAL. e. Click STATIC. f. Click TOTAL LOADCASE TIME. g. Enter loadcase parameter value : 0.5 [Enter]. h. Click MULTI-CRITERIA. i.
Click SOLUTION CONTROL.
j.
Select NON-POSITIVE DEFINITE.
i f h
k
k. Click OK. l.
Click OK.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
l WS3-27
Step 13. Loadcases: New / Mechanical / Static (Cont.) n m
m. Click COPY. n. Click NAME. o. Enter loadcase name : release [Enter]. p. Click MAIN.
o
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
p WS3-28
Step 14. Jobs: New / Mechanical
b Create an analysis job: a.
Click JOBS.
b.
Click MECHANICAL.
c.
Select push and release loadcases, in that order.
d.
Select PLANE STRAIN.
e.
Click ANALYSIS OPTIONS.
c
a
e
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-29
d
Step 14. Jobs: New / Mechanical (Cont.)
f. Select LARGE STRAIN. g. Click OK. h. Click JOB RESULTS.
f
h
g MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-30
Step 14. Jobs: New / Mechanical (Cont.)
i j
k i.
Select (from Available Element Scalars): Equivalent Von Mises Stress, and Total Equivalent Plastic Strain. j. Select (from Available Element Tensors): Global Stress. k. Click OK on all the subforms. MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-31
Step 15. Jobs: Run / Submit 1
a. b. c. d. e. f. g.
Submit the analysis job: Click RUN. Click SAVE MODEL Click SUBMIT (1). Click MONITOR. Click OK. Click MAIN.
b c d
a
e
f MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-32
Step 16. Results: Open Default / Monitor / Def Only
b h Read Results, and postprocess: a. Click RESULTS. b. Click OPEN DEFAULT. c. Click DEF ONLY. d. Click CONTOUR BANDS. e. Click SCALAR. f. Select Total Equivalent Plastic Strain. g. Click OK. h. Click MONITOR.
c d
e
a
f
g MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-33
Step 16. Results: Open Default / Monitor / Def Only (Cont.)
i
i.
Click SCAN, Select the Increment corresponding to Time = 0.5, and Click OK.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-34
Step 16. Results: Open Default / Monitor / Def Only (Cont.)
k
k. Click LAST.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-35
Step 17. Create a graph Punch Force Vs. Time d
f b e c a
a. b. c. d. e.
Click HISTORY PLOT. Click COLLECT GLOBAL DATA. Click NODES/VARIABLES. Click ADD GLOBAL CRV. Enter Time as X-axis variable and Force Y punch as Y-axis variable. f. Click FIT. g. Click MAIN.
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-36
Step 18. Re-analyze the model with more accuracy ● The Punch Force Vs. Time graph obtained from the analysis does not seem to be very smooth. This is a typical outcome when the convergence tolerance is too large. ● Re-analyze the model with a tighter convergence tolerance, and draw a new Punch Force Vs. Time graph. Use Relative Residual Force of 0.01 (Default = 0.1). ● Hints: Modify both the load cases using the following steps, and re-submit the job: LOADCASES: Select the load case STATIC CONVERGENCE TOLERENCE RELATIVE FORCE TOLERENCE: 0.01 OK OK
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-37
When you are done working with this model
a. Click on b. then click on c. and finally click on
MAR101, Workshop 3, September 2008 Copyright 2008 MSC.Software Corporation
WS3-38