Appendix 13:
PSS/E ANALYSES AND RESULTS
Prepared By: SECI Interconnection Study Task Group (ISTG)
March, 2005
GENERATION INVESTMENT STUDY Transmission network checking
Draft Report March, 2005
carried out by ELECTRICITY COORDINATING CENTER, Ltd 11040 BELGRADE - VOJVODE STEPE 412, SERBIA AND MONTENEGRO
and ENERGY INSTITUTE ”HRVOJE POŽAR“ - ZAGREB ZAGREB – SAVSKA CESTA 163, CROATIA
Authors: Project leaders:
Mr. Miroslav Vuković – EKC, Belgrade Mr. Davor Bajs – Energy Institute Hrvoje Požar, Zagreb
Project coordinators:
Mr. Trajce Čerepnalkovski – ESM, Skopje Mr. Kliment Naumoski – ESM, Skopje Ms. Marija Stefkova - Secretary
Participants on project:
Mr. Predrag Mikša – EKC, Belgrade Mr. Dobrijević Djordje – EKC, Belgrade Mr. Nijaz Dizdarevic – Energy Institute Hrvoje Požar, Zagreb Mr. Goran Majstrovic – Energy Institute Hrvoje Požar, Zagreb
[email protected] [email protected]
ii
____________________________________________________________________________ Complete GIS Report Table of contents Volume 1 – Executive Summary 1 EXECUTIVE SUMMARY 7 Volume 2 – Main Report - Electricity Demand Forecast 2 ELECTRICITY DEMAND FORECAST 29 29 2.1 Objectives 2.2 What Are We Forecasting? 31 33 2.3 Background 40 2.4 Approach 2.5 Assumptions And Data Sources 44 48 2.6 Forecasting Model 51 2.7 Results And Validation Volume 3 - Main Report - Generation & Transmission Study 3 GENERATION AND TRANSMISSION STUDY 75 75 3.1 Introduction 3.2 Computer Models 76 84 3.3 WASP And GTMax Runs 87 3.4 Candidate Plant 3.5 Fuel Costs 94 108 3.6 Fuel Costs – Utility Data 111 3.7 Fuel Costs – Reconciliation, Forecast Study Prices 3.8 Base Case Assumptions 116 121 3.9 Scenario A, B and C Results 163 3.10 Conclusions 3.11 Recommendations 172 174 4 REFERENCES Volume 4 – Electricity Demand Forecast Appendices Appendix 1: Review of econometric studies into the relationship between GDP per capita and electricity demand Appendix 2: Details of the econometric analysis of the relationship between GDP per capita and net electricity consumption Appendix 3: Basis for long term GDP per capita growth forecasts Appendix 4: Load shape adjustments Appendix 5: Findings from ECA methodology review Appendix 6: Country electricity demand forecasts Volume 5 – Generation & Transmission Study Appendices Appendix 7: Country data profiles Appendix 8: Specific candidate plant and rehabilitation Appendix 9: Screening curve analysis and cost of rehabilitation Appendix 10: Hydro sensitivity analysis Appendix 11: GTMax Analyses and Results Appendix 12: Scenario A, B & C results Volume 6 – PSSE Appendix Appendix 13: PSSE Appendix
____________________________________________________________________________________ iii
CONTENTS:
ABBREVIATIONS
vii
1. INTRODUCTION
1.1
2. STARTING CONDITIONS
2.1
2.1. Description of PSS/E Model
2.2
2.2. Prerequisites and Assumptions
2.4
2.3. Technical Specification of New Transmission Lines Candidates and Substations Costs of the New Interconnection Overhead Lines Costs of New Substations in 2010 and 2015
2.7 2.10 2.12
2.4. Remarks on PSS/E Transmission System Model and GTMax Model Harmonization Load Demand Network Topology Production distribution Exchange programs-desired interchange
2.14 2.14 2.14 2.19 2.38
3. ANALYSED GENERATION, DEMAND AND EXCHANGE SCENARIOS
3.1
3.1. Year 2010 Scenarios
3.2
3.2. Year 2015 Scenarios
3.6
4. LOAD FLOW AND CONTINGENCY ANALYSIS – REFERENCE CASES
4.1
Introduction
4.2
4.1 Scenario 2010 – average hydrology – topology 2010 4.1.1 Lines Loadings 4.1.2. Voltage Profile in the Region 4.1.3. Security (n-1) Analysis
4.2 4.2 4.7 4.8
4.2 Scenario 2010 – dry hydrology – topology 2010 4.2.1. Lines Loadings 4.2.2. Voltage Profile in the Region 4.2.3. Security (n-1) Analysis
4.11 4.11 4.14 4.14
4.3 Scenario 2010 – wet hydrology – topology 2010 4.3.1. Lines Loadings 4.3.2. Voltage Profile in the Region 4.3.3. Security (n-1) Analysis
4.16 4.16 4.20 4.21
4.4 Scenario 2015 - average hydrology – topology 2010 4.4.1. Lines Loadings 4.4.2. Voltage Profile in the Region 4.4.3. Security (n-1) Analysis
4.24 4.24 4.27 4.28
4.5 Scenario 2015 - average hydrology – topology 2015 4.5.1. Lines Loadings 4.5.2. Voltage Profile in the Region 4.5.3. Security (n-1) Analysis 4.5.4. Summary of Impacts - 2015 topology versus 2010 topology
4.31 4.31 4.34 4.35 4.36
iv
4.6 Scenario 2015 - dry hydrology – topology 2010 4.6.1. Lines Loadings 4.6.2. Voltage Profile in the Region 4.6.3. Security (n-1) Analysis
4.38 4.38 4.41 4.42
4.7 Scenario 2015 - dry hydrology – topology 2015 4.7.1. Lines Loadings 4.7.2. Voltage Profile in the Region 4.7.3. Security (n-1) Analysis 4.7.4. Summary of Impacts - 2015 topology versus 2010 topology
4.44 4.44 4.47 4.48 4.50
4.8 Scenario 2015 - wet hydrology – topology 2010 4.8.1. Lines Loadings 4.8.2. Voltage Profile in the Region 4.8.3. Security (n-1) Analysis
4.51 4.51 4.56 4.57
4.9 Scenario 2015 - wet hydrology – topology 2015 4.9.1. Lines Loadings 4.9.2. Voltage Profile in the Region 4.9.3. Security (n-1) Analysis 4.9.4. Summary of Impacts - 2015 topology versus 2010 topology
4.61 4.61 4.66 4.67 4.69
5. LOAD FLOW AND CONTINGENCY ANALYSIS – SENSITIVITY CASES
5.1
Introduction
5.2
5.1 Scenario 2010 – average hydrology import/export – topology 2010 5.1.1 Lines Loadings 5.1.2. Voltage Profile in the Region 5.1.3. Security (n-1) Analysis
5.2 5.2 5.8 5.9
5.2 Scenario 2010 – average hydrology high load – topology 2010 5.2.1. Lines Loadings 5.2.2. Voltage Profile in the Region 5.2.3. Security (n-1) Analysis
5.11 5.11 5.15 5.15
5.3 Scenario 2015 – average hydrology import/export – topology 2010
5.18
5.4 Scenario 2015 – average hydrology import/export – topology 2015 5.4.1. Lines Loadings 5.4.2. Voltage Profile in the Region 5.4.3. Security (n-1) Analysis 5.4.4. Summary of Impacts - 2015 topology versus 2010 topology
5.20 5.20 5.25 5.26 5.27
5.5 Scenario 2015 – average hydrology high load – topology 2010 5.5.1. Lines Loadings 5.5.2. Voltage Profile in the Region 5.5.3. Security (n-1) Analysis
5.28 5.28 5.32 5.33
5.6 Scenario 2015 – average hydrology high load – topology 2015 5.6.1. Lines Loadings 5.6.2. Voltage Profile in the Region 5.6.3. Security (n-1) Analysis 5.6.4. Summary of Impacts - 2015 topology versus 2010 topology
5.36 5.36 5.40 5.40 5.42
6. ANALYSES SUMMARY AND RECOMMENDATIONS 6.1 Reference cases 6.1.1. Analyses comparison 6.1.2. Overview on possible solutions for system relief
6.1 6.2 6.2 6.5 v
6.2 Sensitivity cases 6.2.1. Analyses comparison Import/export sensitivity scenarios High load growth rate 6.2.2. Overview on possible solutions for system relief
6.7 6.7 6.7 6.8 6.11
6.3 List of priorities
6.12
LITERATURE
7.1
vi
ABBREVIATIONS
Country codes Country AUT ALB BUL BiH SUI GER GRE HUN CRO ITA MKD ROM SLO TUR UKR SCG --
Name Österreich Shqiperia Bulgarija Bosna i Hercegovina Schweiz Deutschland Hellas Magyarorszag Hrvatska Italia FYR Makedonija Romania Slovenija Türkiye Ukraina Srbija i Crna Gora Fictitious border node
country code nodes O A V W S D G M H I Y R L T U J X
country code ISO AT AL BG BA CH DE GR HU HR IT MK RO SI TR UA CS --
Other abbreviations AC Alternating current DC Direct current CCGT Combined Cycle Gas Turbine CHP Combined Heat and Power HPP Hydro-power plant NPP Nuclear power plant TPP Thermal power plant FACTS Flexible AC transmission systems GDP Gross domestic product MW/Mvar Megawatt/Megavar HV High voltage NTC Net Transfer Capacity SEE South Eastern European Countries SECI South East European Cooperation Initiative RTSM Regional transmission system model TRM Transmission Reliability Margin TSO Transmission System Operator TR Transformer HL High voltage line OHL Overhead high voltage line PSS/E Power System Simulator for Engineering Abbreviations of Electric power utilities and Transmission system operators: EPCG Electric power utility of Montenegro EPS Electric power utility of Serbia HTSO Hellenic transmission system operator CENTREL Association of transmission system operators of Czech, Hungary, Poland, and Slovakia UCTE Union for the Coordination of Transmission of Electricity
vii
1 INTRODUCTION The main objective of the Generation Investment Study is to assist the EC, IFIs and donors in identifying an indicative priority list of investments in power generation and related electricity infrastructure from the regional perspective and in line with the objectives of SEE REM. The study would determine what the optimal timing, size and location would be of future generating capacity in the region over the next 15 years (2005 – 2020). It will also identify priority investments in main transmission interconnections between the countries and sub-regions to help optimize investment requirements in power generation over the study horizon. The expansion of the generation system will be optimized over a 15 year horizon (2005 – 2020) for three scenarios (isolated operation of each power system, regional operation of power systems, market conditions) using the WASP and GTMax models. The third scenario includes power system constraints, such as the capacity of the interconnections, and other constraints such as the maximum amount of import capacity and energy each country will be willing to depend upon. For the analysis of the third scenario the study team used, in addition to the WASP model, the Generation and Transmission Maximization Model (GTMax). GTMax was used to perform modeling of the electricity grid operated under the SEE REM conditions. It took into account the transfer capabilities of the interconnection lines among the utility systems. For more detailed view on regional transmission network operation under market conditions SECI Regional Transmission System Model in PSS/E was used. Input data concerning demand and production for several scenarios analyzed in GTMax was used in PSS/E Regional Transmission System Model (PSS/E RTSM) in order to check feasibility of such demand/production scenarios from transmission network prospective. PSS/E RTSM was created by SECI (South East Europe Cooperative Initiative) Project Group on the Regional Transmission System Planning, sponsored by USAID. With a participation of all power system utilities in South-East Europe, the Project Group finalized PSS/E RTSM for year 2005 and 2010, suitable for load flow, short-circuit and dynamic analysis. The following countries/companies were involved in PSS/E RTSM creation: Albania – KESH; Bosnia and Herzegovina – ZEKC, EPBiH, EPRS, EPHZHB; Bulgaria – NEK; Croatia – HEP, EIHP; Macedonia – ESM; Greece – PPC/HSTO; Hungary – MVM; Romania – Transelectrica; Serbia and Montenegro – EPS, EKC, EPCG; Slovenia – ELES; Turkey – TEAS. Two models were created for each time horizon: winter maximum demand and summer minimum demand models for 2005 and 2010. Analysis on PSS/E RTSM should provide insight to transmission network adequacy and determine what transmission reinforcements or additions priorities are eventually required to meet GTMax 2010 and 2015 generation dispatch under normal and (n-1) operating conditions. Total of 14 GTMax scenarios were analyzed on PSS/E RTSM: Scenario 2010 - topology 2010 - average hydrology - dry hydrology - wet hydrology Scenario 2015 - average hydrology - topology 2010 - topology 2015 - dry hydrology - topology 2010 - topology 2015 1.1
- wet hydrology
- topology 2010 - topology 2015
Scenario 2010 – average hydrology import/export – topology 2010 high load – topology 2010 Scenario 2015 – average hydrology import/export – topology 2010 – topology 2015 high load – topology 2010 – topology 2015 PSS/E RTSM was adjusted according to GTMax model concerning network topology, demand, production and exchange data. SEE Region was observed as self sufficient without any additional exchanges with UCTE. For each GTMax scenario steady-state load flows were calculated and contingency analyses (n-1) were performed. Security criterion based on voltage profile and lines congestions (thermal loadings) were checked for each analyzed scenario. Special attention was directed on existing and planned interconnection lines between different SEE power systems (countries). Possible network bottlenecks were identified and some solutions for transmission system relief were described. The role of new interconnection lines candidates in bottlenecks removal was evaluated. Following chapters describe PSS/E RTSM, analyzed GTMax production, demand and exchange scenarios, results of load flow and contingency analyses. List of important regional transmission system infrastructure projects from a viewpoint of support given to analyzed GTMax dispatch scenarios is presented at the end of this report.
1.2
2.
STARTING CONDITIONS
2.1
2.1.
Description of PSS/E Model
For all calculations performed in this part of the study, professional software package PSS/E™ (Power System Simulator for Engineering) is used. The Power System Simulator for Engineering (PSS/E) model is a system of computer programs and structured data files designed to handle the basic functions of power system performance simulation work, namely: • Data handling, updating, and manipulation • Power Flow • Optimal Power Flow • Fault Analysis • Dynamic Simulations + Extended Term dynamic Simulations • Open network Access and Price calculation • Equivalent Construction Since its introduction in 1976, the PSS/E tool has become the most comprehensive, technically advanced, and widely used commercial program of its type. It is widely recognized as the most fully featured, time-tested and best performing commercial product available in the market. The program employs the latest technology and numerical algorithms to efficiently solve networks large and small. PSS/E is comprised of the following modules: PSS/E Power Flow: This module is basic PSS/E program module and it is powerful and easy-touse for basic power flow network analysis (Figure 2.1.1). Besides analysis tool this module is also used for Data handling, updating, and manipulation.
Figure 2.1.1 – PSS/E model Graphical interface
PSS/E Optimal Power Flow (PSS/E OPF): PSS/E Optimal Power Flow (PSS/E OPF) is a powerful and easy-to-use network analysis tool that goes beyond traditional load flow analysis to fully optimize and refine a transmission system. This task is achieved with the integration of PSS/E OPF into the PSS/E load flow program. PSS/E OPF improves the efficiency and throughput of power system performance studies by adding intelligence to the load flow solution process. 2.2
Whereas the conventional load flow relies on an engineer to systematically investigate a variety of solutions before arriving at a satisfactory solution, PSS/E OPF directly changes controls to quickly determine the best solution. From virtually any reasonable starting point, you are assured that a unique and globally optimal solution will be attained; one that simultaneously satisfies system limits and minimizes costs or maximizes performance. PSS/E Balanced or Unbalanced Fault Analysis: The PSS/E Fault Analysis (short circuit) program is fully integrated with the power flow program. The system model includes exact treatment of transformer phase shift, and the actual voltage profile from the solved power flow case. PSS/E Dynamic Simulation: PSS/E offers users uncompromising dynamic simulation capabilities. It models system disturbances such as faults, generator tripping, motor starting and loss of field. The program contains an extensive library of generator, exciter, governor, and stabilizer models as well as relay model including underfrequency, distance and overcurrent relays to accurately simulate disturbances. The organization of PSS/E is illustrated in the following figure Figure 2.1.2:
Figure 2.1.2 – Organization of PSS/E model modules
Current version of this software package and version used for calculations is version 30.2.
2.3
2.2.
Prerequisites and Assumptions
For more detailed view on regional transmission network operation under market realistic conditions SECI Regional Transmission System Model (RTSM) in PSS/E is used. Figure 2.1.1 shows which countries and their transmission systems were modeled.
Figure 2.2.1 - SECI Regional Transmission System Model – countries modeled
High voltage transmission network of 750 kV, 400kV, 220kV, 150kV (Greece and Turkey), and 110 kV voltage levels is implemented in the model. Also, all new substations and lines that are expected to be operational till 2010 (according to the long term development plans) are modeled too. All generation units that are connected to the transmission voltage level are modeled as they are in reality (with step-up transformers). Model is designed for load-flow calculations and analysis, but with adequate data input (already developed and tested) it can be used for other type of analysis too: • Short-circuit calculations • Dynamics (transient stability assessment) Figure 2.2.2 shows the main characteristics of the SECI Regional Transmission System Model. With adequate changes and appropriate data input this model is used for all calculations and analyses in this project. ALBANIA 10 ELEMENT TYPE # W S BUSES 97 97 97 PLANTS 14 12 14 MACHINES 30 23 13 72 72 72 LOADS LINES 107 107 107 400 4 220 21 150 110 82 66 30 50 44 39 TRANSFORMERS STEP UP 23 NETWORK 27 AREA
AREA ELEMENT TYPE BUSES PLANTS MACHINES LOADS LINES
SLOVENIA 75 W S 190 190 48 44 54 23 111 111 231 231
# 190 57 63 111 232 400 14 220 9 150 110 209 66 30 TRANSFORMERS 75 STEP UP 57 NETWORK 18
BULGARIA BIH CROATIA 20 30 40 # W S # W S # W S 635 602 586 236 230 231 247 247 245 112 81 65 38 36 36 59 59 59 144 84 49 42 27 10 62 52 32 644 606 590 137 131 131 162 147 147 747 711 709 278 260 261 325 308 308 40 13 21 56 39 28 651
226
170 129 110 102 68
72 38 34
#
0
TURKEY 80 W S
75
0
GREECE FYRM ROMANIA 50 60 70 # W S # W S # W S 993 889 749 117 117 117 1067 1006 963 100 84 56 22 22 22 132 183 139 107 86 54 22 20 3 132 182 87 415 379 267 78 76 73 831 711 679 1051 901 789 145 138 138 1295 1135 1135 96 10 47 3 114
12 0 12
933 132 8 14 260 236 208 32 94 22 166* 10
276
66
65
95 60 35
93
93
12
12
SERBIA MONTENEGRO SCG 90 91 90 # W S # W S # W S 417 408 368 43 39 35 460 447 403 69 63 25 11 80 70 28 7 3 77 71 25 11 7 3 88 78 28 251 249 240 19 19 19 270 268 259 502 471 468 50 48 48 552 519 516 41 5 46 64 11 75 397
75
HUNGARY 45 # W S 47 45 47 8 8 8 23 22 12 32 32 33 249 202 202 114 135
139 129 72 67
34
92
21 11 10
# 3 3 3 0 5
UKRAIN 65 W 3 3 3 0 5
S 3 3 3 0 5
0
0
0
1134
32
32
UCTE-WEST 55 # W S 88 88 88 34 32 30 34 31 25 72 72 71 156 149 151 46 110
293 144 149
203
158
# 2 2 2 0 2
CENTREL 95 W 2 2 2 0 2
S 2 2 2 0 2
0
0
0
431
17
13
160 146 105 83 77
19 0 19
19
19
# 4182 661 752 2824 5144 451 590 0 4074 8 14 1238 623 615
REGIONAL MODEL W 3963 640 664 2605 4668 0 0 0 0 0 0 1055 0 0
S 3721 506 341 2433 4554 0 0 0 0 0 0 916 0 0
# total number of elements W number of elements with status in in Winter maximum model S number of elements with status in in Summer minimum model
* - equivalent lines included
Figure 2.2.2 – SECI Regional Transmission System Model – model characteristics
2.4
Input data concerning demand and production for several scenarios analyzed in GTmax are used ase input data for PSS/E RTSM in order to check feasibility of such demand/production scenarios from transmission network prospective. Electric power systems presented on Figure 2.2.3 are more detail modeled according to GTmax results.
Hungary Slovenia
Romania
Croatia B&H
Serbia Bulgaria Monte negro Unmik
Alba
Mace donia
Turkey
nia
Greece Figure 2.2.3: Analyzed electric power systems
For the purpose of network analyses, following network models in PSS/E software tool are developed according to GTmax: Reference cases: Year Hydrology Topology average 2010 dry 2010 wet 2010 average 2015 2010 2015 dry 2015 2010 wet 2015 Sensitivity cases (average hydrology): Special Year Topology conditions 2010 2010 Import/Export 2010 2015 2015 2010 2010 High load 2010 2015 2015
2.5
For all these models, expected topology and load distribution in corresponding system substations are modeled. In Regional Transmission Network Model for the years 2010 and 2015 the most recent information including new planed lines generator units with step-up transformers, transformers, compensators, phase shift transformers, shunts, etc are included. Generator units are connected at generator voltage level. In the models, whole 110 kV and above network is included. Each interconnection line has assigned an X node which is placed on border of each country (not at middle of tie line). The model for year 2015 is obtained by increasing production and consumption in each electric power system according to results from GTmax calculation and respect to new planed lines and substations. Voltage levels, with the upper and lower limits used in the study, are presented in the Table 2.2.1 These limits are used in load-flow calculations as in contingency analysis. Table 2.2.1: Defined limits for voltage levels Defined voltage levels 750 kV
400 kV
220 kV
150 kV
110 kV
min
max
min
max
min
max
min
max
min
max
kV
712
787
380
420
198
242
135
165
99
121
p.u.
0,95
1,05
0,95
1,05
0,90
1,10
0,90
1,10
0,90
1,10
Generator min
max
0,95
1,05
These limits are according to the operational and planning standards used in the monitored region, and they are used for full topology and "n-1" analyses. Although, in emergency conditions for some voltage levels wider voltage limits are allowed, these are not taken into consideration. The system adequacy is checked for operating conditions using “n-1” contingency criterion. List of contingencies includes: • all interconnection lines; • all 400 and 220 kV lines, except lines which outage cause “island” operation (in case of parallel lines and double circuit lines, outage of one line-circuit is considered); • all transformers 400/x kV (in case of parallel transformers, outage of one transformer is considered). Current thermal limits are used as rated limits for lines and transformers. These limits are established based on a temperature to which conductor is heated by current above which either the conductor material would start being softened or the clearance from conductor to ground would drop beyond permitted limits. For these analyses is used that conductor current must not reach limits imposed by thermal limit defined for conductors material and cross-section according to standard the IEC (50) 466: 1995 – International Electro technical Vocabulary - Chapter 466: Overhead Lines. For transformers, rated installed MVA power is used as thermal limit. Every branch with current above its thermal limit is treated as overloaded. All system states in which voltage level is outside permitted limits or branches are loaded beyond thermal limit (overloaded), by full topology or "n-1" contingency analyses, are treated as "insecure states" and referenced as such in this study.
2.6
2.3.
Technical Specification of New Transmission Lines Candidates and Substations
Interconnection lines between analyzed electric power systems are presented on the Figure 2.3.1 and Table 2.3.1. CENTREL
Slovakia
PIVDENNOUKRAINSKA AES
WestUkraina
Moldavia
UCTE Hungary Austria HEVIZ
VULKANESTI
SANDORFALVA
Romania
ARAD
ISACCEA
Slovenia
ZERJAVINEC MRACLIN ERNESTINOVO MELINE TUMBRI MEDJURICDJAKOVO
KRSKO
SUBOTICA S.MITROVICA
TUZLA PRIJEDOR GRADACAC UGLJEVIK Croatia (Jajce) Bosnia VISEGRAD
Hercegovina RAMA
TANTARENI PORTILE de FIER
DJERDAP
ISALNITA
VARDISTE
SARAJEVO ZAKUCAC MOSTAR 220 KONJSKO TREBINJE Serbia PIVA PLAT PODGORICA PRIZREN MONTENEGRO KOSOVO B PERUCICA
VARNA
NIS
KOZLODUY
SOFIA
Bulgaria
DOBRUJA
MARITSA 3
FIERZE
Macedonia
VAU DEJES
SKOPJE
BLAGOEVGRAD
BABAESKI
DUBROVO
Albania
Turkey LAGAD
ELBASAN
ZEMLAK
HAMITABAT
KARDIA THESSALONIKI
Greece
750 kV line (3) 400 kV line (33) 220 kV line (22) Italy
Interconnected network of SE countries only border lines - status 2005 year
Figure 2.3.1: Interconnection lines in Southeast Europe in 2005 year
Planned interconnection lines in Southeastern Europe for years 2010 and 2015 are given in Figure 2.3.2 and Table 2.3.2 and Table 2.3.3. All of these planned interconnection lines are included in PSS/E models for target years respectively, depending of years of commissioning. Basic technical data of new interconnection transmission lines candidates which are analyzed in 2015 year as variants only, are shown in Table 2.3.4. It should be noted that new interconnection transmission lines candidates, which are shown as doted lines, are analyzed in 2015 year as variants only.
2.7
Table 2.3.1: List of interconnection lines in Southeast Europe in 2005 year
Interconnection line
Interconnected Voltage countries level (kV) BG - RO 750 HU - UA 750 RO - UA 750 HU - SK 400 HU - SK 400 AL - GR 400 BA - HR 400 BA - HR 400 BG - GR 400 BG - RO 400 BG - TR 400 RO - MOLD 400 BG - RO 400 BG - SER 400 BG - TR 400 HR - HU 400 MK - GR 400 MK - SER 400 GR - IT 400 HU - AT 400 MN - BA 400 RO - HU 400 RO - SER 400 RO - UA 400 SER - HR 400 SER - HU 400 SI - AT 400 SI - HR 400 SI - HR 400 SI - IT 400 UA - HU 400 AL - MN 220 AL - SER 220 BA - HR 220 BA - HR 220 BA - HR 220 BA - HR 220 BA - HR 220 BA - HR 220 BA - HR 220 BA - MN 220 BA - MN 220 BA - SER 220 HR - SI 220 MK - SER 220 MK - SER 220 HU - AT 220 HU - AT 220 SI - AT 220 SI - HR 220 SI - IT 220 UA - HU 220 UA - HU 220
Type
Conductors Size Number (mm2) per phase 300 5 400 5 400 5 500/350 2/3 500/450 2/3 500 2 490 2 490 2 500 2 400 3 400 3 400 3 500/300 2/3 500 2 500 2 490 2 490 2 490 2
Transfer Capacity (MVA) 2390 5360 5360 1440 1440 1309 1318 1318 1309 1715 1715 1715 2490 1330 1309 1318 1330 1330 500 2563 1330 1212 1330 1212 1330 1330 1330 1318 1318 1330 1386 301 301 300 300 300 300 300 491 491 301 366 301 300 301 301 305 305 366 350 366 308 308
Varna - Isaccea* ACSR Albertirsa - Zapadoukrainska ACSR Isaccea - Pivdenoukrainska* ACSR God - Levice ACSR Gyor - Gabcikovo ACSR Zemlak - Kardia ACSR Mostar4 - Konjsko ACSR Ugljevik - Ernestinovo ACSR Blagoevgrad - Lagad (Thesaloniki) ACSR Dobruja - Isaccea ACSR Maritsa Istok - Hamitabat ACSR Isaccea - Vulcanesti* ACSR Kozlodui - Tintareni (double) ACSR Sofia - Nis ACSR Maritsa Istok - Babeski ACSR Zerjavinec - Heviz (double) ACSR Dubrovo - Thessaloniki ACSR Skopje - Kosovo B ACSR Arachtos - Galatina HVDC HVDC Gyor - Wien Sud (double) ACSR 500 2 Podgorica - Trebinje ACSR 490 2 Arad - Sandorfalva ACSR 450/500 2 Portile de Fier - Djerdap ACSR 967 2 Rosiori - Mukachevo ACSR 450 2 S. Mitrovica - Ernestinovo ACSR 490 2 Subotica - Sandorfalva ACSR 490 2 Maribor - Keinchtal (double) ACSR 490 2 Divaca - Meline ACSR 490 2 Krsko - Tumbri (double) ACSR 490 2 Divaca - Redipuglia ACSR 490 2 Mukachevo - Sajoszeged ACSR 400 2 V.Dejes - Podgorica ACSR 360 1 Fierze - Prizren ACSR 360 1 Gradacac - Djakovo ACSR 360 1 Prijedor - Mraclin ACSR 360 1 Mostar4 - Zakucac ACSR 360 1 Prijedor2 - Medjuric ACSR 360 1 TE Tuzla - Djakovo ACSR 360 1 Trebinje - HE Dubrovnik ACSR 240 2 Trebinje - HE Dubrovnik ACSR 240 2 Trebinje - HE Perucica ACSR 360 1 Sarajevo20 - HE Piva** ACSR 490 2/1 Visegrad - Pozega ACSR 360 1 Zerjavinec - Cirkovce ACSR 360 1 Skopje - Kosovo A ACSR 360 1 Skopje - Kosovo A ACSR 360 1 Gyor - Wien Sud ACSR 360 1 Gyor - Neusiedl ACSR 360 1 Podlog - Obersielach ACSR 490 1 Divaca - Pehlin ACSR 490 1 Divaca - Padriciano ACSR 490 1 Mukachevo - Kisvarda ACSR 400 1 Mukachevo - Tiszalok ACSR 400 1 *not in model **built as 400kV line Sarajevo20 - B.Bijela and 220kV B.Bijela - Piva, but operated as 220kV Sarajevo20 - Piva
length km I to border border to II 150 85 268 254 5 395 88 36 29 15 21 80 41 69 39 53 72 102 81 150 59 90 5 54 14 102 37 86 50 77 99 69 55 60 36 68 / / 59 63 60 21 5 52 1 2 39 36 41 52 27 21 26 37 41 26 16 32 39 10 8 142 47 21 26 45 19 27 66 49 50 34 32 65 27 7 5 7 5 20 42 61 23 18 51 19 51 18 65 18 65 59 63 55 27 46 20 47 6 10 2 54 10 97 35
total 235 522 400 124 44 101 110 92 174 231 149 59 116 123 127 168 115 104 0 122 81 57 3 75 93 48 63 66 48 49 150 68 71 46 66 99 66 92 12 12 63 84 69 70 82 82 122 82 65 53 11 64 132
2.8
CENTREL UCTE Hungary
NADAB
Romania
PECS
Slovenia TUMBRI
SOMBOR ERNESTINOVO S.MITROVICA BANJA LUKA
Croatia
UGLJEVIK
Bosnia Hercegovina VISEGRAD
Serbia
PLJEVLJA MONTENEGRO PODGORICA
KOSOVO B
Bulgaria
VRANJE C.MOGILA
Macedonia
VAU DEJES
SKOPJE STIP BITOLA
MARITSA 3
BABAESKI FILIPI KERHOS
AlbaniaKASHAR
Turkey
FLORINA ZEMLAK
2010 2015 candidates 750 kV line 400 kV line 220 kV line
Interconnected network of SE countries
Greece
planned border lines only (status 2010 and 2015 year)
Figure 2.3.2: Planned interconnection lines in Southeast Europe in years 2010 and 2015 Table 2.3.2: List of interconnection lines in Southeast Europe, planned to come into operation in year 2010
Interconnection line
Ugljevik - S. Mitrovica Kashar - Podgorica Maritsa Istok - Filipi C. Mogila - Stip Ernestinovo - Pecs (double) Bekescaba - Nadab (Oradea) Florina - Bitola (Filipi) - Kehros - Babaeski
Interconnected Voltage countries level (kV) BA - SER 400 AL - MN 400 BG - GR 400 BG - MK 400 HR - HU 400 HU - RO 400 GR - MK 400 GR - TR 400
Type ACSR ACSR ACSR ACSR ACSR ACSR ACSR ACSR
Conductors Size Number (mm2) per phase 490 2 490 2 400 3 490 2 490/500 2 490 2 490 2 400 3
Transfer Capacity (MVA) 1330 1330 1715 1330 1330 1178 1330 1715
length km I to border border to II 49 29 115 30 133 110 80 70 44 41 31 87 20 18 50 50
total 79 145 243 150 85 118 38 100
Table 2.3.3: List of interconnection lines in Southeast Europe, planned to come into operation in year 2015
Interconnection line
Zemlak - Bitola Kashar (V. Dejes) - Kosovo B Skopje - Vranje - (Leskovac) - (Nis)
Interconnected countries AL - MK AL - SER MK - SER
Voltage level (kV) 400 400 400
Type ACSR ACSR ACSR
Conductors Size Number (mm2) per phase 490 2 490 2 490 2
Transfer Capacity (MVA) 1330 1330 1330
length km I to border border to II 25 60 135 80 55 137
total 85 215 192
Table 2.3.4: New transmission lines candidates
Interconnection line
Visegrad - Pljevlja Tumbri - Banja Luka Pecs - Sombor
Interconnected Voltage countries level (kV) BA - MN 400 HR - BA 400 HU - SER 400
Type ACSR ACSR ACSR
Conductors Size Number (mm2) per phase 490 2 490 2 490 2
Transfer Capacity (MVA) 1330 1330 1330
length km I to border border to II 30 30 50 150 20 60
total 60 200 80
2.9
All interconnection lines candidates that are investigated in the analyses are shown as dotted lines in Figure 2.3.2. Table 2.3.5 shows typical electrical parameters of different types of lines. These parameters are used for both the planned lines and interconnection lines candidates in the Study. Table 2.3.5: Electrical parameters for OHL per phase and kilometer *Type of conductor
A
-
B*
C
ACSR
ACSR
CARDINAL
ACSR
1x490 mm2 3x400 mm2
360 mm2
Positive sequence 2x490 mm2
Series resistance
r [Ω/km per phase]
0.0294
0.058
0.0207
0.08
Series reactance
x [Ω/km per phase]
0.341
0.427
0.2824
0.436
Charging susceptance
b [µS/km per phase]
3.371
2.67
4.056
2.6
1920
960
2292
790
Rated current [A]
* In Turkey and Greece, Canadian-American standards are used
Costs of the New Interconnection Overhead Lines Electricity towers, and the wires and conductors that they support, are the major way of transmitting electricity. They are generally a lattice steel structure with a number of cross arms. The type, size, height and spacing of towers are determined by geographical, operational, safety and environmental considerations. A typical overhead line route will involve three types of tower: − − −
suspension (used for straight lines), deviation (where the route changes direction), terminal (where the lines connect with substations or underground cables).
A suspension tower is typically between 40 to 60 meters in height with a phase to phase spacing of between 7 and 25 meters, depending on the type of tower. The two principal types are the “pine” which narrows at the top and the Y shaped “delta”. The width of the tower right of way will depend on the level of power to be transmitted but typically range between 30 and 50 meters for 400 kV. For 400 kV, towers are usually spaced around 350 to 450 meters apart and provide ground clearance of at least seven meters in all weather conditions. Higher clearances usually apply if the route crosses motorways or high-pressure water hoses and minimum clearance for trees and public street lighting also apply. Towers for 400 kV are typically made from steel. In the absence of a defined methodology to calculate capital charges and costs, and in order to evaluate investments, unit price method is implemented in following review. Given unit price related to construction costs take into consideration configuration of terrain (flat land, medium mountain, high mountain). In Table 2.3.6 and Table 2.3.7 average estimated prices for each new element that is expected to be in operation in 2010 and 2015 year are presented. Total investment values for lines construction and corresponding elements till 2010 year is presented in Table 2.3.6 in EUROS. The investments cover total length of transmission lines and construction of 400 kV transmission line bays in appropriate substations. Total investment costs of transmission line bays include costs of following elements: − −
construction of 400 kV transmission line itself transmission line bays (400 kV) o Breakers o Disconnectors with blades ground o Disconnectors without blades 2.10
o Current Measuring Transformers o Voltage Measuring Transformers o Lightning Arrester These total price values of lines do not take into consideration lease of land. Table 2.3.6: Total investment sum of interconnection lines in Southeast Europe, planned in year 2010 Lines Interconnection line
Ugljevik - S. Mitrovica Kashar (V. Dejes) - Podgorica Maritsa Istok - Filipi C. Mogila - Stip Ernestinovo - Pecs (double) Bekescaba - Nadab (Oradea) Florina - Bitola (Filipi) - Kehros - Babaeski
Interconnected countries
Length
BA - SER AL - MN BG - GR BG - MK HR - HU HU - RO GR - MK GR - TR
km 79 145 243 150 85 118 38 100
Unit price Euro/km 200,000 235,000 235,000 220,000 240,000 250,000 235,000 240,000
TL Bays Total price Euro 15,720,000 34,075,000 57,105,000 33,000,000 20,400,000 29,500,000 8,930,000 24,000,000
Unit Number Total price of bays price Euro Euro 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000
Lines & Bays Total price
Year of commisionning
Euro 17,020,000 35,375,000 58,405,000 34,300,000 21,700,000 30,800,000 10,230,000 25,300,000
2005/06 2006/07 2007/08 2006/07 2007/08 2008 2006/07 2007/08
Comments: Interconnection line 400 kV Ugljevik (BA) – S.Mitrovica (CS). This tie line should increase system stability, security and transmission capacity between west and east region and between Bosnia and Serbia and Montenegro. It is under construction (part in Bosnia is finished) and should be completed by the end of this year.
Interconnection line 400 kV Podgorica (CS) – Kashar (V.Dejes) (AL) This new tie line should increase system stability, security and transmission capacity between west and east (CS–AL–GR). Feasibility Study was made two years ago. Participation for construction of this line will be proportional to the length of the line from the border (27 km in Montenegro and 115 km in Albania). It should be completed by the year 2006/7. Estimated investment cost is about 35,375 M€.
Interconnection line 400 kV Maritsa Istok (BG) – Filipi (GR). Feasibility Study was made 3 two years ago. Participation for construction of this line will be proportional to the length of the line from the border (133 km in Bulgaria and 110 km in Greece). To be completed by the year 2007/8. Estimated investment cost is about 58,5 M€ and investor is unknown yet.
Interconnection line 400 kV C. Mogila (BG) – Stip (MK) Feasibility Study was made 2-3 two years ago. This new tie line should increase system stability, reliability, security and transmission capacity between north and south as well as between Bulgaria and Macedonia. Participation for construction of this line will be proportional to the length of the line from the border (80 km in Bulgaria and 70 km in Greece). It should completed by the year 2006/7. Estimated investment cost is about 35 M€. Investor is unknown yet.
Interconnection line 400 kV Ernestinovo (HR) – Pecs (HU) (double line) This tie line should increase system stability, security and transmission capacity between north and south regions and between Croatia and Hungary. It is included development plans of HEP (Electric Company of Croatia) and MVM (Electric Company of Hungary). It should be completed by the year 2007/8. Estimated investment cost is about 21.7 M€. Investor is unknown yet.
Interconnection line 400 kV Bekescsaba (HU) – Nadab (Oradea) (RO) Construction Agreement between MVM and Transelectrica is under signing procedure. It should be completed by the year 2008. 2.11
Interconnection line 400 kV Florina (GR) – Bitola (MK) Feasibility Study was made 3 two years ago. This line should increase system security and transmission capacity between north and south (MK–GR). Participation for construction of this line will be proportional to the length of the line from the border (20 km in Greece and 18 km in Macedonia). It should be completed by the year 2006/7. Estimated investment cost is about 10 M€. Investor is unknown yet.
Interconnection line 400 kV Filipi (Kehros) (GR) – Babaeski (TR) Feasibility Study was made 2-3 two years ago. Participation for construction of this line will be proportional to the length of the line from the border (190 km in Greece and 70 km in Turkey). It should be completed by the year 2007/8. Estimated investment cost is about 25 M€. Investor is unknown yet.
Total investment values for lines construction and corresponding elements till 2015 is presented in Table 2.3.7 in EUROS. The investments cover total length of transmission line and construction of 400 kV bays in both substations.
Table 2.3.7: Total investment sum of interconnection lines in Southeast Europe, planned in year 2015 Lines Interconnection line
Zemlak - Bitola Kashar (V. Dejes) - Kosovo B Skopje - Vranje - (Leskovac) - (Nis)
Interconnected countries Length AL - MK AL - SER MK - SER
km 85 215 192
Unit price Euro/km 200,000 220,000 240,000
TL Bays Total price Euro 17,000,000 47,300,000 46,080,000
Unit Number Total price of bays price Euro Euro 650,000 2 1,300,000 650,000 2 1,300,000 650,000 2 1,300,000
Lines & Bays Total price
Year of commissioning
Euro 18,300,000 48,600,000 47,380,000
2010/15 2010/15 2010/15
Comments:
Interconnection line 400 kV Zemlak (AL) – Bitola (MK) It is included in development program of KESH-Albania. Estimated investment cost is about 18 M€. Investor is unknown yet.
Interconnection line 400 kV Kashar (V.Dejes) – Kosovo B (CS) It is included in transmission development program of KEK-Kosovo. Estimated investment cost is about 48 M€. Investor is unknown yet.
Interconnection line 400 kV Skopje (MK) – Vranje – (Leskovac – Nis) (CS) This tie line should increase transmission capacity, system stability and security between north and south. Feasibility Study was made one year ago. Estimated investment cost is about 21 M€ (for Skopje – Vranje) plus about 26 M€ (for Vranje – Leskovac – Nis). Donation of Greece government is expected. First phase of the project is building of the Skopje–Leskovac–Nis, and in second phase is installing of the substation Vranje on this line.
Costs of New Substations in 2010 and 2015 The purpose of the substation (or switchyard) is to transform the voltage of electricity or switch electricity circuits. Substations are usually contained within secure sites to ensure public safety. Most substations today are unmanned sites although road access is necessary for staff and for the
2.12
transport of equipment, maintenance or repair. Table 2.3.8 and Table 2.3.9 present total investment costs that include costs of following elements: − −
transformer unit transformer bays (400 kV, 220 kV, 110 kV) o Breakers o Disconnectors without blades o Current Measuring Transformers o Voltage Measuring Transformers o Lightning Arrester
Also these tables show investment cost for all linked lines between existed transmission lines and new substations. Table 2.3.8: new SS which will be in operation till 2010 year 2010
1 2 3 4
Kashar Sofia South Maritsa East 1 Pleven
Voltage levels kV/kV 400/220 220/110 400/220 220/110
5 6 7 8
Ernestinovo Stip Nadab Oradea
400/110 400/110 400 400/110
1x300 1x300 1x300
no transformer new transformer only Total
9 10 11
S. Mitrovica Beograd 20 Kolubara B
400/220 400/110 400/110
1x400 1x300 2x300
new transformer only
Pec 400/110 UNMIK 12 *position in geographical map (Figure 2.4.2)
1x300
Country Albania Bulgaria Croatia Macedonia Romania
Serbia
Position*
Name of substation
New transformers MVA 2x400 1x250 1x630 1x200
Total cost in Euros
Remarks
new transformer only phase-shifter new transformer only Total new transformer only
Total
4,100,000 1,830,000 3,600,000 1,730,000 7,160,000 2,730,000 3,430,000 1,400,000 2,730,000 4,130,000 3,150,000 2,730,000 5,930,000 11,810,000 4,130,000
Table 2.3.9: new SS which will be in operation till 2015 year 2015
Romania
13 14 15
V. Dejes Brasov Suceava
Voltage levels kV/kV 400/200 400/110 220/110
Serbia
16 17
Nis Vranje
400/110 400/110
Country Albania
Position*
Name of substation
New transformers MVA 1x400 1x300 1x200 1x300 1x300
Total cost in Euros
Remarks
new transformer only new transformer only Total new transformer only Total
3,150,000 2,730,000 1,730,000 4,460,000 2,730,000 4,130,000 6,860,000
*position in geographical map (Figure 2.4.4)
2.13
2.4.
Remarks on PSS/E Transmission System Model and GTmax Model Harmonization
To investigate regional market conditions in region, GTmax software tool is used. Unlike PSS/E, with this software tool you can not analyze network conditions. Only in rough congestion analyses is possible. In order to check, whether production distribution, that is result of GTmax analyses is feasible from transmission system capabilities point of view, results from GTmax analyses has been used as input for PSS/E regional models, and then full security analysis of thus gained models has been performed. Load-demand GTmax load-demand level is distributed only in few GTmax network buses, unlike PSS/E model where load distribution corresponds to the real system conditions (substation by substation). Also, GTmax load-demand level includes transmission network losses, unlike PSS/E model where these losses are calculated separately. In other words, it was not possible to achieve full load-demand correspondence between GTmax and PSS/E model. In order to achieve at least partial correspondence between GTmax load-demand and PSS/E load (on system by system level), existing load distribution in PSS/E model is scaled so level of PSS/E load increased for transmission network losses corresponds to GTmax load-demand level. Also, for some systems, production of units installed on voltage levels lower than 110 kV is included in loaddemand level (load-demand is reduced for this amount). This was done system by system. Network topology In order for PSS/E network models to correspond to GTmax model, first step was to adjust network topology of both PSS/E and GTmax models. Topology of GTmax models for 2010 and 2015 are shown on Figure 2.4.1 and Figure 2.4.3 and corresponding real network topologies of regional network shown on Figure 2.4.2 and Figure 2.4.4. As it can be seen, the internal system topologies are quite rough, unlike topology of system interconnections (tie lines), which are almost identical (that was one of prerequisites of GTmax model). Transmission system model for 2015 was gained using existing model for 2010. All new interconnection lines that are predicted to be in operation in GTmax's model are also included in PSS/E model. Also, all internal network reinforcements that are in long term plans of regional TSOs are modeled too.
2.14
UKRAINE
CENTREL
SLOVENIA
Romania
Rosiori
0 -> 270 00 7 <- 2
Gutinas Sibiu
13 <- 50 1 3 -> 50
Osijek
1350 <- 1 -> 330 1330 -> <- 1330
-> 50 50 13 - 13 <
Tuzla
12 <- 20 -> 13 30
13 <- 30 -> 13 30
Varna
Sofia
Bulgaria Chervena Mogila
Skopje 00 12
120 0
Plovdiv
Dubrovo
12 2 <- 0 -> 12 20
Maritsa
Blagoevgrad -> 690 0 9 <- 6
-> 00 0 31 310 <-
1200
Vetren
0 -> 122 220 <- 1
Macedonia Bitola
Tirana/Elbasan
-> 1330 0 3 < - 13
-> 30 0 19 183 <-
ia
Winter -> <- Winter
V. Dejes -> 30 13 1330 <-
Thermal / Overcurrent Protection Limits in MW
> 031 300 <-
an Alb
Legend:
30 <- 0 -> 28 0
Kozlodui
Nis
Montenegro
Isaccea 1500 -> <- 1300
300 <- 3 > 00
Ribarevina 1330 -> Kosovo B <- 1 3 30
Podgorica
Tantareni
Pljevlja
Trebinje 0 -> 163 30 6 <- 1
Split
> 030 300 <-
Bucharest
1500 -> <- 1 3 00
-> 0 0 66 66
<-
Mostar 0 -> 135 50 3 <- 1
B. Basta
1250 -> <- 1250
Sarajevo
0 -> 125 250 <- 1
B&H
Portile de Fier
1330-> <- 1680
Djerdap
1065 -> < - 1065
B. Luka
Arad
Belgrade 1250 -> <- 12 50
900 < - -> 80 0
Rijeka
Serbia
13 < - 00 13 > 00
Croatia
Zagreb
27 0 < - 0 -> 27 00
1330 -> <- 1330
> 0270 700 2 <-
1350 -> <- 1350
33 <- 0 -> 33 0
80 <- 0 -> 17 50
TURKEY
1350 -> < - 13 50
GREECE
Figure 2.4.1: GTmax network topology in year 2010
2.15
Figure 2.4.2: Real network topology in year 2010
2.16
UKRAINE
CENTREL
SLOVENIA
Romania
Rosiori
0 -> 270 00 7 <- 2
Gutinas Sibiu
13 <- 50 1 3 -> 50
Osijek
1350 <- 1 -> 330 1330 -> 30 13 <-
-> 50 50 13 - 13 <
Tuzla
12 <- 20 -> 13 30
Varna
Sofia
Bulgaria Chervena Mogila
Skopje
120 0
Plovdiv
Dubrovo
12 2 < - 0 -> 12 20
Maritsa
Blagoevgrad -> 690 0 9 <- 6
-> 00 0 31 310 <-
1200
Vetren
0 -> 122 220 <- 1
Macedonia Bitola
Tirana/Elbasan
13 <- 30 -> 13 30
00 12
ia
Winter -> <- Winter
V. Dejes -> 30 13 1330 <-
Thermal / Overcurrent Protection Limits in MW
> 031 300 <-
an Alb
Legend:
30 <- 0 -> 28 0
-> 1330 0 3 < - 13
-> 30 0 19 183 <-
Montenegro Podgorica
Kozlodui
Nis Ribarevina 1330 -> Kosovo B <- 1 3 30
Isaccea 1500 -> <- 1300
300 <- 3 > 00
Pljevlja
Trebinje 0 -> 163 30 6 <- 1
Split
> 030 300 <-
1500 -> <- 1 3 00
-> 0 0 66 66
<-
Mostar 0 -> 135 50 3 <- 1
B. Basta
Bucharest Tantareni
1250 -> <- 1250
Sarajevo
0 -> 125 250 <- 1
B&H
Portile de Fier
1330-> <- 1680
Djerdap
1065 -> < - 1065
B. Luka
Arad
Belgrade 1250 -> <- 12 50
900 < - -> 80 0
Rijeka
Serbia
13 < - 00 13 > 00
Croatia
Zagreb
27 0 < - 0 -> 27 00
1330 -> <- 1330
> 0270 700 2 <-
1350 -> <- 1350
33 <- 0 -> 33 0
80 <- 0 -> 17 50
TURKEY
1350 -> < - 13 50
GREECE
Figure 2.4.3: GTmax network topology in year 2015
2.17
Figure 2.4.4: Real network topology in year 2015
2.18
Production distribution In PSS/E model, all production units connected to 110 kV or higher voltage network are modeled as they are in reality, generation units plus corresponding step-up transformers. Some of the production units or plants connected to the network lower than 110 kV are modeled as negative load in corresponding buses, but most of them are included in corresponding loads in system substations. Also, in GTmax models, most of the production units are modeled as whole plants, so in order to achieve full compliance with PSS/E model, it was necessary to distribute this production on the real units themselves, as they are in PSS/E model. In following figures and tables production distribution from GTmax to PSS/E model was shown, jurisdiction by jurisdiction, but also how these units are connected to the GTmax network model, and appropriate network representation in PSS/E model. Albania GTmax Powerplant Fier 1 Balsh
Ulez+Shkopet
Bistrica
Fierza
Komani
Vau Dejes
Vlore
Bus# 10021 10022 10022 10052 10052 10052 10052 10053 10054 10490 10490 10490 10490 10501 10502 10503 10504 10511 10512 10513 10514 10521 10522 10523 10524 10525 10551 10552 10553 10554
PSS/E Bus Name AFIER 9 11.000 AFIERV9 6.3000 AFIERV9 6.3000 AULEZ 9 6.3000 AULEZ 9 6.3000 AULEZ 9 6.3000 AULEZ 9 6.3000 ASHKP19 6.3000 ASHKP29 6.3000 ABISTRIG 6.3000 ABISTRIG 6.3000 ABISTRIG 6.3000 ABISTRIG 6.3000 AFIERZ91 13.800 AFIERZ92 13.800 AFIERZ93 13.800 AFIERZ94 13.800 AKOMAN91 13.800 AKOMAN92 13.800 AKOMAN93 13.800 AKOMAN94 13.800 AVDEJA91 10.500 AVDEJA92 10.500 AVDEJA93 10.500 AVDEJA94 10.500 AVDEJA95 10.500 ABABICG1 13.800 ABABICG2 13.800 ABABICG3 13.800 ABABICG4 13.800
Remarks ID 1 4 5 1 2 3 4 1 1 G1 G2 G3 G4 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4
Figure 2.4.5 – GTmax model - Albania
2.19
Figure 2.4.6 – PSS/E model - Albania
2.20
Bulgaria GTmax Powerplant
BELMEKEN
SOFIA HEAT
BOBOV DOL SESTRIMO
CHAIRA
PERNIK CHP MOMINA KLISURA KOZLODUY 1 KOZLODUY 2 RUSE 12 RUSE 34 RUSE 56 SOFIA IND P
VARNA THERMAL
VARNA CHP
PLOVDIV CHP
MARITSA EAST 2 1
MARITSA EAST 2 N
MARITSA EAST 3
BRIKEL
PESTERA
ORPHEY
Bus# 13200 13201 13201 13202 13202 13206 13207 13208 13209 13209 13300 13301 13302 13303 13304 13305 13305 13310 13310 13306 13307 13307 13308 13309 13404 13405 13500 13500 13501 13502 13503 13504 13505 13505 13600 13601 13603 13604 13605 13602 13606 13607 13607 13700 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13715 13716 13717 13800 13800 13801 13801 13802 13803 13803 13803
PSS/E Bus Name BELM_G0 10.500 BELM_G12 10.500 BELM_G12 10.500 BELM_G34 10.500 BELM_G34 10.500 TSF.I.G5 13.800 TSF.I.G4 6.3000 TSF.I.G3 6.3000 TSF.IG12 6.3000 TSF.IG12 6.3000 TBDOL_G1 15.750 TBDOL_G2 15.750 TBDOL_G3 15.750 HSES.G1 10.500 HSES.G2 10.500 HCHA.G12 19.000 HCHA.G12 19.000 CHA.G34 19.000 CHA.G34 19.000 TREP.G5 10.500 TREP.G34 6.3000 TREP.G34 6.3000 HMKL.G1 10.500 HMKL.G2 10.500 NKOZ_G9 24.000 NKOZ_G10 24.000 TRUSEG12 6.3000 TRUSEG12 6.3000 TRUSEG3 13.800 TRUSEG4 13.800 TRUSEG5 6.3000 TRUSEG6 6.3000 TSV_G12 6.3000 TSV_G12 6.3000 TVARN_G1 15.750 TVARN_G2 15.750 TVARN_G4 15.750 TVARN_G5 15.750 TVARN_G6 15.750 TVARN_G3 15.750 TDEV.G3 10.500 TDEV_G14 6.3000 TDEV_G14 6.3000 TMI1_G12 6.3000 TMI1_G12 6.3000 TMI1_G3 6.3000 TMI1_G4 6.3000 TMI2_G1 18.000 TMI2_G2 18.000 TMI2_G3 18.000 TMI2_G4 18.000 TMI2_G5 15.750 TMI2_G6 15.750 TMI2_G7 15.750 TMI2_G8 15.750 TMI3_G1 15.750 TMI3_G2 15.750 TMI3_G3 15.750 TMI3_G4 15.750 TBR.G34 6.3000 TBR.G34 6.3000 TBR.G5 6.3000 TBR.G6 6.3000 HPESHG12 10.500 HPESHG12 10.500 HPESHG34 10.500 HPESHG34 10.500 HPESH.G5 10.500 HANTG123 10.500 HANTG123 10.500 HANTG123 10.500
Remarks ID H0 H1 H2 H3 H4 D5 D4 D3 D1 D2 T1 T2 T3 H1 H2 H1 H2 H3 H4 D5 D3 D4 H1 H2 N9 N0 T1 T2 T3 T4 T5 T6 I1 I2 T1 T2 T4 T5 T6 T3 I1 I1 I4 T1 T2 T3 T4 T1 T2 T3 T4 T5 T6 T7 T8 T1 T2 T3 T4 I3 I4 I5 I6 H1 H2 H3 H4 H5 H1 H2 H3
2.21
13804 13805 13805 BATAK 13805 13806 13807 KRICHIM 13808 13809 DEVIN 13810 13811 TESHEL 13811 MARITSA 3 13812 13813 ALEKO 13814 13815 13819 13819 KARDJALY 13820 13820 13821 13821 STUDEN KLADENEC 13822 13822 13823 IVAILOVGRAD 13823 13823 13906 MARITSA EAST 1 13907 13908 LUKOIL BUL SMALL HYDRO -
HANT.G4 HBATG123 HBATG123 HBATG123 HBAT_G4 HKRI.G1 HKRI.G2 DEVIN.G1 DEVIN.G2 HTESH.G HTESH.G TMAR3.G3 HALEKOG3 HALEKOG2 HALEKOG1 HKAR.G12 HKAR.G12 HKAR.G34 HKAR.G34 HST.KG12 HST.KG12 HST.KG34 HST.KG34 HIW.G123 HIW.G123 HIW.G123 TMI1_G5 TMI1_G6 TMI1_G7 -
10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 13.800 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 15.750 15.750 15.750
H4 H1 H2 H3 H4 H1 H2 H1 H2 H1 H2 T3 H3 H2 H1 H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 T5 T6 T7 - included in total consumption - included in total consumption
Figure 2.4.7 – GTmax model – Bulgaria
2.22
Figure 2.4.8 – PSS/E model - Bulgaria
2.23
BIH GTmax Powerplant UGLJEVIK GACKO VISEGRAD
TREBINJE HYDRO BOCAC GRABOVICA SALAKOVAC KAKANJ 7 TUZLA 4 TUZLA 5 TUZLA 6
JABLANICA
KAKANJ 5 KAKANJ 6 TUZLA 3 RAMA MOSTAR HYDRO CAPLJINA JAJCE 1 JAJCE 2 PEC MLINI DUBROVNIK G-2 M.BLATO
Bus# 14001 14002 14003 14003 14003 14004 14004 14004 14006 14007 16001 16002 16003 16004 16005 16006 16007 16008 16009 16011 16012 16013 16014 16015 16016 16025 16026 16033 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18015 18016 -
PSS/E Remarks Bus Name ID TE UGLJE 20.000 1 GACKO 20.000 1 HE VISE 15.750 1 HE VISE 15.750 2 HE VISE 15.750 3 HE TREB 14.400 1 HE TREB 14.400 2 HE TREB 14.400 3 BOCACG1 10.500 1 BOCACG2 10.500 2 GRAB-G1 10.500 1 GRAB-G2 10.500 2 SAL-G1 13.800 1 SAL-G2 13.800 2 SAL-G3 13.800 3 KAK-G7 15.750 7 TUZ-G4 15.750 4 TUZ-G5 15.750 5 TUZ-G6 15.750 6 JAB-G1 6.3000 1 JAB-G2 6.3000 2 JAB-G3 6.3000 3 JAB-G4 6.3000 4 JAB-G5 6.3000 5 JAB-G6 6.3000 6 KAK-G5 13.800 5 KAK-G6 13.800 6 TUZ-G3 10.500 3 RAMA G1 15.650 1 RAMA G2 15.650 2 MOST-G1 10.500 1 MOST-G2 10.500 2 MOST-G3 10.500 3 CAPL-G1 15.700 1 CAPL-G2 15.700 2 JAJ1-G1 10.500 1 JAJ1-G2 10.500 2 JAJ2-G1 6.3000 1 JAJ2-G2 6.3000 2 JAJ2-G3 6.3000 3 MLINI-G1 10.500 1 MLINI-G2 10.500 2 - included in Croatian production included in total consumption
Figure 2.4.9 – GTmax model - BIH
2.24
Figure 2.4.10 – PSS/E model - BIH
2.25
Croatia GTmax Powerplant ZAGREB EL TO A ZAGREB EL TO H CAKOVEC DUBROVNIK G-1 DUBROVNIK G-2 GOJAK
ORLOVAC PERUCA RIJEKA HPP SENJ SKLOPE VINODOL
ZAKUCAC
JERTOVEC
KRALJEVAC OSIJEK A VARAZDIN DUBRAVA VELEBIT PLOMIN 1 PLOMIN 2 RIJEKA THERMAL SISAK ZAGREB TE TO A ZAGREB ELTO K ZAGREB TE TO C DJALE CC 480 2 CC 480 GOLUBIC MILJACKA OSIJEK B OZALJ 1 OZALJ 2
Bus# 20301 20302 20304 20305 20306 20307 20308 20309 20310 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20335 20335 20335 20336 20340 20341 20342 20343 20344 20345 20346 20347 20348 20350 20351 20352 20354 20355 20353 20360 20361 20430 20431 20420 20421 -
PSS/E Remarks Bus Name ID EL-TOG1 10.500 1 EL-TOG2 10.500 2 HECAKOG1 6.3000 1 HECAKOG2 6.3000 2 HEDUBRG1 6.3000 1 HEDUBRG2 6.3000 2 HEGOJAG1 10.500 1 HEGOJAG2 10.500 2 HEGOJAG3 10.500 3 HEORLOG1 10.500 1 HEORLOG2 10.500 2 HEORLOG3 10.000 3 HEPERUG1 10.500 1 HEPERUG2 10.500 2 HERIJEG1 10.500 1 HERIJEG2 10.500 2 HESENJG1 10.500 1 HESENJG2 10.500 2 HESENJG3 10.500 1 HESKLOG1 10.500 1 HEVINOG1 10.500 1 HEVINOG2 10.500 2 HEVINOG3 10.500 3 HEZAKUG1 16.000 1 HEZAKUG2 16.000 2 HEZAKUG3 16.000 3 HEZAKUG4 16.000 4 JERTOVG1 10.500 1 JERTOVG2 10.500 2 JERTOVG3 11.000 3 JERTOVG4 11.000 4 KRALJEVG 3.7000 1 KRALJEVG 3.7000 2 KRALJEVG 3.7000 3 KRALJEVG 3.7000 4 TE-TOOG1 10.500 1 HEVARAG1 10.500 1 HEVARAG2 10.500 2 HEDUBRG1 14.400 1 HEDUBRG2 14.400 1 RHEOBRG1 15.750 1 RHEOBRG2 15.750 2 TEPLOMG1 13.800 1 TEPLOMG2 13.800 1 TERIJEG1 20.000 1 TESISAG2 15.750 1 TE-TOG1 10.500 1 TE-TOG2 10.500 2 TE-TOG4 10.500 4 TE-TOG5 10.500 5 TE-TOG3 12.500 3 HEDJALG1 10.500 1 HEDJALG2 10.500 2 KTEOSGT 15.750 1 KTEOSST 10.500 1 KTESISGT 15.750 1 KTESISST 10.500 1 - included in total consumption - included in total consumption will not exist in 2010 - included in total consumption - included in total consumption
2.26
Figure 2.4.11 – GTmax model - Croatia
Figure 2.4.12 – PSS/E model - Croatia
2.27
Macedonia GTmax Powerplant BITOLA 1 BITOLA 2 BITOLA 3 OSLOMEJ NEGOTINO VRUTOK
GLOBOCICA SPILJE
TIKVES
KOZJAK+MAT RAVEN VRBEN
Bus# 26301 26302 26303 26311 26321 26331 26332 26333 26334 26341 26342 26351 26352 26353 26361 26362 26363 26364 26371 26401 -
PSS/E Remarks Bus Name ID BT 2 100 15.750 1 BT 2 400 15.750 1 BT 2 400 15.750 2 OSLOMEJ 13.800 1 TPP NEGO 15.750 1 VRUTOK 12.000 1 VRUTOK 12.000 2 VRUTOK 12.000 3 VRUTOK 12.000 4 GLOBOCIC 10.500 1 GLOBOCIC 10.500 2 SPILJE 10.500 1 SPILJE 10.500 2 SPILJE 10.500 3 TIKVES 10.500 1 TIKVES 10.500 2 TIKVES 10.500 3 TIKVES 10.500 4 KOZJAK 10.500 1 MATKA 2 10.500 1 - included in total consumption - included in total consumption
Figure 2.4.13 – GTmax model - Macedonia
2.28
Figure 2.4.14 – PSS/E model - Macedonia
2.29
Montenegro GTmax PSS/E Powerplant Bus# Bus Name PLJEVLJA THERMAL 36511 JTPLJEG1 15.750 36521 JHPERUG1 10.500 36522 JHPERUG2 10.500 36523 JHPERUG3 10.500 PERUCICA 36524 JHPERUG4 10.500 36525 JHPERUG5 10.500 36526 JHPERUG6 10.500 36527 JHPERUG7 10.500 SMALL HPPS -
Remarks ID G1 G1 G2 G3 G4 G5 G6 G7 - included in total consumption
Figure 2.4.15 – GTmax model - Montenegro
Figure 2.4.16 – PSS/E model - Montenegro
2.30
Serbia GTmax Powerplant
Bus# 35001 35001 35003 35003 35005 35005 35171 35171 DJER1 AND DJER2 35173 35173 35175 35175 35177 35177 35179 35179 35011 KOSTOLAC B 35012 35021 TENT A 1 35022 35023 35024 TENT A 2 35025 35026 35031 TENT B 35032 35041 KOSOVO B THERMAL 35042 35051 35052 BAJINA BASTA 35053 35054 35071 BAJINA 35072 35081 35082 BISTRICA KOKIN 35111 35112 35093 KOSOVO A 3-4 35094 KOSOVO A5 35095 KOSTOLAC A 1 35101 KOSTOLAC A 2 35102 35121 POTPEC 35122 35131 35141 35142 ZVORNIK 35143 35144 35151 35152 KOLUBARA 2 35153 35154 KOLUBARA 1 35155 MORAVA 35161 35181 PIROT 35182 35191 35192 35193 35194 VLASINSKE 35201 35202 35211 35212 34512 35221 GAZIVODE 35222 35241 NOVI SAD CHP 35242
PSS/E Bus Name JHDJERG1 15.750 JHDJERG1 15.750 JHDJERG3 15.750 JHDJERG3 15.750 JHDJERG5 15.750 JHDJERG5 15.750 JHDJE2G1 6.3000 JHDJE2G1 6.3000 JHDJE2G3 6.3000 JHDJE2G3 6.3000 JHDJE2G5 6.3000 JHDJE2G5 6.3000 JHDJE2G7 6.3000 JHDJE2G7 6.3000 JHDJE2G9 6.3000 JHDJE2G9 6.3000 JTDRMNG1 22.000 JTDRMNG2 22.000 JTENTAG1 15.750 JTENTAG2 15.750 JTENTAG3 15.000 JTENTAG4 15.000 JTENTAG5 15.000 JTENTAG6 15.000 JTENTBG1 21.000 JTENTBG2 21.000 JTKOSBG1 24.000 JTKOSBG2 24.000 JHBBASG1 15.650 JHBBASG2 15.650 JHBBASG3 15.650 JHBBASG4 15.650 JRHBBAG1 11.000 JRHBBAG2 11.000 JHBISTG1 10.500 JHBISTG2 10.500 JHKBROG1 6.3000 JHKBROG2 6.3000 JTKOSAG3 15.750 JTKOSAG4 15.750 JTKOSAG5 15.750 JTKSTAG1 10.500 JTKSTAG2 15.750 JHPOTPG2 8.8000 JHPOTPG3 8.8000 JHUVACG1 10.500 JHZVORG1 11.000 JHZVORG2 11.000 JHZVORG3 11.000 JHZVORG4 11.000 JTKOLUG1 10.500 JTKOLUG2 10.500 JTKOLUG3 10.500 JTKOLUG4 10.500 JTKOLUG5 10.500 JTMORAG1 13.500 JHPIROG1 10.500 JHPIROG2 10.500 JHVRL1G1 6.3000 JHVRL1G2 6.3000 JHVRL1G3 6.3000 JHVRL1G4 6.3000 JHVRL2G1 6.3000 JHVRL2G2 6.3000 JHVRL3G1 6.3000 JHVRL3G2 6.3000 JHVRL35 110.00 JHGAZIG1 6.3000 JHGAZIG2 6.3000 JTTNSAG1 15.750 JTTNSAG2 15.750
Remarks ID G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G6 G7 G8 G0 G9 G1 G2 G1 G2 G3 G4 G5 G6 G1 G2 G1 G2 G1 G2 G3 G4 G1 G2 G1 G2 G1 G2 G3 G4 G5 G1 G2 G2 G3 G1 G1 G2 G3 G4 G1 G2 G3 G4 G5 G1 G1 G2 G1 G2 G3 G4 G1 G2 G1 G2 2 G1 G2 G1 G2
as negative load
2.31
ZRENJANIN CHP KOLUBARA B KOSOVO 2X450 KOSOVO C 2X450 PIVA
35251 35271 35272 34070 34070 36501 36502 36503
JTTZREG1 JTKOLBG1 JTKOLBG2 JTKOSB1 JTKOSB1 JHPIVAG1 JHPIVAG2 JHPIVAG3
15.750 22.000 22.000 400.00 400.00 15.750 15.750 15.750
G1 G1 G2 C1 C2 G1 G2 G3
Figure 2.4.17 – GTmax model - Serbia
Figure 2.4.18 – GTmax model – Serbia UNMIK
2.32
UNMIK
Figure 2.4.19 – PSS/E model – Serbia and UNMIK
2.33
Romania GTmax Powerplant TURCENI 1
TURCENI 2
ROVINARI
RIURENI
BUCURESTI SUD
GOVORA THERMAL
GROZAVESTI CHP
PROGRESU CHP
BUCURESTI VEST RETEZAT MARISELU
DEVA 1 GILCEAG SUGAG
ORADEA
ARAD CHP RUIENI ISALNITA 2
PORTILE 1
PORTILE 2 DROBETA
Bus# 29110 29112 29113 29114 29115 29116 29117 29119 29120 29121 29238 29455 29125 29126 29127 29128 29136 29137 29138 29139 29317 29318 29140 29141 29142 29143 29144 29145 29147 29148 29149 29150 29151 29152 29154 29155 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29181 29183 29248 29184 29185 29189 29190 29191 29192 29193 29250 29194 29195 29199 29196 29197 29251
PSS/E Bus Name ID TURCENI1 24.000 1 TURCENI3 24.000 1 TURCENI4 24.000 1 TURCENI5 24.000 1 TURCENI 24.000 1 TURCENI6 24.000 1 TURCENI7 24.000 1 ROVIN 5 24.000 1 ROVIN 6 24.000 1 ROVIN 3 24.000 1 ROVIN 4 24.000 1 ROVIN 7 24.000 1 AREFU 1 10.500 1 AREFU 2 10.500 1 AREFU 3 10.500 1 AREFU 4 10.500 1 BUC.S 5 13.800 1 BUC.S 6 13.800 1 BUC.S 3 10.500 1 BUC.S 1 10.500 1 BUC.S 2 10.500 1 BUC.S 4 10.500 1 STUPA I1 10.500 1 STUPA I2 10.500 1 STUPAII6 10.500 1 STUPAII5 10.500 1 STUPA I3 10.500 1 STUPA I4 10.500 1 GROZAV 2 10.500 1 GROZAV 1 10.500 1 PROGRS 1 10.500 1 PROGRS4 10.500 1 PROGRS3 10.500 1 PROGRS 2 10.500 1 BUC.V 2 13.800 1 BUC.V 1 13.800 1 RETEZAT1 15.750 1 RETEZAT2 15.750 1 MARISEL1 15.750 1 MARISEL2 15.750 1 MARISEL3 15.750 1 MINTIA 1 15.750 1 MINTIA 2 15.750 1 MINTIA 5 15.750 1 GALCEAG1 15.750 1 GALCEAG2 15.750 1 SUGAG 1 15.750 1 SUGAG 2 15.750 1 ORAD I 4 10.500 1 ORAD II1 10.500 1 ORAD II2 10.500 1 ORAD I 6 10.500 1 ORAD I 5 10.500 1 ORAD II3 10.500 1 ARAD 1 10.500 1 RUIENI 1 10.500 1 RUIENI 2 10.500 1 ISALNIT7 24.000 1 ISALNIT8 24.000 1 P.D.F 1 15.750 1 P.D.F 2 15.750 1 P.D.F 3 15.750 1 P.D.F 4 15.750 1 P.D.F 5 15.750 1 P.D.F.6 15.750 1 GRUIA12 6.3000 1 GRUIA34 6.3000 1 GRUIA56 6.3000 1 GRUIA78 6.3000 1 DROBETA2 10.500 1 DROBETA4 10.500 1
Remarks
2.34
CRAIOVA BORZESTI BORZESTI CHP
STEJARU SUCEAVA BACAU THERMAL IASI II IASI I CERNAVODA BRAILA 1 BRAILA 2
GALATI CHP PALAS CHP LOTRU CIUNGET BRASOV THERMAL PITESTI
BRAZI CHP
DEVA 2
PAROSENI BRAILA 3 DOICESTI CERNAVODA 2 CERNAVODA 3 ARCESTI BABENI BACAU BERESTI BRADISOR CALBUCET CALIMANESTI OLT CALIMANESTI SIRE CORNETU DAESTI DOICESTI DRAGANESTI DRAGASANI FRUNZARU GALBENI GUIRGIU GOVORA IONESTI IPOTESTI IZBICENI LUDUS MOTRU MUNTENI I NEHOUI
29252 29253 29198 29200 29201 29202 29203 29205 29206 29207 29208 29209 29210 29211 29212 29214 29215 29216 29217 29218 29219 29220 29221 29224 29225 29310 29226 29227 29232 29233 29234 29235 29236 29237 29305 29239 29267 29268 29266 29259 29260 29262 29269 29270 29271 29263 29299 29301 29302 29332 29470 28639 28678 28147 28320 28564 28574 28752 28674 28624 28676 29261 28849 -
DROBETA3 10.500 DROBETA1 10.500 CRAI II2 15.750 CRAI II1 15.750 BORZEST7 15.750 BORZEST8 15.750 BORZE I6 10.500 BORZE I4 10.500 BORZE I5 10.500 STEJARU5 10.500 STEJARU6 10.500 STEJARU 10.500 SUCEAVA1 10.500 SUCEAVA2 10.500 BACAU 1 10.500 FAI II 1 10.500 FAI II 2 10.500 FAI I 4 10.500 FAI I 3 10.500 CERNAV.1 24.000 BRAILA 1 15.750 BRAILA 2 15.750 BARBOSI5 10.500 BARBOSI3 10.500 SMARDAN6 10.500 SMARDAN4 10.500 PALAS 1 10.500 PALAS 2 10.500 LOTRU 1 15.750 LOTRU 2 15.750 LOTRU 3 15.750 BRASOV 1 10.500 BRASOV 2 10.500 PITEST 4 10.500 PITEST 5 10.500 BRAZI 5 10.500 BRAZI 7 10.500 BRAZI 6 10.500 BRAZI 10 10.500 MINTIA 4 15.750 MINTIA 3 15.750 MINTIA 6 15.750 PAROSEN1 10.500 PAROSEN2 10.500 PAROSEN3 10.500 PAROS 4 18.000 BRAILA 3 15.750 DOICEST8 15.750 DOICEST7 15.750 CERNAV.2 24.000 CERNAV.3 24.000 ARCESTI 110.00 BABENI 110.00 BACAU S 110.00 VERNEST 110.00 BRADISO 110.00 DAIESTI 110.00 CHE DRAG 110.00 CHE DRG 110.00 FRUNZ. 110.00 IONESTI 110.00 IZBICEN 110.00 MUNTEAN 110.00 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 -
as negative load as negative load as negative load as negative load as negative load included in total consumption included in total consumption included in total consumption included in total consumption as negative load included in total consumption as negative load as negative load as negative load included in total consumption included in total consumption included in total consumption as negative load included in total consumption as negative load included in total consumption included in total consumption as negative load included in total consumption
2.35
OTHER AUTOPRODUC RACACIUNI REMETI RIMNICU VILCEA RUSANESTI SASCIORI SLATINA HYDRO STREJESTI TARNITA TISMANA TOTAL UNDER 25 TOTAL UNDER 25 2 TOTAL UNDER 25 3 TOTAL UNDER 25 4 TOTAL UNDER 25 5 TURNU VADURI VIDRARU ZAVIDENI
28850 REMETI 110.00 28597 VILCEL A 110.00 28645 STRAJ 110.00 28844 TURNU 110.00 28102 VADURI 110.00 28675 ZAVID 110.00
1 2 1 1 1 1
included in total consumption included in total consumption as negative load as negative load included in total consumption included in total consumption included in total consumption as negative load included in total consumption included in total consumption included in total consumption included in total consumption included in total consumption included in total consumption included in total consumption as negative load as negative load included in total consumption as negative load
Figure 2.4.20 – GTmax model – Romania
2.36
Figure 2.4.21 – PSS/E model - Romania
2.37
All these production facilities are analyzed as they will be built till 2010. Besides in sensitivity analyses for average hydrology high load scenarios in 2010 and 2015, additional production capacities are analyzed. In following tables is shown in what way these units are modeled. BIH GTmax Powerplant
Bus# 14010 14011 14012 14015 14015 14015
BUKBSRB
PSS/E Bus Name HEBBG1 15.750 HEBBG2 15.750 HEBBG3 15.750 HESRBG 6.3000 HESRBG 6.3000 HESRBG 6.3000
Remarks ID G1 G2 G3 G3 G2 G1
GLAVATICEVO
included in total consumption
Bulgaria GTmax Powerplant BELENE
Bus# 12450
PSS/E Bus Name CAREVEC 400.00
ID 1
Remarks
GTmax Powerplant KOMARNICA ANDRIJEVO I ZLAT KOSTANICA
Bus# 36140 36998 36999
PSS/E Bus Name JNIKGR51 110.00 JHANDR21 220.00 JHKOST11 400.00
ID 1 1 1
Bus# 34070 34070 36999
PSS/E Bus Name JTKOSB1 400.00 JTKOSB1 400.00 JPRIZ22 220.00
ID C1 C2 1
Montenegro Remarks
Serbia (UNMIK) GTmax Powerplant KOSOVO 3X274 KOSOVO C 5X450 ZHUR
Remarks
Exchange programs-desired interchange Because of different modeling approach of production and intersystem exchanges between GTmax and PSS/E, there are some peculiarities that need to be implemented in PSS/E model. This causes differences between exchange programs in GTmax and PSS/E. So, NPP Krsko is installed in system of Slovenia, but 50 % it is owned by Croatia. In GTmax this is modeled simply as Croatian power plant that has half power installed. But in PSS/E model, this plant is modeled as it is, in system of Slovenia, so Croatian part of energy produced is modeled as export from Slovenia to Croatia. Similar situation is with HPP Dubrovnik in Croatia, which is owned by Bosnia and Herzegovina. In case of HPP Piva, there is long term contract between Serbia and Montenegro, by which this plant operates as plant owned by Serbia in exchange for 105 MW exchange. In order to achieve correspondence between exchange programs in GTmax and PSS/E model, following assumptions are made: Albania: Bulgaria: BIH: Croatia: Macedonia: Romania: Serbia: Montenegro:
PSS/E program PSS/E program PSS/E program PSS/E program PSS/E program PSS/E program PSS/E program PSS/E program
= = = = = = = =
GTmax program GTmax program GTmax program – production (DUBROVNIK G-2) GTmax program + production (DUBROVNIK G-2) – 50% production (KRSKO) GTmax program GTmax program GTmax program (Serbia) + GTmax program (UNMIK) – production (PIVA) GTmax program + production (PIVA)
In sensitivity cases analyses, new generation facilities are modeled. One of them is HPP Buk Bijela and HPP Srbinje in Bosnia and Herzegovina. 1/3 of the energy produced by this plants is owned by Montenegro, so in these cases (2015 average hydrology high load scenarios) exchange program of BIH and Montenegro is calculated as: BIH: Montenegro:
PSS/E program = PSS/E program =
GTmax program – production (DUBROVNIK G-2)+ 1/3production(BUKBSRB) GTmax program + production (PIVA)-1/3production(BUKBSRB)
2.38
3 ANALYZED GENERATION, DEMAND AND EXCHANGE SCENARIOS
3.1
This chapter shortly describes analyzed generation, demand and exchange scenarios in WASP and GTMax and explains how they are modeled in PSS/E. Total number of 10 scenarios were analyzed from transmission network prospective. WASP Scenario B results, were discussed and it was decided that WASP Scenario B “Case 1A” would be used as the Reference Case for GTmax Scenario C, and for PSS/E analyses as Reference cases. These Reference Cases include medium demand forecast, most likely fuel price forecast for all fuels and life extension and rehabilitation program as scheduled by the utilities. Within the extensive GTMax analyses in 2010 and 2015, the distribution of the new generation units to specific jurisdictions has been done. The specific (named) new generation units have defined sites and their distribution throughout the region have been done according to defined sites. Distribution of non-specific new generation units has been solved by taking into account the power balance for each jurisdiction or their specific needs. On the basis of the WASP results for the Reference Case and defined distribution of specific and non-specific new generation units, detailed GTMax simulation of the weekly operation of the regional power system have been done in average, dry and wet hydrology conditions. The generation of each power plant in peak hour of 2010 and 2015 in average, dry and wet hydrology conditions have been obtained as one of the GTMax results and have been used as input data for transmission network analyses done using PSS/E software package. Five scenarios were related to year 2010, and other five scenarios were related to year 2015. Three scenarios for each year represent base cases and other two extra situations characterized by high demand and power imports. 3.1. Year 2010 Scenarios Following tables 3.1.1-3.1.5 include generation and demand data dependent on analyzed hydrological situations, load level and power imports, related to year 2010. For each country one row represents GTMax data (white rows) and one row (shaded ones) equivalent data in PSS/E model according to explanations from Chapter 2. Differences in demand, hydro power plants and thermal power plants production are caused by plants connected to voltage levels below 110 kV which are not included into PSS/E model, so their overall production is included reducing demand, hydro and thermal production. This is the most obvious in Romanian power system characterized by large number of small hydro power plants connected to low voltage levels so Romanian balance in PSS/E model is quite different than on GTMax model. Total power system balances (production minus demand) are different in GTMax and PSS/E models for Bosnia and Herzegovina (HPP Dubrovnik production is included into Croatian balance on PSS/E model), Croatia (HPP Dubrovnik is included, NPP Krsko in Slovenia is excluded from the balance), Montenegro (HPP Piva is included), and Serbia and UNMIK (HPP Piva is excluded from their balance). WASP results for the Reference Case show that, for the period 2005-2010, the following new capacity would be added to the regional power system: • Cernavoda nuclear unit #2 • Kolubara lignite unit #1, and • One 500-MW Kosovo lignite plant and these were included in the PSS/E model for 2010.
3.2
For 2010 year, additional scenarios are analyzed as Sensitivity cases. One of them is the High Load Forecast with new generation facilities implemented: HPP Zhur connected to the UNMIK node and there are also one 300 MW and one 500 MW combined cycle plant in Croatia and additional 500 MW unit connected to UNMIK node. This High Demand Forecast Case includes high demand forecast, most likely fuel price forecast for all fuels and life extension and rehabilitation program as scheduled by the utilities. On the basis of the WASP results for the High Demand Forecast Case and defined distribution of specific and non-specific new generation units, detailed GTMax simulation of the weekly operation of the regional power system have been done in average hydrology condition. The generations of each power plant in peak hour of 2010 and 2015 in average hydrology condition have been obtained as one of the GTMax results and have been used as input data for transmission network analyses done using PSS/E software package. As second Sensitivity case, additional energy exchanges in the region are analyzed. This Import/Export Case includes medium demand forecast, most likely fuel price forecast for all fuels, life extension and rehabilitation program as scheduled by the utilities and net import of 1,500MW into the region. Following additional exchanges are simulated: - Import 750 MW from UCTE. - Import 500 MW from Turkey. - Export 500 MW to Greece. - Import 750 MW from Ukraine. On the basis of the WASP results for the Import/Export Case and defined distribution of specific and non-specific new generation units, detailed GTMax simulation of the weekly operation of the regional power system have been done in average hydrology condition. The generations of each power plant in peak hour of 2010 and 2015 in average hydrology condition have been obtained as one of the GTMax results and have been used as input data for transmission network analyses done using PSS/E software package. After comparison of the GTMax results for this case with the results for Base Case it can be seen that there is no new TPPs connected to UNMIK node or Mladost node in 2010 (without new TPPs on Kosovo and without Kolubara B units).
3.3
Table 3.1.1: Demand, Generation and Exchanges in SE Europe for base case - average hydrological scenario in 2010 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1338 757 140 897 Albania 1338 757 140 897 Bosnia and 2077 1591 826 2417 Herzegovina 2029 1439 826 2265 6193 554 6426 6980 Bulgaria 6113 474 6426 6900 3217 1018 749 1767 Croatia 3186 1092 411 1503 1229 232 730 962 Macedonia 1218 220 730 950 687 228 0 228 Montenegro 687 540 0 540 7797 2996 5730 8726 Romania 7022 2256 5696 7952 Sebia and 7112 2582 5090 7672 UNMIK 7112 2270 5090 7360 29649 9958 19691 29649 Region Total 28705 9048 19319 28367 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -441 -441 341 236 787 787 -1450 -1683 -268 -268 -459 -147 930 930 560 248 0 -338**
Table 3.1.2: Demand, Generation and Exchanges in SE Europe for base case - dry hydrological scenario in 2010 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1338 753 200 953 Albania 1338 753 200 953 Bosnia and 2077 1636 1338 2974 Herzegovina 2050 1504 1338 2843 6193 373 6426 6799 Bulgaria 6103 283 6426 6709 3217 924 1632 2555 Croatia 3189 1001 1294 2295 1229 296 730 1026 Macedonia 1224 290 730 1020 687 179 0 179 Montenegro 687 467 0 467 7797 1820 5776 7596 Romania 7128 1185 5742 6927 Sebia and 7112 2476 5090 7566 UNMIK 7112 2188 5090 7278 29649 8457 21192 29649 Region Total 28830 7672 20820 28492 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -384 -384 898 793 606 606 -661 -894 -203 -203 -508 -220 -200 -200 454 166 0 -338*
3.4
Table 3.1.3: Demand, Generation and Exchanges in SE Europe for base case - wet hydrological scenario in 2010 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1338 759 140 899 Albania 1338 759 140 899 Bosnia and 2077 1630 570 2200 Herzegovina 2019 1468 570 2038 6193 686 6346 7032 Bulgaria 6103 596 6346 6942 3217 1249 749 1998 Croatia 3187 1324 411 1735 1229 367 730 1097 Macedonia 1214 352 730 1082 687 244 0 244 Montenegro 687 586 0 586 7797 3744 4684 8428 Romania 6706 2653 4684 7337 Sebia and 7112 2662 5090 7751 UNMIK 7112 2319 5090 7409 29649 11341 18309 29649 Region Total 28366 10057 17971 28028 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -439 -439 124 19 839 839 -1219 -1452 -132 -132 -443 -101 632 632 639 297 0 -338**
Table 3.1.4: Demand, Generation and Exchanges in SE Europe for sensitivity case – high load – average hydrological scenario in 2010 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1414 790 140 930 Albania 1414 790 140 930 Bosnia and 2114 1693 667 2360 Herzegovina 2061 1535 667 2202 6492 518 6832 7350 Bulgaria 6425 450 6832 7282 3371 1001 1507 2508 Croatia 3350 1085 1169 2254 1262 271 730 1001 Macedonia 1252 261 730 991 704 228 0 228 Montenegro 704 540 0 540 8320 3237 5026 8263 Romania 7533 2484 4992 7476 Sebia and 7346 2774 5608 8382 UNMIK 7346 2462 5608 8070 31022 10512 20510 31022 Region Total 30085 9379 20138 29747 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -484 -484 246 141 858 858 -863 -1096 -261 -261 -476 -163 -57 -57 1036 724 0 -338**
3.5
Table 3.1.5: Demand, Generation and Exchanges in SE Europe for sensitivity case – power import – average hydrological scenario in 2010 Country
Demand HPP Generation TPP and NPP Total Generation Surplus(+)/Deficit(-) (MW) (MW)* Generation (MW) (MW) 1338 757 140 897 -440 Albania 1338 757 140 897 -440 Bosnia and 2077 1734 826 2560 484 Herzegovina 2019 1572 826 2398 379 6193 561 6346 6907 714 Bulgaria 6113 481 6346 6827 714 3217 1218 749 1967 -1250 Croatia 3188 1294 411 1705 -1483 1229 266 730 996 -233 Macedonia 1199 235 730 965 -233 687 228 0 228 -459 Montenegro 687 540 0 540 -147 7797 2936 4756 7692 -105 Romania 6977 2150 4722 6872 -105 Sebia and 7112 2582 4320 6902 -210 UNMIK 7112 2270 4320 6590 -522 29649 10282 17867 28149 -1500 Region Total 28633 8788 17495 26795 -1838** * pumped storage HPP’s included ** 1500 MW of import plus half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
3.2. Year 2015 Scenarios Following tables 3.2.1-3.2.5 include generation and demand data dependent on analyzed hydrological situations, load level and power imports, related to year 2015, using the same assumptions explained in previous subchapter. WASP results for the Reference Case show that, for the period 2011-2015, the following new capacity would be added to the regional power system: • Cernavoda nuclear unit #3 • Kolubara lignite unit #2 • One 300-MW and two 500-MW Kosovo lignite plants • Two 100-MW CHP plants, and • Two 300-MW and one 500-MW combined cycle plants On the basis of this kind of analyses the following distribution of new non-specific generation units have been arranged: two 100 MW CHP units have been placed in Romania two 300 MW and one 500 MW combined cycle units have been placed in Croatia all these are included in PSS/E model for 2015. Like for 2010, and for 2015 year, additional scenarios are analyzed as Sensitivity cases. One of them is the High Load Forecast with new generation facilities implemented: - HPP Buk Bijela with HPP Srbinje in B&H. Within the results from GTMax it can be seen that this hydro system is partially connected to Sarajevo node in B&H and partially to Montenegro node, due to the partial ownership of this hydro system. - HPP Glavaticevo connected to Mostar node in B&H. - HPP Dabar connected to Trebinje node in B&H. - HPP Komarnica connected to Montenegro node. 3.6
- HPP Kostanica connected to Montenegro node. - HPP Andrijevo and Zlatica connected to Montenegro node. - NPP Belene nuclear plant connected to Varna node in Bulgaria, - one 100 MW CHP unit connected to Mladost node in Serbia, - one 500 MW combined cycle plant connected to node Zagreb in Croatia - and additional two 300 MW and two 500 MW units connected to UNMIK node. After comparison of the GTMax results for Export/Import Case (exchanges in/from/to SE Europe are the same as in 2010) with the results for Base Case in 2015 it can be seen that there is no Chernavoda Unit 3, no CHP unit connected to SIBIU node, no second 300 MW unit connected to Zagreb node, only one 500 MW unit connected to UNMIK node, but instead of one now there are two 300 MW units connected to UNMIK node. As second Sensitivity case for 2015, additional energy exchanges in the region are analyzed. This was called Import/Export Case, and following additional exchanges are simulated (same as for 2010): - Import 750 MW from UCTE. - Import 500 MW from Turkey. - Export 500 MW to Greece. - Import 750 MW from Ukraine. Table 3.2.1: Demand, Generation and Exchanges in SE Europe for base case - average hydrological scenario in 2015 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1614 978 140 1118 Albania 1614 978 140 1118 Bosnia and 2410 1648 826 2474 Herzegovina 2358 1491 826 2317 6688 533 6854 7387 Bulgaria 6619 465 6854 7319 3752 986 1595 2581 Croatia 3721 1060 1257 2317 1438 379 720 1099 Macedonia 1427 367 720 1087 694 230 191 421 Montenegro 694 542 191 733 9056 3424 5680 9104 Romania 7973 2547 5474 8021 Sebia and 7499 2584 6383 8967 UNMIK 7499 2272 6383 8655 33151 10762 22389 33151 Region Total 31906 9722 21845 31568 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -496 -496 64 -41 699 699 -1171 -1404 -340 -340 -273 39 48 48 1468 1156 0 -338**
3.7
Table 3.2.2: Demand, Generation and Exchanges in SE Europe for base case - dry hydrological scenario in 2015 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1614 751 143 894 Albania 1614 751 143 894 Bosnia and 2410 1656 1617 3274 Herzegovina 2382 1523 1617 3141 6688 600 6854 7454 Bulgaria 6598 510 6854 7364 3752 1177 1721 2898 Croatia 3723 1253 1383 2636 1438 274 720 994 Macedonia 1429 265 720 985 694 107 191 298 Montenegro 694 395 191 586 9056 2033 6654 8687 Romania 8188 1371 6448 7819 Sebia and 7499 2268 6383 8651 UNMIK 7499 1980 6383 8363 33151 8868 24283 33151 Region Total 32127 8049 23739 31789 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -720 -720 864 759 766 766 -853 -1086 -444 -444 -396 -108 -369 -369 1152 864 0 -338**
Table 3.2.3: Demand, Generation and Exchanges in SE Europe for base case - wet hydrological scenario in 2015 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1614 984 140 1124 Albania 1614 984 140 1124 Bosnia and 2410 1743 573 2316 Herzegovina 2353 1581 573 2154 6688 899 6744 7643 Bulgaria 6598 809 6744 7553 3752 1468 1595 3063 Croatia 3721 1543 1257 2800 1438 358 523 881 Macedonia 1427 347 523 870 694 246 191 437 Montenegro 694 588 191 779 9056 3445 5488 8933 Romania 8074 2635 5316 7951 Sebia and 7499 2662 6092 8754 UNMIK 7499 2320 6092 8412 33151 11805 21346 33151 Region Total 31980 10806 20836 31642 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -490 -490 -94 -199 955 955 -688 -921 -557 -557 -257 85 -123 -123 1255 913 0 -338**
3.8
Table 3.2.4: Demand, Generation and Exchanges in SE Europe for sensitivity case – high load – average hydrological scenario in 2015 Country
Demand HPP Generation TPP and NPP Total Generation (MW) (MW)* Generation (MW) (MW) 1781 758 140 898 Albania 1781 758 140 898 Bosnia and 2503 1989 630 2619 Herzegovina 2433 1814 630 2444 7327 552 7674 8226 Bulgaria 7259 484 7674 8158 4067 1007 1845 2852 Croatia 4040 1085 1507 2592 1516 179 720 899 Macedonia 1513 176 720 896 736 922 191 1113 Montenegro 736 1234 191 1425 10232 3584 5608 9192 Romania 9175 2698 5436 8135 Sebia and 8025 2472 7917 10389 UNMIK 8025 2160 7917 10077 36188 11463 24725 36188 Region Total 34962 10408 24215 34624 * pumped storage HPP’s included ** half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
Surplus(+)/Deficit(-) -883 -883 116 11 899 899 -1215 -1448 -617 -617 377 689 -1040 -1040 2364 2052 0 -338**
Table 3.2.5: Demand, Generation and Exchanges in SE Europe for sensitivity case – power import – average hydrological scenario in 2015 Country
Demand HPP Generation TPP and NPP Total Generation Surplus(+)/Deficit(-) (MW) (MW)* Generation (MW) (MW) 1614 886 140 1026 -588 Albania 1614 886 140 1026 -588 Bosnia and 2410 1720 826 2546 136 Herzegovina 2364 1568 826 2395 31 6688 840 6854 7694 1006 Bulgaria 6578 730 6854 7584 1006 3752 1133 1307 2440 -1312 Croatia 3721 1207 969 2176 -1545 1438 379 720 1099 -340 Macedonia 1417 357 720 1077 -340 694 230 191 421 -273 Montenegro 694 542 191 733 39 9056 3030 5054 8084 -972 Romania 8161 2256 4934 7190 -972 Sebia and 7499 2584 5757 8341 842 UNMIK 7499 2272 5757 8029 530 33151 10802 20849 31651 -1500 Region Total 32048 9819 20391 30210 -1838** * pumped storage HPP’s included ** import of 1500 MW plus half of NPP Krsko (Slovenia) production (scheduled for Croatian power system)
3.9
4 LOAD FLOW AND CONTINGENCY ANALYSIS – REFERENCE CASES
4.1
Introduction In this chapter load-flow and security (n-1) analysis for reference cases defined in Chapter 2 is described. The analyzed network models are: Year 2010
Hydrology average dry wet average
2015
dry wet
Topology 2010 2010 2015 2010 2015 2010 2015
The load-flow analysis includes line loading and voltage profile analysis, analysis of losses and also analysis of power flows through interconnection lines. The system reliability and adequacy is checked using “n-1” contingency criterion. List of contingencies includes: • all interconnection lines; • all 400 and 220 kV lines in analyzed region, except lines which outage cause “island” operation (in case of parallel and double circuit lines, outage of one line is considered); • all transformers 400/x kV in analyzed region (in case of parallel transformers, outage of one transformer is considered). Current thermal limits are used as rated limits of lines and transformers, as described in Chapter 2. Voltage limits are defined in Chapter 2, also. Every branch with current above its thermal limit is treated as overloaded. States with overloaded branches and/or voltages below or above defined voltage limits are treated as "insecure".
4.1 Scenario 2010 – average hydrology – 2010 topology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2010 average hydrology.
4.1.1 Line loadings Area totals and power exchanges for the 2010-base case-average hydrology scenario are shown in Figure 4.1.1 and Table 4.1.1. Power flows along regional interconnection lines and system balances are shown in Figure 4.1.2. Power flows along interconnection lines are also given in Table 4.1.2, while Figure 4.1.3 shows histogram of tie lines loadings.
4.2
SVK 91
54
1
AUT
1
4 50
UKR
27
HUN 53
0
94 36 6
32
9 30
SLO
ITA
CRO
ROM
333
25
0
4 67
60
SRB
330
BIH
27 2
8 10
3 76
MNT 40
18
10
BUL 4 2
0
133
ALB
272
5 17
MKD
TUR 24
3 41
GRE 2 50
Figure 4.1.1 - Area exchanges in analyzed electric power systems for 2010-base case-average hydrology scenario
Table 4.1.1 - Area totals in analyzed electric power systems for 2010-base case-average hydrology scenario Country Albania Bulgaria Bosnia and Herzegovina Croatia Macedonia Romania Serbia and UNMIK Montenegro TOTAL - SE EUROPE
Generation (MW) 896.7 6900.4 2266.1 1502.9 950.3 7939.9 7355.9 539.8 28351.9
Load (MW) 1287.3 5977.3 1971.3 3136.7 1198.2 6728.3 6873.1 669.2 27841.4
Bus Shunt (Mvar) 0 0 0 0 0 0 0 0.6 0.6
Line Shunt (Mvar) 0 14.4 0 0 0 80.0 13.6 1.6 109.5
Losses (MW) 50.4 121.6 58.6 49.0 20.1 201.2 220.8 15.5 737.1
Net Interchange (MW) -441.0 787.0 236.2 -1682.8 -268.0 930.4 248.4 -147.0 -336.7
4.3
LEVIC 1400.0
CENTREL
200 143
251 116
GABICK1400.0
450.0 MW
MSAJO 4 410.0
167 52.9
JSOMB31 396.6
332 71.3 407.8
224.4 UMUKACH 412.0
90. 3.1 7
282 NADAB 74.5 404.4
404.1 247 13.0
249 ARAD 59.7 402.9
ROM
198 98.7
ISACCEA 414.3
930.0 MW
JSUBO31 398.8
334 JSMIT21 103 403.2 JHDJE11
250 42.3
250 41.6
P.D.FIE TANTAREN
404.3
276 39.2
415.6
UGLJEVIK 405.1
SCG
233.7
147 16.6
JHPIVA21 148 236.1 14.3
34.1 18.8
JHPERU21 33.9 229.6 26.7
18.6 76.9
18.7 JPODG211 120 JPODG121228.5
CRG -147.0 MW
787.0 MW
416.4
412.4
AZEMLA1
411 135
KARDIA K 417 416.8 112
QES/H
68.8 28.2
AHS_FLWR417.6
K
413.2
415.6
9 23 6.0 7
23.7 22.6 K-KEXRU 417.9
4HAMITAX 11.0 10.9 415.6 80.1 23.7 68.8 4BABAESK 71.6 415.7
0.0 MW
-0.1 MW KARACQOU 250 419.1 50.0
FILIPPOI
1 7. 2.7 2
.6 12 5.9 9
7 63. 6 25.
.8 31 .9 45 LAGAD K 414.1
398.2
MI_3_4_1 420.4
BLAGOEV414.5 412.4
68.7 33.2
7 63. 1 48.
ALB
-441.0 MW
413.8
5 17 .0 38
STIP 1
DUBROVO 386.0
6 17 7 . 48
408.3
24 38. 1 9
BITOLA 2
C_MOGILA
SK 4 407.3
31.9 49.4
26.0 21.7
6.9 29.4
SK 1 223.3
.0 9 11 1. 1
27.3 167
BUL
JLESK21 386.9
1 37 0.0 .2
7.0 15.3
27.7 128
395.4 AVDEJA2 227.4AFIERZ2228.4
MKD
KV: 110 , 220 , 400
DOBRUD4 421.3
415.8
377 SOFIA_W4 108 411.9
JVRAN31 0.000
-268.0 MW
AKASHA1
374 138
26.0 28.6
6.8 7 18.
6.8 7 18.
24.6 48.5
AEC_400 JNIS2 1 395.7
JPRIZ22 223.0 JTKOSA2 226.9JTKOSB1406.9 1 45 0. .8 3
397.2
101.4 MW SRB 248.4 MW
6.9 29.4
RP TREB 233.1
JVARDI22 53.2 230.5 61.0
7.0 5.8
SA 20 232.2
53.0 59.2
24.7 20.6
VISEGRA 232.4
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2010
ROSIORI 410.3
9 12 1 6.
408.6 128 MO-4 16.2 234.8
BIH
236.2 MW
281 63.8
9 12 1 6.
MO-4
228.5 TE TUZL
105 4 68.
125 14.3
291 46.9
GRADACAC
226.0
RP TREB 404.1
SHAW POWER TECHNOLOGIES INC. R
UKR
450.0 MW
130 42.5
225.8
4 10 9 . 36
PRIJED2
290 0.6
3 58. 7 18.
.7 51 .5 28
51.5 19.5
CRO
-1682.8 MW
408.4
166 57.2
MSAFA 4
404.2
HE ZAKUC 233.3
10.6 29.3
.1 32 10 1
68 278 .1
51.2 12.5
51.4 20.8
226.6
103 39.6
DAKOVO
227.2MEDURIC
58.0 23.4
404.2
MRACLIN
105 12.4
ERNESTIN
.9 6 44 6. 1
TUMBRI
PEHLIN 233.7
409.8
77. 4 4 77 6.8 46 .4 .8
5 5 10 .5 10 .5 62 62 ZERJAVIN 406.7 ZERJAVIN 230.4
6 17 3 . 29 6 17 3 . 29
32.7 19.3
228.9
77 . 2. 5 3 77 . 2. 5 3
LCIRKO2
403.2
407.3
KONJSKO
10.7 7.7
MBEKO 4 406.3
409.5
MPECS 4
LKRSKO1
MELINA
35.6 UMUKACH2 27.8
32.0 135
SLO
32 29 .6 .0
35.4 21.0
106 42.7
106 42.7
215.0 MW
66 403.0 92 .6 .0 LDIVAC2
230.8
MHEVI 4
45.2 25.4
28.0 49.0
14.9 229.0 28.6
LMARIB1 403.9
66.7 68.2
231.3
28.0 45.4
159 41.5
15.0 14.5
MTLOK 2 230.5
HUN
176 53.8
IPDRV121
159 62.7
42.7 23.2
MKISV 2 226.3
-1249.4 MW
176 53.8
401.4
MGYOR 2
43.1 7.5
58. 22. 4 2
58. 22. 4 2
163 36. 3 IRDPV111
407.8
9 90. 7 59.
LPODLO2229.9
MSAJI 408.2
4
199 40.8
58.4 53.4
58.4 53.4
234.3 ONEUSI2 233.5
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 299 772.5
11.0 68.8
OKAINA1 402.6
166 41.0
OOBERS2238.7
346 803
130 42.5
69.6 21.6
405.6
199 97.3
UCTE
221.6 MW
MAISA 7 715.1
MGYOR 4 0 25 .1 69.5 94 104 403.5
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.1.2 - Power flows along interconnection lines in the region for 2010 - base case - average hydrology scenario
4.4
Table 4.1.2 - Power flows along regional interconnection lines for 2010 - base case-average hydrology scenario Power Flow
Interconnection line OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x220 kV ckt.1 OHL 2x220 kV ckt.2 OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV
Zemlak (ALB) Fierze (ALB) V.Dejes (ALB) V.Dejes (ALB) Ugljevik (B&H) Mostar (B&H) Ugljevik (B&H) Trebinje (B&H) Trebinje (B&H) Prijedor (B&H) Prijedor (B&H) Gradacac (B&H) Tuzla (B&H) Mostar (B&H) Visegrad (B&H) Sarajevo 20 (B&H) Trebinje (B&H) Blagoevgrad (BUL) M.East 3 (BUL) M.East 3 (BUL) M.East 3 (BUL) C.Mogila (BUL) Dobrudja (BUL) Kozloduy (BUL) Kozloduy (BUL) Sofia West (BUL) Zerjavinec (CRO) Zerjavinec (CRO) Ernestinovo (CRO) Ernestinovo (CRO) Tumbri (CRO) Tumbri (CRO) Melina (CRO) Ernestinovo (CRO) Zerjavinec (CRO) Pehlin (CRO) Dubrovo (MCD) Bitola (MCD) Skopje (MCD) Skopje (MCD) Skopje (MCD) Arad (ROM) Nadab (ROM) Rosiori (ROM) Portile De Fier (ROM) Subotica (SER) Ribarevine (MON) Pljevlja (MON) Pljevlja (MON)
Kardia (GRE) Prizren (SER) Podgorica (MON) Podgorica (MON) Ernestinovo (CRO) Konjsko (CRO) S. Mitrovica (SER) Podgorica (MON) Plat (CRO) Mraclin (CRO) Medjuric (CRO) Djakovo (CRO) Djakovo (CRO) Zakucac (CRO) Vardiste (SER) Piva (MON) Perucica (MON) Thessaloniki (GRE) Filippi (GRE) Babaeski (TUR) Hamitabat (TUR) Stip (MCD) Isaccea (ROM) Tantarena (ROM) Tantarena (ROM) Nis (SER) Heviz (HUN) Heviz (HUN) Pecs (HUN) Pecs (HUN) Krsko (SLO) Krsko (SLO) Divaca (SLO) S.Mitrovica (SER) Cirkovce (SLO) Divaca (SLO) Thessaloniki (GRE) Florina (GRE) Kosovo B (UNMIK) Kosovo A (UNMIK) Kosovo A (UNMIK) Sandorfalva (HUN) Bekescaba (HUN) Mukacevo (UKR) Djerdap (SER) Sandorfalva (HUN) Kosovo B (UNMIK) Bajina Basta (SER) Pozega (SER)
MW -410.7 -10.0 7.0 -24.6 105.4 291.3 -276.4 -18.6 -104.8 51.7 51.5 58.3 103.9 127.6 -53.0 -147.1 34.1 31.9 240.9 11.0 12.7 175.7 199.5 -129.5 -129.5 377.1 -105.4 -105.4 -77.4 -77.4 -176.0 -176.0 66.8 -332.1 -44.9 32.7 -68.7 -63.7 26.0 6.9 6.9 248.6 281.9 90.9 249.7 -32.0 -296.0 -46.0 34.9
Mvar -135.0 37.2 -15.3 -48.5 -68.4 -46.9 39.2 76.9 40.0 -28.5 -19.5 18.7 36.9 -16.2 59.2 -16.6 18.8 -49.4 -38.9 -11.9 -7.2 -48.7 -40.8 -6.1 -6.1 108.2 -62.5 -62.5 -46.8 -46.8 29.3 29.3 53.5 71.3 16.6 19.3 -33.2 -48.1 -21.7 -29.4 -29.4 -59.7 -74.5 -59.7 41.6 -135.1 -15.0 10.7 35.3
% of thermal rating 32 15 6 4 10 22 21 9 36 18 17 21 36 33 26 38 14 8 35 5 5 25 15 10 10 55 9 9 7 7 16 16 10 25 16 13 6 6 3 9 9 21 24 9 19 10 22 17 19
4.5
Figure 4.1.3 shows that the tie lines in the region are mostly loaded less than 25% of their thermal limits for the analyzed hydrological base case scenario in year 2010. Among total number of forty nine 400 kV and 220 kV interconnection lines in the region only seven are loaded between 25% and 50% of their thermal ratings. Only one line (OHL 400 kV Sofia – Nis between Bulgaria and Serbia) is loaded more than 50% of its thermal rating, which is set at lower value (692.8 MVA) on the Bulgarian side compared to the line rating on the Serbian side (1330.2 MVA). 45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.1.3 - Histogram of interconnection lines loadings for 2010-base case-average hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Table 4.1.3 lists all network elements loaded over 80% of their thermal limits. As it can be seen from this output list, most of the elements loaded over 80% are transformers in some substations and internal 110 kV and 220 kV lines. Thus, certain internal network reinforcements are necessary to sustain given load-demand level and production pattern. Two 220/110 kV transformers in the Fierze substation in Albania are slightly overloaded in this scenario, while the third transformer in the same substation is loaded near permitted values. It is expected that the transformers in that substation will be replaced with larger transformer units. There are two 110 kV internal lines in Romania which are loaded over 80% of their thermal limits, but none of them is overloaded. These lines are related to the Bojuren and Domnesti nodes. Two 220 kV lines and thirteen 110 kV lines in the Serbian power system are highly loaded when all branches are available in the analyzed scenario. Highly loaded 220 kV lines are connected to the Obrenovac substation, while 110 kV lines are located mostly in the area of Belgrade. Four 110 kV lines are overloaded, ranging between 108% Ithermal and 118% Ithermal. Power systems of Bulgaria, Bosnia and Herzegovina, Croatia, Macedonia and Montenegro do not have or have very few highly loaded branches in 110 kV networks. Figure 4.1.4 shows histogram of 400 kV and 220 kV regional internal lines and 400/x kV and 220/x kV transformers loadings. 47% of observed branches are loaded below 25% of their thermal ratings, 34% are loaded between 25% and 50%, 16% are loaded between 50% and 75% and only 2% of observed branches are loaded between 75% and 100% of their thermal ratings. Two branches (transformers 220/110 kV Fierze in Albania, 102% - 106% Sn) are overloaded if all branches are in operation for the analyzed scenario. 4.6
Table 4.1.3 - Network elements loaded over 80% of thermal limits for 2010-base case-average hydrology scenario AREA
ALB BIH ROM
ELEMENT
LOADING MVA
RATING MVA
PERCENT
116.8 95.7 91.4 254.8 385.7 173.1
120.0 90.0 90.0 300 400.0 200.0
93.7 106.4 101.5 84.9 96.4 86.6
Transformers TR 220/110 kV AFIER 2-AFIER 5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.3 TR 400/110 kV UGLJEV 1 TR 400/220 kV MINTIA-MINTIA B TR 220/110 kV FUNDENI-FUNDE2B
400 350
Frequency
300 250 200 150 100 50 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.1.4 - Histogram of 400 kV and 220 kV regional lines loadings for 2010-base case-average hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.1.2 Voltage Profile in the Region Voltage profile in the region within this scenario which is defined by given generation and demand pattern is seen as satisfactory despite several appearances of certain bus voltage deviations. The deviations are shown in Table 4.1.4, which includes only 400 kV and 220 kV network buses. Table 4.1.4 - Bus voltage deviations for 2010-base case-average hydrology scenario, complete network Country
Node
ALBANIA BOSNIA AND HERZEGOVINA
400 kV VARNA4 400 kV BURGAS 400 kV MARITSA EAST2 400 kV TECMIG5 400 kV TECMIG7 400 kV DOBRUD4 400 kV MARITSA EAST 3_4_1 400 kV TECMIG6 220 kV SESTRIMO 220 kV BPC_220 220 kV MIZIA2 220 kV AEC_220 220 kV TECVARNA -
BULGARIA
CROATIA MACEDONIA MONTENEGRO ROMANIA SERBIA AND UNMIK
Voltages pu 1.054 1.051 1.055 1.051 1.051 1.053 1.051 1.051 1.104 1.102 1.101 1.103 1.104 -
kV 421.4 420.5 422.1 420.5 420.5 421.3 420.5 420.5 242.8 242.5 242.1 242.6 242.9 -
4.7
Bus voltage magnitudes below permitted limits are not found in the analyzed scenario. Bus voltage magnitudes that are found above permitted limits (110% Vnominal in 110 kV and 220 kV networks and 105% Vnominal in 400 kV network) are detected only in Bulgaria. There are eight 400 kV buses and five 220 kV buses with voltages slightly above permitted limits. Figure 4.1.5 shows histogram of voltages in monitored 400 kV and 220 kV substations. 120 Frequency
100 80 60 40 20 x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin Figure 4.1.5 - Histogram of voltages in monitored substations for 2010-base case-average hydrology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
It should be emphasized that these results represent only a situation when additional devices (transformer automatic tap changers, switched shunts, etc.) are not used for voltage regulation. Impacts of such devices, which exist in many points of the SEE regional transmission network, need more comprehensive and thorough analysis.
4.1.3 Security (n-1) analysis Results of security (n-1) analysis for the 2010-base case-average hydrology scenario are presented in Table 4.1.5 and Table 4.1.6. Insecure states for given generation and demand pattern are detected mostly in the power systems of Romania and Serbia, although there is one contingency in Albania which leads to insecure state. The most critical branch in the analyzed load/generation scenario is the transformer 400/220 kV in the Mintia B substation in Romania. It is due to a high level of generation in DEVA 1 power plant (850 MW), which is connected to 220 kV busbars in that substation. Noted transformer becomes overloaded if one among eleven 400 kV and 220 kV lines or 400/220 kV transformers in the Romanian or Serbian power system goes out of operation. Secure operating conditions can be achieved if the generation level in DEVA 1 (Mintia) power plant is significantly lowered. Other way to achieve more secure operation with the same level of production in DEVA 1 power plant is to change network topology (connect generators in DEVA 1 to the second busbars or to connect two busbar systems in Mintia substation). Loss of 400/220 kV transformer in the Mintia B substation can jeopardize system security due to possible overloading of two 220 kV lines in Romania. Loss of one 400 kV line in Romania (Mintia-Arad) is critical because the 400 kV line Mintia-Sibiu can be overloaded. Single outages of 400/110 kV transformers in the stations Brasov 4.8
and Dirste in Romania are also found critical, since the second transformer 400/110 kV in the Brasov substation is permanently out of operation in the model. Loss of OHL 220 kV in the Belgrade area can cause overloading of the parallel line. Loss of one 400/110 kV transformer in the Nis substation is critical due to possible overloading of the other parallel one. Loss of 220 kV line between the Rashbul and Tirana substations can cause overloading of 220 kV line between the Elbasan and Fier substations in Albania. The heaviest line overloading (147% Ithermal) in the analyzed scenario is related to a 220 kV line in Romania around the Mintia substation. The heaviest transformer overloading (137% Sn) is related to the transformer 400/110 kV in the Dirste substation (Romania) when the transformer 400/110 kV in the Brasov substation is outaged (the parallel one is permanently out of operation in the model). Figure 4.1.6 shows geographical positions of critical elements in the analyzed scenario. A green color reveals 220 kV elements (line 220 kV or transformer 220/x kV), while a red one reveals 400 kV elements (line 400 kV or transformer 400/x kV). According to the obtained and presented results, it may be concluded that a re-dispatching of generation in the Romanian power system, especially of the DEVA 1 power plant (to decrease its generation level from the initially assumed 850 MW in this scenario), as well as certain reinforcements in the internal networks of Romania, Albania and Serbia are necessary shall this generation/load pattern be made more secure. Re-dispatching of Romanian power plants may be avoided if network topology is changed, especially in Mintia substation. None of the identified congestions is located at the border lines. Table 4.1.5 - Lines overloadings for 2010–base case-average hydrology scenario, single outages Outage
Overloaded line(s)
OHL 220 kV AKASHA2-ARRAZH2 OHL 400 kV MINTIA-ARAD TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B OHL 220 kV JBGD172-JBGD8 22 ckt.1
OHL 220 kV AELBS12-AFIER 2 OHL 400 kV MINTIA-SIBIU OHL 220 kV PESTIS-MINTIA A OHL 220 kV PESTIS-MINTIA B OHL 220 kV JBGD172-JBGD8 22 ckt.2
Loadings MVA % 253.1 113.2 408.2 106.5 431.1 147.3 351.4 119.3 434.8 122.2
Country ALBANIA ROMANIA SERBIA
Table 4.1.6 - Transformers overloadings for 2010–base case-average hydrology scenario, single outages Outage
Overloaded branch(es)
OHL 400 kV TANTAREN-SIBIU OHL 220 kV HAJD OT-MINTIA B OHL 220 kV PESTIS-MINTIA A OHL 220 kV MINTIA A-TIMIS OHL 220 kV MINTIA B-AL.JL OHL 220 kV CLUJ FL-AL.JL TR 400/220 kV MINTIA A TR 400/220 kV MINTIA B TR 400/220 kV ARAD TR 400/220 kV BUC.S ckt.1 400/110 kV BRASOV 400/110 kV DIRSTE 400/110 kV NIS ckt.1
TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B TR 400/220 kV MINTIA B TR 400/220 kV MINTIA A TR 400/220 kV MINTIA B TR 400/220 kV BUC.S ckt.2 400/110 kV DIRSTE 400/110 kV BRASOV 400/110 kV NIS ckt.2
Loadings MVA % 412.1 103.0 404.4 101.1 511.2 127.8 412.3 103.1 474.8 118.7 496.0 124.0 530.8 132.7 459.5 114.9 401.2 100.3 410.2 102.5 341.3 136.5 337.5 135.0 312.3 104.1
Country
ROMANIA
SERBIA
4.9
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.1.6 - Geographical positions of the critical elements for 2010-base case-average hydrology scenario
4.10
4.2 Scenario 2010 – dry hydrology This part of the Study presents the results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2010 - dry hydrology.
4.2.1 Lines loadings Figure 4.2.1 shows power exchanges between areas for 2010-dry hydrology scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 4.2.2. Area totals are shown in Table 4.2.1. Figure 4.2.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 25% of their thermal limits. UKR 30
9 28
AUT
0 42
450
SVK
HUN 16 8
68 31
47
SLO
7 14
CRO
ROM
195
2 52 4 17
164
SRB
89
BIH 0 36
273
27
MNG 7 16
34
BUL 33
27
ALB
122
74
MKD 95
ITA
27
TUR
0 25
GRE Figure 4.2.1 - Area exchanges in analyzed electric power systems for 2010-dry hydrology scenario
Table 4.2.1 - Area totals in analyzed electric power systems for 2010-dry hydrology scenario AREA ALBANIA BULGARIA BIH CROATIA MACEDONIA ROMANIA SERBIA MONTENEGRO TOTALS
GENERATION 953.3 6709.6 2842.4 2294.6 1021.1 6742 7311.7 467.8 28342.5
LOAD 1290.5 5970 1989 3147 1206 6703.8 6944 671 27921.3
LOSSES 46.8 133.6 60.3 41.6 18.1 238 201.6 16.9 756.9
INTERCHANGE -384 606 793 -894 -203 -199.9 166 -220 -335.9
4.11
LEVIC 1400.0
CENTREL
200 140
251 113
GABICK1400.0
450.0 MW
MSAJO 4 410.0
224.4 UMUKACH 412.0
37. 70. 1 5
222.5
MSAFA 4
38.0 ARAD 43.0 401.5
ROM
-369.2 MW
JSUBO31 396.0
JHDJE11
P.D.FIE
69.5 72.5
69.5 71.5
228 145
230 SOFIA_W4 92.4 411.0
TANTAREN
406.0
53.9 16.2
SCG
231.7
138 29.5
JHPIVA21 139 236.0 26.3
103 43.5
JHPERU21 102 221.1 45.0
CRG -107.7 MW
AEC_400 JNIS2 1 396.5
147 JPODG211 181 JPODG121219.0
204 180
AVDEJA2 210.7AFIERZ2208.0 373.2
SK 1 222.9
SK 4 407.5
MKD
BITOLA 2
414.2
410.5
1 18. 1 72.
ALB
357 271
KARDIA K 364 414.9 257
QES/H
5.0 14.0
AHS_FLWR416.1
AZEMLA1
K
MI_3_4_1 419.3
412.2
FILIPPOI
8 17 7.2 7
415.5
KV: 110 , 220 , 400
19.8 21.7 K-KEXRU 417.8
4HAMITAX 8.5 8.5 415.4 75.0 19.8 63.7 4BABAESK 70.7 415.5
0.0 MW
0.2 MW
KARACQOU 250 418.1 50.0
1 13 1.3 .8
.3 11 9.1 8
.4 35 . 4 49 LAGAD K 413.3
381.4
412.8
BLAGOEV413.3 410.7
1 18. 7 49.
-720.0 MW
C_MOGILA
.9 47 .8 59
STIP 1
DUBROVO 358.9
.0 48 .0 34
407.7
5 9 8. 6. 1
202 204
BUL
766.0 MW
JVRAN31 0.000
-444.0 MW
AKASHA1
DOBRUD4 417.1
414.7
8 28 1.9 .5
72.8 50.8
204 180
347 20.0
7 18. 0 17.
7 18. 0 17.
8 25 2. .1 8
384.0
JLESK21 0.000
JPRIZ22 214.1 JTKOSA2 227.0JTKOSB1412.4
5.0 48.0
148 147
756.2 MW SRB 864.0 MW
345 48.8
RP TREB 228.9
JVARDI22 37.3 229.6 54.0
18.6 27.5
SA 20 230.5
37.2 51.9
18.6 27.5
VISEGRA 231.4
AVDEJA1
GIS REGIONAL MODEL - DRY HYDRO 2010 TOPOLOGY 2010
413.7
UGLJEVIK 400.9
RP TREB 396.9
SHAW POWER TECHNOLOGIES INC. R
ISACCEA 405.4
400.9
73.7 47.1
225.5 TE TUZL
402.4 38.0 16.6
208 JSMIT21 85.1
205 165
404.6 130 MO-4 19.2 232.4
BIH
758.8 MW
ROSIORI 402.1
.1 76 .0 14 .1 76 .0 14
MO-4
64.8 NADAB 71.6 402.2
212 121
71. 8 8 71 5.8 85 .8 .8
JSOMB31 393.4
207 40.3 404.5
153 4 81.
127 18.2
319 24.0
220.1
2 11 0 . 46
317 16.4
GRADACAC
64.7 52.7
76.1 35.8
4.9 6.8
34.7 26.6
219.6
4.9 1.1
.9 34 .3 34
PRIJED2
402.2
39.1 47.0
17 45. 9 5
DAKOVO
222.3MEDURIC
2 60. 7 22.
CRO
-1086.4 MW
HE ZAKUC 231.4
39.0 71.8
.5 30 41 1
405.9
KONJSKO
10.6 29.2
35.3 45.4
401.0
MRACLIN
408.2
5 24 4.0 .0
TUMBRI
153 29.5
ERNESTIN
110 47.0
6 15 0 2. 6 15 0 2.
10.7 7.6
227.1
.3 .3 35 .2 35 .2 85 85 ZERJAVIN 403.4 ZERJAVIN 226.9
402.1
PEHLIN 229.2
10.8 7.6
UKR
450.0 MW
30.7 165
LCIRKO2
71 37 .7 .8 71 37 .7 .8
401.0
5 6. .7 5
MELINA
35.6 UMUKACH2 27.7
MBEKO 4 404.6
408.3
MPECS 4
LKRSKO1
10 2. .7 6
35.5 20.9
35.4 21.9
SLO
97 400.9 30 .7 .7 LDIVAC2
229.3
35.4 21.9
215.0 MW
59.9 27.1
11.4 77.1
MHEVI 4
6.5 4.2
11.4 73.6
22.9 228.9 26.6
LMARIB1 402.4
97.8 7.2
230.3
180 24.1
23.0 12.7
MTLOK 2 230.5
HUN
156 26.9
IPDRV121
180 3.3
52.2 20.7
MKISV 2 226.3
-1250.0 MW
156 26.9
400.9
MGYOR 2
52.7 5.8
39. 10. 5 5
39. 10. 5 5
154 45. 7 IRDPV111
407.6
8 36. 1 13
LPODLO2228.9
MSAJI 408.1
4
214 9.8
39.5 41.8
39.5 41.8
234.2 ONEUSI2 233.5
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 297 772.5
8.5 63.7
OKAINA1 401.5
156 49.2
OOBERS2238.7
346 804
76.1 35.8
106 24.2
405.4
199 94.6
UCTE
223.5 MW
MAISA 7 714.8
MGYOR 4 0 25 .4 105 90 101 403.3
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.2.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-dry hydrology scenario – 2010 topology
4.12
Histogram 50
Frequency
45 40 35 30 25 20 15 10 5 0 25
50
75
100
More
Bin
Figure 4.2.3 - Histogram of interconnection lines loadings for 2010-dry hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following Table 4.2.2 shows all network elements loaded over 80% of their thermal limits. As it can be seen only transformers 220/110 kV in substation Fier in Albania are highly loaded. Also, transformer 220/110 kV in substation Fundeni in Romania is loaded over 80 % of its thermal limit. Figure 4.2.4 shows histogram of branch loadings in the system. As for the conclusion regarding thermal loadings in this scenario it can be said that almost all of the network elements are loaded less then 75% of their thermal limits, but there are some elements highly loaded. The elements loaded over 80% are transformers 220/110 kV in substation Fier and transformer 220/110 kV in substation Fundeni in Romania, so some internal network reinforcements are necessary to sustain this load-demand level and production pattern. It is expected that transformers in Fierza substation will be replaced with more powerful transformer units. Table 4.2.2 - Network elements loaded over 80% of their thermal limits for 2010-dry hydrology scenario BRANCH LOADINGS ABOVE AREA
80.0 % OF RATING: LOADING MVA Transformers kV AFIER 1 106.8 kV AFIER 2 87.5 kV AFIER 3 83.5 kV FUNDE2 1 168.1
ELEMENT TR TR TR TR
ALB ROM
220/110 220/110 220/110 220/110
RATING MVA
PERCENT
120 90 90 200
89 97.2 92.8 84.1
Histogram 400 350
Frequency
300 250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 4.2.4 - Histogram of branch loadings for 2010-dry hydrology scenario ("Frequency" denotes number of branches and "Bin" denotes loading range in % of thermal limit)
4.13
4.2.2 Voltage Profile in the Region Figure 4.2.5 shows histogram of voltages in monitored substations. Voltages in almost all monitored substations are found within permitted limits. Histogram 140 120
Frequency
100 80 60 40 20
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 4.2.5 - Histogram of voltages in monitored substations for 2010-dry hydrology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
In the rest of the monitored network the voltage profile is satisfying and that most of the substations have magnitudes in range 0.975-1.05 p.u.
4.2.3 Security (n-1) analysis Results of security (n-1) analysis for 2010-dry hydrology scenario are presented in Table 4.2.3. Figure 4.2.6 shows the geographical position of the critical elements in monitored systems. It can be concluded that all identified insecure states are located in internal networks that belong to monitored power systems of Romania and Serbia. In the most critical cases in Romanian system, the critical elements are transformers 400/110 kV in substations Dirste and Brasov. The most critical elements in Serbian system are lines 220 kV Beograd 8 – Beograd 17 and Obrenovac – Beograd 3. Some of the overloadings identified can be relieved by certain dispatch actions (splitting busbars, changing lower voltage network topology in order to redistribute load-demand or change of generation units engagement), like in the case of most severe overloading in Romanian network happens on transformer 400/110 kV Dirste when transformer 400/110 kV in Brasov is outaged, but this is a consequence of the fact that second transformer unit 400/110 kV in Brasov is out of 4.14
operation. Switching on of this transformer clears this critical outage. The similar situation is with outage of the 400 kV line Obrenovac-Beograd 3 in Serbia. Splitting off the 220 kV busbars in substation Beograd 3 relieves this overloading, but voltage profile in Serbian network remains critical, so additional dispatching actions are necessary too. All in all, certain reinforcement of internal network is necessary (more about this in chapter 6) in order to make this regime more secure. None of the identified congestions is located at border lines. Table 4.2.3 - Network overloadings for 2010-dry hydrology scenario, single outages Area 1 CS CS RO RO CS RO
contingency 2 OHL 220kV JBGD172 -JBGD8 22 1 OHL 400kV JBGD8 1 -JOBREN11 1 TR 400/110 BRASOV 1 TR 400/110 DIRSTE 1 TR 400/110 JNIS2 1 TR 400/220 BUC.S 1
RO
TR 400/220 MINTIA
1
RO
TR 400/220 MINTIA
1
overloadings / Area out of limits voltages 3 4 CS HL 220kV JBGD172-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 RO TR 400/110kV/kV DIRSTE RO TR 400/110kV/kV BRASOV CS TR 400/110kV/kV JNIS2 1 RO TR 400/220kV/kV BUC.S RO TR 400/220kV/kV MINTIA RO HL 220kV PESTIS-MINTIA A RO TR 400/220kV/kV MINTIA
# 5 2 1 1 1 2 2 1 1 1
limit / Unom 6 365.8MVA 301MVA 250MVA 250MVA 300MVA 400MVA 400MVA 277.4MVA 400MVA
Flow rate / / Voltage volt.dev. 7 8 440.8MVA 123.1% 340.1MVA 115.4% 333.3MVA 133.3% 329.9MVA 132.0% 338.2MVA 112.7% 403.8MVA 101.0% 419.5MVA 104.9% 313.9MVA 105.5% 433MVA 108.3%
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
critical elements GRE
400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.2.6 – Geographical position of critical elements for 2010-dry hydrology scenario
4.15
4.3 Scenario 2010 – wet hydrology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2010 – wet hydrology.
4.3.1 Line loadings Area totals and power exchanges for the 2010-base case-wet hydrology scenario are shown in Figure 4.3.1 and Table 4.3.1. Power flows along regional interconnection lines and system balances are shown in Figure 4.3.2. Power flows along interconnection lines are also given in Table 4.3.2, while Figure 4.3.3 shows histogram of tie lines loadings. SVK 97
54
1
AUT
7
4 50
UKR
51
HUN 37
2
71 30 6
35
6 28
SLO
ITA
CRO
ROM
356
17
5
5 50
12
SRB
357
BIH
25 1
9 12
41 4
MNT 4
21
6 1
118
BUL
ALB 0
99
MKD
247
1 15
TUR 16
4 41
GRE 2 50
Figure 4.3.1 - Area exchanges in analyzed electric power systems for 2010-base case-wet hydrology scenario Table 4.3.1 - Area totals in analyzed electric power systems for 2010-base case-wet hydrology scenario Country Albania Bulgaria Bosnia and Herzegovina Croatia Macedonia Romania Serbia and UNMIK Montenegro TOTAL - SE EUROPE
Generation (MW) 898.6 6940.4 2037.1 1735.4 1081.8 7342.4 7406.2 586.3 28028.1
Load (MW) 1287.3 5966.2 1961.1 3136.7 1194.0 6423.7 6875.1 669.2 27513.3
Bus Shunt (Mvar) 0 0 0 0 0 0 0 0.6 0.6
Line Shunt (Mvar) 0 14.3 0 0 0 79.9 13.6 1.6 109.4
Losses (MW) 50.3 120.9 57.0 50.7 19.8 206.6 220.4 15.9 741.5
Net Interchange (MW) -439.0 839.0 19.0 -1452.0 -132.0 632.2 297.1 -101.0 -336.7
4.16
LEVIC 1400.0
CENTREL
200 144
251 117
GABICK1400.0
450.0 MW
MSAJO 4 410.0
174 53.0
97. 6.6 1
ROSIORI 410.7
404.5 155 6.9
155 ARAD 48.5 403.9
ROM
172 97.1
ISACCEA 415.7
631.9 MW
JSUBO31 398.7
357 JSMIT21 104 402.4 JHDJE11
175 38.0
175 37.1
P.D.FIE TANTAREN
405.0
276 30.1
415.7
UGLJEVIK 403.7
SCG
231.3
169 16.2
JHPIVA21 171 235.8 18.1
35.3 18.0
JHPERU21 35.2 229.9 25.9
19.9 78.3
20.0 JPODG211 122 JPODG121228.8
CRG -101.0 MW
839.0 MW
60.8 21.7
28.5 29.7
SK 1 224.2
BITOLA 2
C_MOGILA
SK 4 408.1
416.6
412.9
AZEMLA1
412 134
KARDIA K 418 416.9 111
QES/H
59.4 30.5
AHS_FLWR417.8
K
413.3
415.7
9 22 8.1 7
15.9 21.8 K-KEXRU 417.9
4HAMITAX 7.5 7.5 415.6 81.2 15.9 69.8 4BABAESK 70.9 415.7
0.0 MW
-0.1 MW KARACQOU 250 419.1 0.0
FILIPPOI
8 6. .4 1
3 8. .1 97
5 39. 2 23.
.7 17 .7 48 LAGAD K 414.2
398.3
MI_3_4_1 420.6
BLAGOEV414.8 412.8
59.4 31.2
5 39. 9 45.
ALB
-439.0 MW
414.2
0 15 .6 40
STIP 1
DUBROVO 386.2
1 15 6 . 48
409.0
5 0 7. 1. 1
24.1 168
BUL
JLESK21 387.6
4 35 .0 .1
2.9 15.6
24.5 129
AVDEJA2 227.5AFIERZ2228.6 395.7
MKD
KV: 110 , 220 , 400
DOBRUD4 421.8
416.1
415 SOFIA_W4 105 412.3
JVRAN31 0.000
-132.0 MW
AKASHA1
411 128
60.7 28.3
3 28. 6 19.
3 28. 6 19.
23.7 50.4
AEC_400 JNIS2 1 396.4
JPRIZ22 223.3 JTKOSA2 227.3JTKOSB1407.4 43 4.2 .8
397.6
196.1 MW SRB 297.1 MW
28.5 29.7
RP TREB 233.3
JVARDI22 80.4 230.0 60.4
2.9 6.1
SA 20 231.3
80.1 59.3
23.8 22.4
VISEGRA 231.7
.2 80 .6 9
409.2 56.0 MO-4 25.6 235.2
BIH
19.0 MW
217 NADAB 63.5 405.5
.2 80 .6 9
MO-4
226.6 TE TUZL
127 7 76.
55.5 13.7
223 61.5
225.5
.6 92 .0 32
222 7.0
GRADACAC
217 49.0
35.2 151
JSOMB31 396.5
355 75.5 407.0
AVDEJA1
GIS REGIONAL MODEL - WET HYDRO 2010 TOPOLOGY 2010
412.0
80.3 40.5
224.3
RP TREB 404.6
SHAW POWER TECHNOLOGIES INC. R
224.4 UMUKACH
23 38. 0 5
57.2 14.8
59.4 24.6
226.3
6 49. 5 15.
.9 59 .8 31
PRIJED2
410.6
173 56.4
UKR
450.0 MW
17.8 47.0
DAKOVO
226.9MEDURIC
57.6 21.3
CRO
-1452.0 MW
HE ZAKUC 236.9
10.6 29.3
MSAFA 4
404.9
KONJSKO
10.8 7.7
.1 35 26 1
58 277 .9
404.2
MRACLIN
126 22.2
ERNESTIN
91.5 36.0
40.4 18.7
9 17 8 . 28 9 17 8 . 28
TUMBRI
409.4
59. 3 5 59 5.0 55 .3 .0
.3 .3 93 .4 93 .4 65 65 ZERJAVIN 406.6 ZERJAVIN 230.2
407.4
PEHLIN 233.8
228.8
59 . 5. 3 7 59 . 5. 3 7
LCIRKO2
403.2
.8 4 43 5. 1
MELINA
35.6 UMUKACH2 27.8
MBEKO 4 407.0
409.5
MPECS 4
LKRSKO1
40 28 .3 .2
35.5 21.0
93.6 40.7
SLO
10 403.1 90 0 .4 LDIVAC2
230.8
93.6 40.7
215.0 MW
49.4 20.5
30.4 49.0
MHEVI 4
44.1 24.2
30.4 45.4
17.6 229.0 27.9
LMARIB1 403.9
100 67.1
231.4
169 42.5
17.8 13.9
MTLOK 2 230.5
HUN
179 53.2
IPDRV121
168 63.5
46.0 22.3
MKISV 2 226.3
-1249.7 MW
179 53.2
401.5
MGYOR 2
46.4 6.9
53. 21. 2 6
53. 21. 2 6
162 36. 5 IRDPV111
407.9
3 97. 0 56.
LPODLO2229.9
MSAJI 408.2
4
173 47.0
53.3 52.8
53.3 52.8
234.3 ONEUSI2 233.5
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 300 772.5
7.5 69.8
OKAINA1 402.6
164 41.0
OOBERS2238.7
346 802
80.3 40.5
87.2 22.9
405.6
199 98.7
UCTE
221.7 MW
MAISA 7 715.3
MGYOR 4 0 25 .8 87.1 94 103 403.5
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.3.2 - Power flows along interconnection lines in the region for 2010 - base case - wet hydrology scenario
4.17
Table 4.3.2 - Power flows along regional interconnection lines for 2010 wet hydrology scenario Power Flow
Interconnection line OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x220 kV ckt.1 OHL 2x220 kV ckt.2 OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV
Zemlak (ALB) Fierze (ALB) V.Dejes (ALB) V.Dejes (ALB) Ugljevik (B&H) Mostar (B&H) Ugljevik (B&H) Trebinje (B&H) Trebinje (B&H) Prijedor (B&H) Prijedor (B&H) Gradacac (B&H) Tuzla (B&H) Mostar (B&H) Visegrad (B&H) Sarajevo 20 (B&H) Trebinje (B&H) Blagoevgrad (BUL) M.East 3 (BUL) M.East 3 (BUL) M.East 3 (BUL) C.Mogila (BUL) Dobrudja (BUL) Kozloduy (BUL) Kozloduy (BUL) Sofia West (BUL) Zerjavinec (CRO) Zerjavinec (CRO) Ernestinovo (CRO) Ernestinovo (CRO) Tumbri (CRO) Tumbri (CRO) Melina (CRO) Ernestinovo (CRO) Zerjavinec (CRO) Pehlin (CRO) Dubrovo (MCD) Bitola (MCD) Skopje (MCD) Skopje (MCD) Skopje (MCD) Arad (ROM) Nadab (ROM) Rosiori (ROM) Portile De Fier (ROM) Subotica (SER) Ribarevine (MON) Pljevlja (MON) Pljevlja (MON)
Kardia (GRE) Prizren (SER) Podgorica (MON) Podgorica (MON) Ernestinovo (CRO) Konjsko (CRO) S. Mitrovica (SER) Podgorica (MON) Plat (CRO) Mraclin (CRO) Medjuric (CRO) Djakovo (CRO) Djakovo (CRO) Zakucac (CRO) Vardiste (SER) Piva (MON) Perucica (MON) Thessaloniki (GRE) Filippi (GRE) Babaeski (TUR) Hamitabat (TUR) Stip (MCD) Isaccea (ROM) Tantarena (ROM) Tantarena (ROM) Nis (SER) Heviz (HUN) Heviz (HUN) Pecs (HUN) Pecs (HUN) Krsko (SLO) Krsko (SLO) Divaca (SLO) S.Mitrovica (SER) Cirkovce (SLO) Divaca (SLO) Thessaloniki (GRE) Florina (GRE) Kosovo B (UNMIK) Kosovo A (UNMIK) Kosovo A (UNMIK) Sandorfalva (HUN) Bekescaba (HUN) Mukacevo (UKR) Djerdap (SER) Sandorfalva (HUN) Kosovo B (UNMIK) Bajina Basta (SER) Pozega (SER)
MW -411.6 -4.0 2.9 -23.7 126.8 223.2 -275.6 -19.9 -104.8 59.9 57.6 49.6 92.6 56.0 -80.1 -169.2 35.3 17.8 230.0 7.5 8.4 151.0 172.5 -80.2 -80.2 414.9 -93.3 -93.3 -59.3 -59.3 -178.6 -178.6 100.0 -354.6 -43.8 40.4 -59.4 -39.5 60.8 28.5 28.5 155.0 217.3 97.3 174.5 35.2 -300.0 -30.1 46.0
Mvar -134.3 35.1 -15.6 -50.4 -76.7 -61.5 30.1 78.3 39.9 -31.8 -21.3 15.5 32.0 -25.6 59.3 -16.2 18.0 -47.0 -38.5 -11.0 -6.1 -48.6 -47.0 -9.6 -9.6 105.0 -65.4 -65.4 -55.0 -55.0 28.8 28.8 52.7 75.5 15.4 18.7 -31.2 -45.9 -21.7 -29.7 -29.7 -48.5 -63.5 -56.0 37.1 -151.3 -16.4 8.5 34.5
% of thermal rating 32 14 5 4 11 17 21 9 36 21 19 18 32 18 32 44 14 7 34 5 5 22 13 6 6 60 9 9 6 6 16 16 11 28 15 15 6 4 5 13 13 28 18 9 13 12 22 12 21
4.18
Figure 4.3.3 shows that the tie lines in the region are mostly loaded less than 25% of their thermal limits for the analyzed hydrological base case scenario in year 2010. Among total number of forty nine 400 kV and 220 kV interconnection lines in the region only eight are loaded between 25% and 50% of their thermal ratings. Only one line (OHL 400 kV Sofia – Nis between Bulgaria and Serbia) is loaded more than 50% of its thermal rating, which is set at lower value (692.8 MVA) on the Bulgarian side compared to the line rating on the Serbian side (1330.2 MVA). 45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.3.3 - Histogram of interconnection lines loadings for 2010-base case-wet hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Table 4.3.3 lists all network elements loaded over 80% of their thermal limits. As it can be seen from this output list, most of the elements loaded over 80% are transformers in some substations and internal 110 kV and 220 kV lines. Thus, certain internal network reinforcements are necessary to sustain given load-demand level and production pattern. Two 220/110 kV transformers in the Fierze substation in Albania are slightly overloaded in this scenario, while the third transformer in the same substation is loaded near permitted values. There are three 220 kV and two 110 kV internal lines in Romania which are loaded over 80% of their thermal limits, but none of them is overloaded. These lines are related to the Lotru, Sibiu, Parosen, Bojuren and Domnesti nodes. Transformer 220/110 kV in the Fundeni substation is highly loaded in this scenario. Two 220 kV lines and twelve 110 kV lines in the Serbian power system are highly loaded when all branches are available in the analyzed scenario. Highly loaded 220 kV lines are connected to the Obrenovac substation, while 110 kV lines are located mostly in the area of Belgrade. Four 110 kV lines are overloaded, ranging between 108% Ithermal and 117% Ithermal. Power systems of Bulgaria, Bosnia and Herzegovina and Croatia have several highly loaded branches in 110 kV networks. High loading of 110 kV line Komolac-Plat is caused by radial connection of one unit in the HPP Dubrovnik to the grid. High loading of 110 kV lines between the Resnik, Zitnjak and TETO substations in the Zagreb area are caused by disconnection of generating units in the TETO power plant in analyzed scenario. These combined heat and electricity generating units are normally put into the operation during winter high load period, because their main purpose is to produce heat for consumers in the Croatian capitol Zagreb. 4.19
Figure 4.3.4 shows histogram of 400 kV and 220 kV regional internal lines and 400/x kV and 220/x kV transformers loadings. 46% of observed branches are loaded below 25% of their thermal ratings, 35% are loaded between 25% and 50%, 16% are loaded between 50% and 75% and only 2% of observed branches are loaded between 75% and 100% of their thermal ratings. Two branches (transformers 220/110 kV Fierze in Albania, 101% - 106% Sn) are overloaded if all branches are in operation for the analyzed scenario. Table 4.3.3 - Network elements loaded over 80% of thermal limits for 2010-base case-wet hydrology scenario AREA
ROM
ALB ROM
ELEMENT Lines OHL 220 kV LOTRU-SIBIU ckt.1 OHL 220 kV LOTRU-SIBIU ckt.2 OHL 220 kV TG.JIU-PAROSEN Transformers TR 220/110 kV AFIER 2-AFIER 5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.3 TR 220/110 kV FUNDENI-FUNDE2B
LOADING MVA
RATING MVA
PERCENT
276.0 276.0 181.6
277.4 277.4 208.1
99.5 99.5 87.3
116.5 95.5 91.1 168.7
120.0 90.0 90.0 200.0
97.1 106.1 101.3 84.4
400 350
Frequency
300 250 200 150 100 50 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.3.4 - Histogram of 400 kV and 220 kV regional lines loadings for 2010-base case-wet hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.3.2 Voltage Profile in the Region Voltage profile in the region within this scenario which is defined by given generation and demand pattern is seen as satisfactory despite several appearances of certain bus voltage deviations which are shown in Table 4.3.4. Presented table includes only 400 kV and 220 kV network buses. Bus voltage magnitudes below permitted limits are not found in the analyzed scenario. Bus voltage magnitudes that are found above permitted limits (110% Vnominal in 110 kV and 220 kV networks and 105% Vnominal in 400 kV network) are detected only in Bulgaria. There are nine 400 kV buses and four 220 kV buses with voltages slightly above permitted limits. Figure 4.2.5 shows histogram of voltages in monitored 400 kV and 220 kV substations.
4.20
Table 4.3.4 - Bus voltage deviations for 2010-base case-wet hydrology scenario, complete network Voltages
Country
Node
ALBANIA BOSNIA AND HERZEGOVINA
400 kV VARNA4 400 kV BURGAS 400 kV MARITSA EAST2 400 kV TECMIG5 400 kV TECMIG7 400 kV DOBRUD4 400 kV MARITSA EAST 3_4_1 400 kV MARITSA EAST 400 kV TECMIG6 220 kV BPC_220 220 kV MIZIA2 220 kV AEC_220 220 kV TECVARNA -
BULGARIA
CROATIA MACEDONIA MONTENEGRO ROMANIA SERBIA AND UNMIK
pu 1.057 1.052 1.056 1.052 1.051 1.055 1.051 1.051 1.052 1.103 1.101 1.103 1.104 -
kV 421.9 420.8 422.2 420.6 420.6 421.8 420.6 420.6 420.6 242.6 242.3 242.7 243.0 -
120 Frequency
100 80 60 40 20 x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin Figure 4.3.5 - Histogram of voltages in monitored substations for 2010-base case-wet hydrology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
4.3.3 Security (n-1) analysis Results of security (n-1) analysis for the 2010-base case-wet hydrology scenario are presented in Table 4.3.5 and Table 4.3.6. Insecure states for given generation and demand pattern are detected in the power systems of Romania and Serbia, although there is one contingency in Albania which leads to insecure state. The most critical branches in the analyzed load/generation scenario are those ones connected to the Sibiu substation 400/220 kV in Romania. Double circuit line 220 kV Lotru-Sibiu is loaded near 4.21
upper limit (99% Ithermal) when all branches are available. It becomes overloaded if one circuit goes out of operation. Line 400 kV Mintia-Sibiu is overloaded when 400 kV line Sibiu-Iernut goes out of operation. Transformer 400/220 kV in Sibiu is overloaded if the parallel one is unavailable. Reasons for these overloadings are found in a rather high level of hydro generation in the LOTRU CIUNGET power station in this scenario (478 MW). More secure operation could be achieved by decreasing a generation level in this hydro power plant. Double circuit 220 kV lines around the Resita substation (Portile de Fier-Resita and TimisoaraResita) are overloaded if one circuit goes out of operation, due to high generation in the PORTILE 1 hydro power plant (796 MW). Secure operation could be achieved by decreasing a generation level in this power plant. OHL 220 kV Targa Jiu-Paroseni is overloaded if one of the 400 kV lines Mintia-Sibiu, TantareniSibiu in Romania or Djerdap-Kostolac B in Serbia goes out of operation. Higher engagement of the TPP Paroseni resolves these overloads. Single outages of 400/110 kV transformers in the stations Brasov and Dirste in Romania are also recognized as critical, since the second transformer 400/110 kV in the Brasov substation is permanently out of operation in the model. Loss of OHL 220 kV in the Belgrade area can cause overloading of the parallel line. Loss of one 400/110 kV transformer in the Nis substation is critical due to possible overloading of the other parallel one. Loss of 220 kV line between the Rrashbul and Tirana substations can cause overloading of 220 kV line between the Elbassan and Fier substations in Albania. The heaviest line overloading (124% Ithermal) in the analyzed scenario is related to a 400 kV line in Romania around the Sibiu substation (Mintia-Sibiu). The heaviest transformer overloading (137% Sn) is related to the transformer 400/110 kV in the Dirste substation (Romania) when the transformer 400/110 kV in the Brasov substation is outaged (the parallel one is permanently out of operation in the model). Figure 4.3.6 shows geographical positions of critical elements in the analyzed scenario. A green color reveals 220 kV elements (line 220 kV or transformer 220/x kV), while a red one reveals 400 kV elements (line 400 kV or transformer 400/x kV). According to the obtained and presented results, it may be concluded that a re-dispatching of generation in the Romanian power system, especially of the HPP LOTRU CIUNGET and HPP PORTILE 1 (to decrease their generation level in this scenario from the initially assumed 478 MW and 796 MW respectively) and TPP PAROSENI (to increase its generation level in this scenario from the initially assumed 120 MW), as well as certain reinforcements in the internal networks of Romania, Albania and Serbia are necessary shall this generation/load pattern be made more secure. None of the identified congestions is located at the border lines.
4.22
Table 4.3.5 - Lines overloadings for 2010–base case-wet hydrology scenario, single outages Outage
Overloaded line(s)
OHL 220 kV AKASHA2-ARRAZH2 OHL 400 kV MINTIA-SIBIU OHL 400 kV TANTAREN-SIBIU OHL 400 kV SIBIU-IERNUT OHL 220 kV P.D.F.A-RESITA ckt.1 OHL 220 kV RESITA-TIMIS ckt.1 OHL 220 kV JBGD172-JBGD8 22 ckt.1
OHL 220 kV AELBS12-AFIER 2 OHL 220 kV TG.JIU-PAROSEN OHL 220 kV TG.JIU-PAROSEN OHL 400 kV MINTIA-SIBIU OHL 220 kV P.D.F.A-RESITA ckt.2 OHL 220 kV RESITA-TIMIS ckt.2 OHL 220 kV JBGD172-JBGD8 22 ckt.2
Loadings MVA % 251.4 111.9 242.7 111.7 227.1 104.5 477.3 124.3 315.5 108.4 315.9 112.8 434.4 122.2
Country ALBANIA ROMANIA
SERBIA
Table 4.3.6 - Transformers overloadings for 2010–base case-wet hydrology scenario, single outages Outage
Overloaded branch(es)
TR 400/220 kV SIBIU ckt.1 400/110 kV BRASOV 400/110 kV DIRSTE 400/110 kV NIS ckt.1
TR 400/220 kV SIBIU ckt.2 400/110 kV DIRSTE 400/110 kV BRASOV 400/110 kV NIS ckt.2
Loadings MVA % 527.3 131.8 332.7 133.1 329.7 131.9 313.1 104.4
Country ROMANIA SERBIA
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.3.6 - Geographical positions of the critical elements for 2010-base case-wet hydrology scenario
4.23
4.4 Scenario 2015 – average hydrology – 2010 topology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2015 - average hydrology and expected network topology for 2010.
4.4.1 Lines loadings Figure 4.4.1 shows power exchanges between areas for 2015-average hydrology scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 4.4.2. Area totals are shown in Table 4.4.1. Figure 4.4.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 25% of their thermal limits. UKR 21
4 12
AUT
1 47
450
SVK
HUN 13 3
1 10 56
129
SLO
6 31
ITA
CRO
ROM
311
1 72 0 13
236
SRB
372
BIH 0 39
1 38
253
MNG 30
10
293
BUL 53
6
ALB
167
54
MKD
10
TUR
3 41
GRE Figure 4.4.1 - Area exchanges in analyzed electric power systems for 2015-average hydrology scenario – 2010 topology Table 4.4.1 - Area totals in analyzed electric power systems for 2015-average hydrology scenario – 2010 topology AREA GENERATION LOAD LOSSES INTERCHANGE ALB 1116.1 1531 81.2 -496 BUL 7332.7 6483 150.7 699 BIH 2316.6 2279 78.7 -41.1 CRO 2316.3 3657 63.4 -1404.1 MKD 1087 1407 20 -340 ROM 7712.8 7317.4 347.4 47.9 SRB 8687.6 7263 268.7 1156 CRG 735 671 25 39 TOTALS 31304.1 30608.4 1035.1 -339.3
4.24
LEVIC 1400.0
CENTREL
200 136
251 109
GABICK1400.0
450.0 MW
MSAJO 4 410.0
407.4
MSAFA 4
224.4 UMUKACH 412.0
20. 106 2
36.6 ARAD 75.4 395.3
47.9 MW
JSUBO31 392.6
JHDJE11
P.D.FIE
130 13.8
130 12.8
252 139
253 SOFIA_W4 89.7 410.4
TANTAREN
401.0
281 11.1
JHPIVA21 229 235.7 41.0
7.9 22.4
JHPERU21 7.9 226.8 30.5
CRG 39.0 MW
159 JPODG211 129 JPODG121225.8
5 18 2.9 .2
19.7 20.1
49.6 124
270 34.7
6 11. 6 23.
6 11. 6 23.
49.6 124
AVDEJA2 224.3AFIERZ2223.9 383.4
SK 1 224.6
SK 4 409.2
MKD
BITOLA 2
415.0
411.2
7.8 0 69.
ALB
AZEMLA1
KARDIA K 417 415.8 178
QES/H
13.9 18.2
AHS_FLWR416.7
410 194
K
MI_3_4_1 419.2
412.7
FILIPPOI
1 19 4.3 7
415.6
KV: 110 , 220 , 400
10.1 22.8 K-KEXRU 417.8
4HAMITAX 4.2 4.2 415.3 74.0 10.1 62.7 4BABAESK 71.9 415.5
0.0 MW
0.0 MW
KARACQOU 250 418.6 50.0
5 15 .9 .0
0 6. .0 88
.8 24 .8 43 LAGAD K 413.6
390.3
412.4
BLAGOEV413.0 411.6
7.8 5 46.
-496.0 MW
C_MOGILA
.5 53 .1 50
STIP 1
DUBROVO 373.9
.6 53 .6 43
409.2
2 9 4. 7. 1
49.2 160
699.0 MW
JVRAN31 0.000
-340.0 MW
AKASHA1
DOBRUD4 416.8
413.9
BUL
JLESK21 0.000
JPRIZ22 222.3 JTKOSA2 229.5JTKOSB1415.1 5 25 3. .6 3
389.7
13.9 44.0
158 92.8
AEC_400 JNIS2 1 396.1
19 46. 2 8
226 25.1
194 6.4
SCG
1195.0 MW SRB 1156.0 MW
269 72.6
RP TREB 229.9
JVARDI22 90.3 228.5 54.4
11.4 34.3
SA 20 228.3
90.0 53.5
11.4 34.3
VISEGRA 230.0
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2015 TOPOLOGY 2010
411.8
UGLJEVIK 398.2 230.2
RP TREB 396.8
SHAW POWER TECHNOLOGIES INC. R
ISACCEA 404.5
398.2
19.7 11.1
224.3 TE TUZL
399.2 36.5 17.6
312 JSMIT21 103
49.8 99.0
400.9 162 MO-4 9.5 231.2
BIH
-41.1 MW
ROSIORI 399.3
.3 21 .4 10 .3 21 .4 10
MO-4
96.4 NADAB 104 397.3
192 127
48. 3 9 48 5.2 95 .3 .2
JSOMB31 390.0
310 70.4 402.9
3 79. 6 88.
158 16.1
391 32.9
GRADACAC
219.0
96.2 86.5
21.3 60.4
221.4
.3 94 .3 44
4.9 0.9
.8 35 .0 34
PRIJED2
388 5.9
1 47. 5 22.
CRO
-1404.1 MW
399.4
96.6 50.3
UKR
450.0 MW
ROM
401.0
HE ZAKUC 228.0
96.3 65.9
9 12 3 15
38 282 .3
4.9 7.0
35.5 26.4
218.5
93.1 47.2
DAKOVO
221.2MEDURIC
46.9 27.3
400.2
MRACLIN
79.1 33.8
ERNESTIN
5 9. .7 8
4.2 6.5
226.8
.9 .9 75 .2 75 .2 84 84 ZERJAVIN 401.8 ZERJAVIN 226.0
0 16 2 4. 0 16 2 4.
TUMBRI
KONJSKO
10.7 29.1
24.7 51.2
LCIRKO2
48 47 .2 .2 48 47 .2 .2
400.4
401.8
PEHLIN 229.2
10.8 7.5
MBEKO 4 401.1
407.4
MPECS 4
LKRSKO1
MELINA
35.7 UMUKACH2 27.5
129 174
SLO
4. 3. 2 7
35.5 20.7
76.2 20.6
76.2 20.6
215.0 MW
55 400.8 33 .2 .0 LDIVAC2
229.3
MHEVI 4
9.5 1.1
8.8 77.9
16.1 228.8 28.4
LMARIB1 402.1
55.3 9.0
230.3
8.8 74.5
163 28.1
16.3 14.4
MTLOK 2 230.5
HUN
160 20.5
IPDRV121
163 7.0
44.2 23.0
MKISV 2 226.3
-1249.9 MW
160 20.5
400.9
MGYOR 2
44.6 7.5
56. 10. 0 4
56. 10. 0 4
159 46. 0 IRDPV111
407.3
7 20. 5 16
LPODLO2228.6
MSAJI 408.1
4
350 UZUKRA01 292 772.5
4.2 62.7
234.2 ONEUSI2 233.4
LDIVAC1
MGOD
OWIEN 2
56.0 41.4
56.0 41.4
161 50.6
OKAINA1 401.2
346 807
21.3 60.4
63.0 20.5
405.3
OOBERS2238.7
199 90.0
UCTE
224.4 MW
MAISA 7 714.0
MGYOR 4 0 25 .2 62.9 86 105 403.2
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.4.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-average hydrology scenario – 2010 topology
4.25
Histogram 45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 4.4.3 - Histogram of interconnection lines loadings for 2015-average hydrology scenario – 2010 topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following Table 4.4.2 lists all network elements loaded over 80% of their thermal limits. As it can be seen some lines 220 kV voltage level in Albania, Romania and Serbia are loaded over 80%. Also, most of the elements loaded over 80% are transformers in some substations, again, in Albania, Bosnia & Herzegovina, Romania and Serbia. Figure 4.4.4 shows histogram of branch loadings in the system. As for the conclusion regarding thermal loadings in this scenario it can be said that most of the network elements are loaded between 25-75% of their thermal limits, but there are some elements highly loaded. Most of the elements loaded over 80% are transformers in some substations, so some internal network reinforcements are necessary to sustain this load-demand level and production pattern. There are some elements that are overloaded (220 kV lines Targu Jiu – Paroseni and Urechesti-Targu Jiu in Romania, and 220/110 kV transformers in Fier substation in Albania. This leads to conclusion that transmission network is not able to sustain this load-demand level and this production pattern and certain network reinforcement are necessary. It should be pointed out that higher engagement of TPP Paroseni resolves this overloads of the 220 kV lines Targu Jiu – Paroseni and Urechesti-Targu Jiu and decreases the load of the 400/220 transformer in Urechesti substation. Also, it is expected that transformers in Fier substation will be replaced with more powerful transformer units.
4.26
Table 4.4.2 - Network elements loaded over 80% of their thermal limits for 2015-average hydrology scenario – 2010 topology BRANCH LOADINGS ABOVE AREA
80.0 % OF RATING: LOADING MVA Lines 220kV AKASHA2-ARRAZH2 1 250.1 220kV P.D.F.A-CETATE1 1 205.2 220kV P.D.F.A-RESITA 1 236.2 220kV P.D.F.A-RESITA 2 236.2 220kV P.D.F.II-CETATE1 1 267.7 220kV TG.JIU-PAROSEN 1 278.2 220kV URECHESI-TG.JIU 1 278.2 220kV JBGD3 21-JOBREN2 1 261 Transformers 220/110 kV AELBS1 1 78 220/110 kV AELBS1 2 78 220/110 kV AELBS1 3 83.8 220/110 kV AFIER 1 138.2 220/110 kV AFIER 2 113.3 220/110 kV AFIER 3 108.1 220/110 kV AFIERZ 1 51.9 220/110 kV AFIERZ 2 51.9 220/110 kV AKASHA 1 84.1 220/110 kV AKASHA 2 84.1 400/110 kV UGLJEV 1 254.8 220/110 kV FUNDE2 1 193.3 220/110 kV FUNDEN 1 162.9 400/220 kV IERNUT 1 320.4 400/220 kV URECHE 1 395.4 220/110 kV JBGD3 1 166.7 220/110 kV JBGD3 2 125.6 220/110 kV JTKOSA 2 130.7 220/110 kV JTKOSA 3 133 220/110 kV JZREN2 2 123.6 400/220 kV JTKOSB 2 325.8 400/220 kV JTKOSB 3 325.8 ELEMENT
ALB
HL HL HL HL HL HL HL HL
ROM
SRB
TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR
ALB
BIH ROM
SRB
RATING MVA
PERCENT
270 208.1 277.4 277.4 277.4 208.1 277.4 301
92.6 98.6 85.2 85.2 96.5 133.7 100.3 86.7
90 90 90 120 90 90 60 60 100 100 300 200 200 400 400 200 150 150 150 150 400 400
86.6 86.6 93.1 115.2 125.9 120.2 86.5 86.5 84.1 84.1 84.9 96.7 81.4 80.1 98.9 83.4 83.7 87.1 88.7 82.4 81.4 81.4
Histogram 350 300 Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 4.4.4 - Histogram of branch loadings for 2015-average hydrology scenario – 2010 network topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.4.2 Voltage Profile in the Region Figure 4.4.5 shows histogram of voltages in monitored substations. Voltages in almost all monitored substations are found within permitted limits. Only in substation Elbasan and Kashar, where voltages are around 373 kV, but this can be resolved with changing of the setting of the tap changing transformers in these substations. 4.27
Histogram 100 90 80 Frequency
70 60 50 40 30 20 10
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 4.4.5 - Histogram of voltages in monitored substations for 2015-average hydrology scenario – 2010 network topology ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
In the rest of the monitored network the voltage profile is satisfying and that most of the substations have magnitudes in range 0.975-1.05 p.u.
4.4.3 Security (n-1) analysis Results of security (n-1) analysis for 2015-dry hydrology scenario and expected topology for 2010 are presented in Table 4.4.3. Figure 4.4.6 shows the geographical position of the critical elements in monitored systems. It can be concluded that all identified insecure situations are located in internal networks that belong to monitored power systems of Albania, Croatia, Romania and Serbia. In most critical case in Romanian system, the critical elements are 220 kV lines Targu Jiu – Paroseni and Urechesti-Targu Jiu and 400/220 kV transformer in Urechesti substation, but these elements are overloaded by full topology too, which is the main reason why they appear as critical by most outages analyzed. As it has been stated before, this can be resolved by higher engagement of the TPP Paroseni. Some of the overloadings identified can be relieved by changing internal network topology (splitting busbars, changing lower voltage network topology in order to redistribute load-demand or change of generation units engagement), like in the case of most severe overloading in Romanian network happens on transformer 400/110 kV Dirste when transformer 400/110 kV in Brasov is outaged, but this is a consequence of the fact that second transformer unit 400/110 kV in Brasov is out of operation. Switching on of this transformer clears this critical outage. The similar situation is with outage of the 400 kV line Obrenovac-Beograd 8 in Serbia. Splitting of the busbars in 220 kV Beograd 3 in substation relieves this overloading, but voltage profile in Serbian network remains critical, so additional dispatching actions are necessary too. Losing the 400 kV line Kosovo B-Pec or one transformer unit in substation Kosovo B causes overloading of the transformer units in this substation. This is consequence of the low level of 4.28
production in 220 kV network in Kosovo region, due to decommissioning of the generation units in TPP Kosovo A. All in all, certain reinforcement of internal network is necessary in order to make this regime more secure (more about this in chapter 6). None of the identified congestions is located at border lines. Table 4.4.3 - Network overloadings for 2015-average hydrology scenario, single outages – 2010 network topology Area 1
contingency 2
RO
BASE CASE OHL 220kV P.D.F.A -CALAFAT
1
RO
OHL 220kV P.D.F.A -RESITA
1
RO
OHL 220kV RESITA
-TIMIS
1
RO
OHL 220kV PESTIS
-MINTIA A 1
RO
OHL 220kV CLUJ FL -MARISEL
1
RO
OHL 220kV AL.JL
-GILCEAG
1
RO
OHL 400kV TANTAREN-SLATINA
1
RO
OHL 400kV TANTAREN-BRADU
1
RO
OHL 400kV TANTAREN-SIBIU
1
RO
OHL 400kV URECHESI-DOMNESTI 1
RO
OHL 400kV MINTIA
RO
OHL 400kV P.D.FIE -SLATINA
1
RO
OHL 400kV DOMNESTI-BRAZI
1
RO
OHL 400kV SUCEAVA -GADALIN
1
RO
OHL 400kV SMIRDAN -GUTINAS
1
RO CS CS
OHL 400kV GADALIN -ROSIORI 1 OHL 220kV JBGD172 -JBGD8 22 1 OHL 400kV JBGD8 1 -JOBREN11 1
CS
OHL 400kV JHDJE11 -JTDRMN1
1
CS
OHL 400kV JNSAD31 -JSUBO31
1
CS
OHL 400kV JTKOSB1 -JPEC
A
RO RO RO CS RO
TR TR TR TR TR
RO
TR 400/220 IERNUT
CS
TR 400/220 JTKOSB 1
RO
TR 400/220 SLATINA
400/110 400/110 400/110 400/110 400/220
-SIBIU
BRASOV 1 CLUJ E 1 DIRSTE 1 JNIS2 1 BUC.S 1 1
1
1
1
overloadings / out of limits voltages Area 3 4 RO HL 220kV TG.JIU-PAROSEN RO HL 220kV P.D.F.A-CETATE1 RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV P.D.F.A-RESITA RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV RESITA-TIMIS RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV BUC.S-B-FUNDENI RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN CS HL 220kV JBGD172-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN CS HL 220kV JBGD3 21-JOBREN2 RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN CS TR 400/220kV/kV JTKOSB1 CS TR 400/220kV/kV JTKOSB1 CS TR 400/220kV/kV JTKOSB1 RO TR 400/110kV/kV DIRSTE RO HL 220kV TG.JIU-PAROSEN RO TR 400/110kV/kV BRASOV CS TR 400/110kV/kV JNIS2 1 RO TR 400/220kV/kV BUC.S RO HL 400kV GADALIN-CLUJ E RO HL 220kV TG.JIU-PAROSEN RO HL 220kV STEJARU-GHEORGH CS TR 400/220kV/kV JTKOSB1 CS TR 400/220kV/kV JTKOSB1 RO TR 400/220kV/kV URECHESI
# 5 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 2 2 1 1 1 2 3 1
limit / Unom 6 208.1MVA 208.1MVA 400MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 400MVA 277.4MVA 208.1MVA 320MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 208.1MVA 365.8MVA 301MVA 400MVA 277.4MVA 208.1MVA 301MVA 400MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 400MVA 400MVA 400MVA 250MVA 208.1MVA 250MVA 300MVA 400MVA 238.3MVA 208.1MVA 208.1MVA 400MVA 400MVA 400MVA
rate Flow / / Voltage volt.dev. 7 8 282.6MVA 133.7% 259.4MVA 126.5% 417.6MVA 104.4% 299MVA 106.6% 337.8MVA 128.0% 299MVA 142.1% 292.7MVA 104.1% 348.7MVA 129.1% 292.7MVA 138.8% 416.1MVA 104.0% 293.8MVA 105.4% 287.2MVA 140.6% 412.9MVA 103.2% 293.3MVA 104.7% 293.3MVA 139.6% 424.3MVA 106.1% 306MVA 109.7% 299.7MVA 146.3% 442.8MVA 110.7% 420.4MVA 105.1% 296.5MVA 106.2% 296.5MVA 141.6% 443.9MVA 111.0% 327.5MVA 117.9% 327.5MVA 157.2% 444MVA 111.0% 299MVA 106.8% 299MVA 142.3% 443.2MVA 110.8% 330.1MVA 118.7% 322.6MVA 158.2% 428.1MVA 107.0% 413.5MVA 103.4% 295MVA 105.0% 295MVA 140.0% 331.2MVA 102.7% 282MVA 136.7% 413.5MVA 103.4% 298.1MVA 106.7% 298.1MVA 142.2% 280.1MVA 135.6% 462.8MVA 133.3% 429.3MVA 155.8% 436.7MVA 109.2% 316.6MVA 113.9% 316.6MVA 151.8% 319.6MVA 109.6% 422.5MVA 105.6% 303.6MVA 108.6% 303.6MVA 144.7% 294.1MVA 104.9% 294.1MVA 139.8% 419.7MVA 104.9% 438.6MVA 109.6% 438.6MVA 109.6% 385.8MVA 154.3% 282.5MVA 137.1% 380MVA 152.0% 332.5MVA 110.8% 483MVA 120.8% 238.1MVA 102.9% 282.5MVA 137.4% 211.8MVA 121.7% 457.2MVA 114.3% 457.2MVA 114.3% 424.9MVA 106.2%
4.29
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.4.6 – Geographical position of critical elements for 2015-average hydrology scenario
4.30
4.5 Scenario 2015 – average hydrology – topology 2015 This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2015 - average hydrology and expected network topology for 2015.
4.5.1 Lines loadings Figure 4.5.1 shows power exchanges between areas for 2015-average hydrology scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 4.5.2. Area totals are shown in Table 4.5.1. Figure 4.5.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 25% of their thermal limits. UKR 11
5 13
AUT
1 46
450
SVK
HUN 10 6
89 28
126
SLO
4 30
ITA
CRO
ROM
301
1 77 3 12
193
SRB
336
BIH 6 47
1 16
247
MNG
BUL 8
220
6 27
2 38
7 27
298
ALB
169
98
MKD
8
TUR
2 11
GRE Figure 4.5.1 - Area exchanges in analyzed electric power systems for 2015-average hydrology scenario Table 4.5.1 - Area totals in analyzed electric power systems for 2015-average hydrology scenario AREA GENERATION LOAD LOSSES INTERCHANGE ALB 1118.1 1541 73.1 -496 BUL 7332.9 6483 150.9 699 BIH 2317.2 2279 79.2 -41 CRO 2317 3657 64 -1404 MKD 1088.4 1407 21.4 -340 ROM 7708.6 7317.4 343.1 48.1 SRB 8689.4 7279 254.4 1156 CRG 735.2 676 20.3 39 TOTALS 31306.8 30639.4 1006.4 -338.9
As it can be seen, new elements that are expected to be build till 2015 cause totally different distribution of power flows in the southern part of the region (Albania, FYR of Macedonia, Serbia, and Montenegro). 4.31
LEVIC 1400.0
CENTREL
200 137
251 109
GABICK1400.0
450.0 MW
MSAJO 4 410.0
UKR
450.0 MW
224.4 UMUKACH 412.0
11. 98. 1 7
ROM
JHDJE11
P.D.FIE
123 10.9
123 11.9
246 97.1
248 SOFIA_W4 43.0 411.5
TANTAREN
402.0
254 9.1
SCG
22.0 17.3
JHPERU21 22.1 230.3 25.6
225 35.2
226 JPODG211 71.4 JPODG121229.9
CRG 39.0 MW
JPRIZ22 226.6 JTKOSA2 232.4JTKOSB1419.0
SK 4 410.5
-340.0 MW 74.7 133
278 8 42.
395.2
ALB
411.7 DUBROVO
27 79 7 .7
AZEMLA1
112 106
KARDIA K 113 417.8 36.8
QES/H
K
FILIPPOI
413.5
KV: 110 , 220 , 400
415.7
4 19 3.7 7
4 14 .8 .1
8.1 23.1 K-KEXRU 417.9
4HAMITAX 3.3 3.3 415.4 74.8 8.0 63.4 4BABAESK 72.1 415.6
0.0 MW
-0.1 MW KARACQOU 250 419.6 50.0
MI_3_4_1 419.4
8 4 . .0 89
.0 26 .1 45 LAGAD K 414.3
AHS_FLWR417.3
408.7
413.3
BLAGOEV413.9 412.0
242 8 63.
-496.0 MW
414.5
C_MOGILA
.1 98 .8 48
STIP 1
242 0 82.
AKASHA1
BITOLA 2
.4 98 .3 43
409.9
3 1 3. 7. 1
74.7 133
MKD
699.0 MW
JVRAN31 406.8
114 56.1 SK 1 226.3
DOBRUD4 417.1
414.4
BUL
JLESK21 403.8
1 10 14 .8
1 11 6.3 .4
AVDEJA2 228.4AFIERZ2229.2 402.6
20.7 39.9
53.0 26.1
223 16.1
398 8 97.
75.0 91.8
75.0 91.9
294 69.2
9 20. 4 29.
397 110
9 20. 4 29.
1 21 6. .0 2
401.5
AEC_400 JNIS2 1 402.0
19 47. 5 1
JHPIVA21 225 237.3 43.7
14.0 13.9 30.1 68.4
222 29.1
1195.0 MW SRB 1156.0 MW
56.5 42.4
RP TREB 232.4
JVARDI22 81.3 229.6 50.1
293 105
SA 20 229.5
81.0 48.8
20.7 39.9
VISEGRA 230.9
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2015 TOPOLOGY 2015
412.3
UGLJEVIK 399.1 230.5
RP TREB 403.9
SHAW POWER TECHNOLOGIES INC. R
184 128
48.0 MW
JSUBO31 393.2
399.0
52.7 18.2
403.6 166 MO-4 7.9 232.3
BIH
-41.0 MW
ISACCEA 404.9
301 JSMIT21 98.1
223 6.4
162 15.4
MO-4
23.8 ARAD 71.1 396.1
1 4. 7 . 11 1 4. 7 . 11
409 21.2
224.6 TE TUZL
399.7 23.7 12.9
127 172
JSOMB31 390.6
299 63.9 403.3
9 89. 1 84.
406 3.5
GRADACAC
219.3
ROSIORI 400.0
4.1 61.9
221.7
.5 97 .3 44
7.6 0.8
.8 40 .7 33
PRIJED2
82.2 NADAB 98.9 397.9
25.9 50.2
218.7
7.6 7.1
40.5 26.3
221.4MEDURIC
82.0 81.1
94.3 94.4 51.1 71.9
DAKOVO
6 49. 3 22.
CRO
-1404.0 MW
401.0
87.4 49.9
MSAFA 4
402.1
HE ZAKUC 228.8
87.2 66.9
56.6 19.3
MRACLIN
PEHLIN 229.3
KONJSKO
10.7 29.2
6 12 0 15
38 255 .9
400.3
89.7 29.3
ERNESTIN
96.2 46.9
0 16 8 2. 0 16 8 2.
TUMBRI
407.6
54. 7 9 54 2.7 92 .7 .7
.7 .7 68 .6 68 .6 84 84 ZERJAVIN 402.1 ZERJAVIN 226.2
402.1
6.5 6.0
226.8
54 44 .6 .6 54 44 .6 .6
LCIRKO2
400.5
1 9. .4 8
MELINA
35.7 UMUKACH2 27.5
10.8 7.5
MBEKO 4 401.6
407.5
MPECS 4
LKRSKO1
6. 4. 5 2
35.5 20.7
68.9 20.8
SLO
63 400.9 35 .8 .4 LDIVAC2
229.3
68.9 20.8
215.0 MW
49.4 27.1
9.8 77.0
MHEVI 4
9.1 1.4
9.7 73.6
17.5 228.8 28.1
LMARIB1 402.2
63.9 11.4
230.3
17.6 14.1
MTLOK 2 230.5
HUN
160 21.9
IPDRV121
166 25.0
45.7 22.6
MKISV 2 226.3
-1249.9 MW
160 21.9
400.9
166 4.0
MGYOR 2
46.2 7.1
52. 10. 9 5
52. 10. 9 5
158 45. 9 IRDPV111
407.3
5 11. 8 15
LPODLO2228.7
MSAJI 408.1
4
185 7.2
52.9 41.6
52.9 41.6
234.2 ONEUSI2 233.4
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 293 772.5
3.3 63.4
OKAINA1 401.3
160 50.3
OOBERS2238.7
346 806
4.1 61.9
71.3 21.1
405.3
199 90.7
UCTE
224.0 MW
MAISA 7 714.1
MGYOR 4 0 25 .0 71.2 87 104 403.2
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.5.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-average hydrology scenario
4.32
Histogram 45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 4.5.3 - Histogram of interconnection lines loadings for 2015-average hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following PSS/E output (Table 4.5.2) lists all network elements loaded over 80% of their thermal limits. Figure 4.5.4 shows histogram of branch loadings in the system. Table 4.5.2 - Network elements loaded over 80% of their thermal limits for 2015-average hydrology scenario BRANCH LOADINGS ABOVE AREA
ALB
ROM
SRB
ALB
ROM
SRB BIH
80.0 % OF RATING: LOADING MVA
RATING MVA
PERCENT
237.7 205 232.2 232.2 267.5 272.6 272.6 261.8
270 208.1 277.4 277.4 277.4 208.1 277.4 301
88 98.5 83.7 83.7 96.4 131 98.3 87
74.3 74.3 79.8 134.9 110.6 105.6 50.3 50.3 82.1 82.1 193 162.6 390.9 166.6 125.8 123.5 252.5
90 90 90 120 90 90 60 60 100 100 200 200 400 200 150 150 300
82.5 82.5 88.7 112.5 122.9 117.3 83.8 83.8 82.1 82.1 96.5 81.3 97.7 83.3 83.9 82.3 84.2
ELEMENT
HL HL HL HL HL HL HL HL TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR
Lines AKASHA2-ARRAZH2 1 P.D.F.A-CETATE1 1 P.D.F.A-RESITA 1 P.D.F.A-RESITA 2 P.D.F.II-CETATE1 1 TG.JIU-PAROSEN 1 URECHESI-TG.JIU 1 JBGD3 21-JOBREN2 1 Transformers 220/110 kV AELBS1 1 220/110 kV AELBS1 2 220/110 kV AELBS1 3 220/110 kV AFIER 1 220/110 kV AFIER 2 220/110 kV AFIER 3 220/110 kV AFIERZ 1 220/110 kV AFIERZ 2 220/110 kV AKASHA 1 220/110 kV AKASHA 2 220/110 kV FUNDE2 1 220/110 kV FUNDEN 1 400/220 kV URECHE 1 220/110 kV JBGD3 1 220/110 kV JBGD3 2 220/110 kV JZREN2 2 400/110 kV UGLJEV 1
220kV 220kV 220kV 220kV 220kV 220kV 220kV 220kV
4.33
Histogram 350 300 Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 4.5.4 - Histogram of branch loadings for 2015-average hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
As it can be seen from these outputs, most of the network elements are loaded between 25-75% of their thermal limits and most of the elements loaded over 80% are transformers in some substations, so some internal network reinforcements are necessary to sustain this load-demand level and production pattern. Also, planned network reinforcements compared to network topology 2010, reduce load of some elements in southern part of Serbia.
4.5.2 Voltage Profile in the Region Figure 4.5.5 shows histogram of voltages in monitored substations. Voltages in all monitored substations are found within permitted limits. It is concluded that voltage profile is satisfying and that most of the substations have magnitudes in range 1-1.05 p.u. Histogram 120
Frequency
100 80 60 40 20
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 4.5.5 - Histogram of voltages in monitored substations for 2015-average hydrology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
4.34
4.5.3 Security (n-1) analysis Results of security (n-1) analysis for 2015-average hydrology scenario are presented in Table 4.5.3 and Figure 4.5.6. Like for expected topology 2010 (previous chapter), it can be concluded that all identified insecure situations are located in internal networks that belong to monitored power systems of Albania, Croatia, Romania and Serbia. Also, the planned network reinforcements till 2015 resolve some of the noticed critical contingencies, especially in southern part of Serbia. The rest of the conclusions are the same as for the analyzed topology 2010, and that is that certain level of network reinforcement is necessary to make this regime more secure. SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.5.6 – Geographical position of critical elements for 2015-average hydrology scenario
4.35
Table 4.5.3 - Network overloadings for 2015-average hydrology scenario, single outages Area 1
contingency 2
AL BA RO
BASE CASE OHL 220kV AELBS12 -AFIER 2 OHL 400kV VISEGRA -HE VG OHL 220kV P.D.F.A -CALAFAT
1 1 1
RO
OHL 220kV P.D.F.A -RESITA
1
RO RO
OHL 220kV RESITA -TIMIS 1 OHL 220kV CRAIOV B-ISALNI A 1
RO
OHL 220kV PESTIS
RO
OHL 220kV CLUJ FL -AL.JL
1
RO
OHL 220kV AL.JL
-GILCEAG
1
RO
OHL 400kV TANTAREN-SLATINA
1
RO
OHL 400kV TANTAREN-BRADU
1
RO
OHL 400kV TANTAREN-SIBIU
1
RO
OHL 400kV URECHESI-DOMNESTI 1
RO
OHL 400kV MINTIA
RO RO
OHL 400kV P.D.FIE -SLATINA OHL 400kV SUCEAVA -GADALIN
1 1
RO
OHL 400kV SMIRDAN -GUTINAS
1
RO RO CS CS
OHL OHL OHL OHL
1 1 1 1
CS
OHL 400kV JBOR 21 -JHDJE11
1
CS
OHL 400kV JHDJE11 -JTDRMN1
1
CS
OHL 400kV JNSAD31 -JSUBO31
1
RO RO RO RO
TR TR TR TR
BRASOV CLUJ E DIRSTE BUC.S
1 1 1 1
RO
TR 400/220 IERNUT
1
CS
TR 400/220 JBGD8
RO
TR 400/220 SLATINA
400kV 400kV 220kV 400kV
400/110 400/110 400/110 400/220
SIBIU GADALIN JBGD172 JBGD8 1
-MINTIA A 1
-SIBIU
-IERNUT -CLUJ E -JBGD8 22 -JOBREN11
1 1
1
overloadings / Area out of limits voltages 3 4 RO HL 220kV TG.JIU-PAROSEN AL HL 220kV AKASHA2-ARRAZH2 BA HL 220kV RP KAKAN-KAKANJ5 RO HL 220kV P.D.F.A-CETATE1 RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV P.D.F.A-RESITA RO HL 220kV TG.JIU-PAROSEN RO HL 220kV RESITA-TIMIS RO TR 400/220kV/kV URECHESI RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN CS HL 220kV JBGD172-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN CS HL 220kV JBGD3 21-JOBREN2 RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/110kV/kV DIRSTE RO HL 220kV TG.JIU-PAROSEN RO TR 400/110kV/kV BRASOV RO TR 400/220kV/kV BUC.S RO HL 220kV TG.JIU-PAROSEN RO HL 220kV STEJARU-GHEORGH CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 22-JBGD8 22 RO TR 400/220kV/kV URECHESI
# 5 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1
limit / Unom 6 208.1MVA 270MVA 316MVA 208.1MVA 400MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 400MVA 400MVA 277.4MVA 208.1MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 400MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 208.1MVA 208.1MVA 365.8MVA 301MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 301MVA 400MVA 277.4MVA 208.1MVA 250MVA 208.1MVA 250MVA 400MVA 208.1MVA 208.1MVA 301MVA 365.8MVA 400MVA
Flow rate / / Voltage volt.dev. 7 8 277.6MVA 131.0% 364.3MVA 142.6% 338.8MVA 103.8% 259.1MVA 125.9% 413.4MVA 103.3% 293.7MVA 104.4% 333.5MVA 125.7% 293.7MVA 139.2% 343.7MVA 126.7% 412.5MVA 103.1% 412.7MVA 103.2% 289.3MVA 103.5% 283MVA 138.1% 264.9MVA 124.7% 420.3MVA 105.1% 301MVA 107.6% 294.9MVA 143.5% 437.9MVA 109.5% 416.1MVA 104.0% 291.3MVA 104.0% 291.3MVA 138.6% 438.7MVA 109.7% 321.3MVA 115.3% 321.3MVA 153.7% 439.9MVA 110.0% 294MVA 104.7% 294MVA 139.5% 437.6MVA 109.4% 323.1MVA 115.8% 316MVA 154.4% 424.6MVA 106.2% 276.9MVA 133.8% 409.4MVA 102.4% 292.8MVA 104.5% 292.8MVA 139.3% 277.6MVA 134.5% 277.8MVA 134.5% 463.6MVA 133.1% 432.1MVA 156.1% 414.3MVA 103.6% 291.3MVA 103.8% 291.3MVA 138.4% 430.1MVA 107.5% 309.2MVA 110.8% 309.2MVA 147.7% 319.4MVA 109.2% 418.4MVA 104.6% 298.5MVA 106.4% 298.5MVA 141.9% 385.1MVA 154.1% 277.8MVA 134.4% 379.5MVA 151.8% 482.6MVA 120.6% 277.8MVA 134.6% 210.4MVA 120.3% 314.5MVA 108.5% 372MVA 107.5% 421MVA 105.2%
4.5.4 Summary of Impacts - 2015 topology versus 2010 topology Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that the network losses are smaller as a consequence of building of new elements for 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of loses is around 30 MW. Also, planned network reinforcements compared to network topology 2010, reduce load of some elements in southern part of Serbia. 4.36
Compared to the 2010 topology, voltage profile is somewhat better, especially in southern and central part of Serbia, as well as in Albania. Realization of the planed investments till 2015 has impact on secure operation of the network. Some of the insecure states identified with 2010 topology are relieved and do not exist with expected 2015 network topology. Also, level of overloadings due to outages is decreased. All in all overall network performance is better, especially in the region where new planed investments are to be realized (Albania, southern Serbia and Montenegro).
4.37
4.6 Scenario 2015 – dry hydrology – 2010 topology This part of the Study presents the results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2015 - dry hydrology and expected network topology for 2010.
4.6.1 Lines loadings Figure 4.6.1 shows power exchanges between areas for 2015-dry hydrology scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 4.6.2. Area totals are shown in Table 4.6.1. Figure 4.6.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 25% of their thermal limits. UKR 37
1 18
AUT
3 41
450
SVK
HUN 10 3
43 73
31
SLO
8 25
ITA
CRO
ROM
207
4 69 70
366
SRB
91
BIH 6 15
0 23
229
MNG 8 27
20
383
BUL 82
13
ALB
143
48
MKD
20
TUR
0 36
GRE Figure 4.6.1 - Area exchanges in analyzed electric power systems for 2015-dry hydrology scenario – topology 2010 Table 4.6.1 - Area totals in analyzed electric power systems for 2015-dry hydrology scenario – topology 2010 AREA GENERATION LOAD LOSSES INTERCHANGE ALBANIA 894.7 1521.9 92.7 -720 BULGARIA 7363.9 6450 147.9 766 BIH 3140.9 2304 78.2 758.8 CROATIA 2636.7 3665 58.2 -1086.4 MACEDONIA 985.1 1410 19.1 -444 ROMANIA 7724.6 7798.4 295.5 -369.2 SERBIA 8397.9 7296 237.9 864 MONTENEGRO 586.3 672 22.1 -107.7 TOTALS 31730.1 31117.3 951.6 -338.5
4.38
LEVIC 1400.0
CENTREL
200 140
251 113
GABICK1400.0
450.0 MW
223.5 MW
106 24.2
405.4 OKAINA1 401.5
234.2
39.1 47.0
450.0 MW
224.4 UMUKACH 412.0
37. 70. 1 5
ROM
400.9
230 SOFIA_W4 92.4 411.0
76.1 35.8
103 43.5
JHPERU21 102 221.1 45.0
148 147
147 JPODG211 181
JHPIVA21 236.0
CRG -107.7 MW
384.0
JPRIZ22214.1
347 20.0
7 18. 0 17.
204 180
373.2AVDEJA2 210.7 AFIERZ2208.0
SK 1
222.9
BITOLA 2
C_MOGILA
407.5SK 4
MKD
410.5
414.2
AZEMLA1
357 271
KARDIA K 364 414.9 257
QES/H
5.0 14.0
AHS_FLWR416.1
K
FILIPPOI
8 17 7.2 7
415.5
GIS REGIONAL MODEL - DRY HYDRO 2015 TOPOLOGY 2010
KV: 110 , 220 , 400
11 13 .3 .8
19.8 21.7 K-KEXRU 417.8
8.5 63.7 19.8 4BABAESK 70.7 415.5
4HAMITAX 8.5 415.4 75.0
412.2
0.0 MW
0.2 MW
KARACQOU 250 418.1 50.0
419.3
.3 1 11 9. 8
1 18. 7 49.
.4 35 .4 49 LAGAD K 413.3
381.4
MI_3_4_1
BLAGOEV413.3 410.7
5.0 48.0
1 18. 1 72.
ALB
-720.0 MW
412.8
.9 47 .8 59
STIP 1
DUBROVO 358.9
.0 48 .0 34
407.7
5 9 8. 6. 1
202 204
766.0 MW
JVRAN31 0.000
-444.0 MW
AKASHA1
DOBRUD4 417.1
8 28 1. .5 9
72. 8 50.8
JTKOSA2 227.0 JTKOSB1 412.4
414.7
BUL
JLESK21 0.000
JPODG121219.0
7 18. 0 17.
204 180
AEC_400 JNIS2 1 396.5
21 4 9.8
139 26.3
AVDEJA1
SHAW POWER TECHNOLOGIES INC. R
413.7
8.5 63.7
138 29.5
756.2 MW SRB 864.0 MW
8 25 2. .1 8
RP TREB 396.9
37.3 54.0
345 48.8
228.9
228 145
TANTAREN
406.0
SCG
JVARDI22 229.6
37.2 51.9
18.6 27.5
RP TREB
69.5 71.5
400.9
18.6 27.5
SA 20 230.5
P.D.FIE
69.5 72.5
53.9 16.2
73.7 47.1
BIH
758.8 MW
212 121
-369.2 MW
JSUBO31 396.0
208 JSMIT21 85.1
231.7 VISEGRA 231.4
ISACCEA 405.4
.1 76 .0 14
404.6 130 MO-4 19.2 232.4
TE TUZL
38.0 ARAD 43.0 401.5
.1 76 .0 14
MO-4
220.1
UGLJEVIK
ROSIORI 402.1
402.4 38.0 16.6
JHDJE11
225.5
64.8 NADAB 71.6 402.2
30.7 165
JSOMB31 393.4
207 40.3 404.5
153 4 81.
127 18.2
319 24.0
GRADACAC
64.7 52.7
76.1 35.8
222.5
2 11 0 . 46
317 16.4
2 60. 7 22.
4 .9 1.1
.9 34 .3 34
PRIJED2
231.4
39.0 71.8
UKR
UMUKACH2
179 45. 5
4.9 6.8
34.7 26.6
219.6
CRO
-1086.4 MW
402.2
10.6 29.2
MSAFA 4
405.9
HE ZAKUC
10.8 7.6
.5 30 41 1
71 37 .7 .8
DAKOVO
222.3 MEDURIC
ERNESTIN
226.9
401.0
MRACLIN
KONJSKO
35.6 27.7
35.3 45.4
10.7 7.6
ZERJAVIN
6 15 0 2.
TUMBRI
229.2
35.4 21.9
35.4 21.9
402.1 6 15 0 2.
PEHLIN
.3 .3 35 .2 35 .2 85 85 ZERJAVIN 403.4
5 6. .7 5
MELINA
408.2
5 24 4.0 .0
10 2. .7 6
227.1
205 165
229.3
LCIRKO2
401.0
71 37 .7 .8
11.4 77.1
MPECS 4
LKRSKO1
71. 8 8 71 5.8 85 .8 .8
11.4 73.6
SLO 97.8 7.2
230.3
35.5 20.9
MBEKO 4 404.6
153 29.5
IPDRV121
MSAJO 4 410.0
408.3
110 47.0
LDIVAC2
MHEVI 4
215.0 MW 97 30 . 7 .7
228.9
LMARIB1 402.4
59.9 27.1
400.9
230.5
6.5 4.2
180 24.1
22.9 26.6
MTLOK 2
MGYOR 2
HUN
156 26.9
180 3.3
23.0 12.7
MKISV 2 226.3
407.6
350 UZUKRA01 297 772.5
-1250.0 MW
156 26.9
400.9
52.2 20.7
39. 5 10. 5
154 45. 7
IRDPV111
52.7 5.8
MSAJI 4408.1
4
346 804
8 36. 131
39. 10. 5 5
233.5
LPODLO2228.9
0 2 5 .4 90
403.3
MGOD
ONEUSI2
LDIVAC1
105 101
OWIEN 2
39.5 41.8
156 49.2
39.5 41.8
OOBERS2238.7
MAISA 7 714.8
MGYOR 4
199 94.6
UCTE
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.6.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-dry hydrology scenario – 2010 topology
4.39
Histogram 40 35
Frequency
30 25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 4.6.3 - Histogram of interconnection lines loadings for 2015-dry hydrology scenario – topology 2010 ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following Table 4.6.2 lists all network elements loaded over 80% of their thermal limits. As it can be seen some lines 220 kV voltage level in Albania, Romania and Serbia are loaded over 80%. Also, the most of the elements loaded over 80% are transformers in some substations, again, in Albania, Bosnia & Herzegovina, Romania and Serbia. Figure 4.6.4 shows histogram of branch loadings in the system. As for the conclusion regarding thermal loadings in this scenario it can be said that the most of the network elements are loaded less then 75% of their thermal limits, but there are some elements highly loaded. Most of the elements loaded over 80% are transformers in some substations, so some internal network reinforcements are necessary to sustain this load-demand level and production pattern. There are some elements that are overloaded (220 kV line Kashar – Rashbul and transformers 220/110 kV in substation Fierza and one transformer 220/110 kV in substation Elbasan 1in Albania). This leads to conclusion that transmission network is not able to sustain this load-demand level and this production pattern needs reinforcement as necessary. It should be pointed out that it is expected that transformers in substation Fierza will be replaced with more powerful transformer units.
4.40
Table 4.6.2 - Network elements loaded over 80% of their thermal limits for 2015-dry hydrology scenario – 2010 topology BRANCH LOADINGS ABOVE
80.0 % OF RATING: LOADING MVA Lines HL 220kV AKASHA2-ARRAZH2 1 275.3 HL 220kV BUC.S-B-FUNDENI 1 261.2 HL 220kV JBGD3 21-JOBREN2 1 293.6 Transformers TR 220/110 kV AELBS1 1 84.7 TR 220/110 kV AELBS1 2 84.7 TR 220/110 kV AELBS1 3 91 TR 220/110 kV AFIER 1 146.8 TR 220/110 kV AFIER 2 120.3 TR 220/110 kV AFIER 3 114.8 TR 220/110 kV AFIERZ 1 59 TR 220/110 kV AFIERZ 2 59 TR 220/110 kV AKASHA 1 90.8 TR 220/110 kV AKASHA 2 90.8 TR 220/110 kV ARRAZH 1 84.7 TR 220/110 kV ARRAZH 2 84.7 TR 220/110 kV ATIRAN 3 98.2 TR 400/110 kV UGLJEV 1 242.4 TR 220/110 kV FUNDE2 1 199.9 TR 220/110 kV FUNDEN 1 168.5 TR 400/220 kV IERNUT 1 325.2 TR 220/110 kV JBGD3 1 171.1 TR 220/110 kV JBGD3 2 129.8 TR 220/110 kV JPRIS4 1 121.6 TR 220/110 kV JPRIS4 2 121.6 TR 220/110 kV JTKOSA 2 133.3 TR 220/110 kV JTKOSA 3 135.7 TR 400/220 kV JTKOSB 1 323.1 TR 400/220 kV JTKOSB 2 337.6 TR 400/220 kV JTKOSB 3 337.6
AREA
ELEMENT
ALB ROM SRB
ALB
BIH ROM
SRB
RATING MVA
PERCENT
270 320 301
102 81.6 97.5
90 90 90 120 90 90 60 60 100 100 100 100 120 300 200 200 400 200 150 150 150 150 150 400 400 400
94.1 94.1 101.1 122.3 133.7 127.6 98.3 98.3 90.8 90.8 84.7 84.7 81.9 80.8 99.9 84.2 81.3 85.6 86.5 81.1 81.1 88.9 90.5 80.8 84.4 84.4
Histogram 350 300 Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 4.6.4 - Histogram of branch loadings for 2015-dry hydrology scenario – 2010 network topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.6.2 Voltage Profile in the Region Figure 4.6.5 shows histogram of voltages in monitored substations. Voltages in almost all monitored substations are found within permitted limits. Only in substations Elbasan and Kashar voltages are below limits (around 359 kV), but this can be resolved with changing of the setting of the tap changing transformers in these substations. Also, as a consequence of high imports, voltages in network of Albania are very near low limits. 4.41
Histogram
120
Frequency
100 80 60 40 20
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 4.6.5 - Histogram of voltages in monitored substations for 2015-dry hydrology scenario – 2010 network topology ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
In the rest of the monitored network the voltage profile is satisfying and that most of the substations have magnitudes in range 0.975-1.05 p.u.
4.6.3 Security (n-1) analysis Results of security (n-1) analysis for 2015-dry hydrology scenario and expected topology for 2010 are presented in Table 4.6.3. Figure 4.6.6 shows the geographical position of the critical elements in monitored systems. It can be concluded that all identified insecure situations are located in internal networks that belong to monitored power systems of Albania, Romania and Serbia. The most critical element in Albanian system is 220 kV line Elbasan-Fierza. In most critical case in Romanian system, the critical elements are transformers 400/110 kV in substations Dirste and Brasov. The most critical element in Serbian system are line 220 kV Obrenovac – Beograd 3. Some of the overloadings identified can be relieved by dispatch actions (splitting busbars, changing lower voltage network topology in order to redistribute load-demand or change of generation units engagement), like in the case of most severe overloading in Romanian network happens on transformer 400/110 kV Dirste when transformer 400/110 kV in Brasov is outaged, but this is a consequence of the fact that second transformer unit 400/110 kV in Brasov is out of operation. Switching on of this transformer clears this critical outage. The similar situation is in case of outage of the 400 kV line Obrenovac – Beograd 8 in Serbia. Splitting off the 220 kV busbars in substation Beograd 3 relieves this overloading, but voltage profile in Serbian network remains critical, so additional dispatching actions are necessary too. All in all, certain reinforcement of internal network is necessary in order to make this regime more secure. None of the identified congestions is located at border lines.
4.42
Table 4.6.3 - Network overloadings for 2015-dry hydrology scenario, single outages – 2010 network topology Area 1
contingency 2
AL AL AL AL RO CS CS CS CS CS CS CS CS
BASE CASE OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV OHL 220kV
CS
OHL 400kV JBGD8 1 -JOBREN11 1
CS CS CS CS
OHL OHL OHL OHL
CS
OHL 400kV JTKOSB1 -JPEC
RO RO CS
TR 400/110 BRASOV 1 TR 400/110 DIRSTE 1 TR 400/110 JNIS2 1
AL
TR 400/220 AELBS2 1
RO RO RO
TR 400/220 BRAZI TR 400/220 BUC.S TR 400/220 IERNUT
CS
TR 400/220 JBGD8
CS CS CS
TR 400/220 JBGD8 2 TR 400/220 JNIS2 1 TR 400/220 JPANC2 1
CS
TR 400/220 JTKOSB 1
RO RO
TR 400/220 MINTIA TR 400/220 ROSIORI
400kV 400kV 400kV 400kV
AFIERZ2 -ABURRE2 ATIRAN2 -AKASHA2 AELBS12 -AFIER 2 AFIER 2 -ARRAZH2 FUNDENI -BUC.S-B JBBAST2 -JBGD3 21 JBGD172 -JBGD8 22 JBGD3 22-JBGD8 21 JGLOGO2 -JPRIZ22 JHIP 2 -JPANC22 JNSAD32 -JOBREN2 JNSAD32 -JZREN22 JOBREN2 -JSABA32
JBGD8 1 JHDJE11 JKRAG21 JPANC21
-JBGD201 -JTDRMN1 -JTKOLB1 -JTDRMN1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
A 1 A 1 A
1 1 1 1
1 1
overloadings / Area out of limits voltages 3 4 AL HL 220kV AKASHA2-ARRAZH2 AL HL 220kV AKASHA2-ARRAZH2 AL HL 220kV AKASHA2-ARRAZH2 AL HL 220kV AKASHA2-ARRAZH2 AL HL 220kV AELBS12-AFIER 2 RO HL 220kV BUC.S-B-FUNDENI CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD172-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 AL HL 220kV AKASHA2-ARRAZH2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 22-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS TR 400/220kV/kV JTKOSB1 CS TR 400/220kV/kV JTKOSB1 CS TR 400/220kV/kV JTKOSB1 RO TR 400/110kV/kV DIRSTE RO TR 400/110kV/kV BRASOV CS TR 400/110kV/kV JNIS2 1 AL TR 400/220kV/kV AELBS22 AL HL 220kV AKASHA2-ARRAZH2 RO HL 220kV BUC.S-B-FUNDENI RO TR 400/220kV/kV BUC.S RO HL 220kV STEJARU-GHEORGH CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 22-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 CS TR 400/110kV/kV JNIS2 1 CS HL 220kV JBGD3 21-JOBREN2 CS TR 400/220kV/kV JTKOSB1 CS TR 400/220kV/kV JTKOSB1 RO HL 220kV PESTIS-MINTIA A RO TR 400/220kV/kV IERNUT
# 5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 3 1 1 2 2 1 1 2 1 1 2 1 1 1 2 3 1 1
limit / Unom 6 270MVA 270MVA 270MVA 270MVA 270MVA 320MVA 301MVA 365.8MVA 301MVA 270MVA 301MVA 301MVA 301MVA 301MVA 301MVA 365.8MVA 301MVA 301MVA 301MVA 301MVA 400MVA 400MVA 400MVA 250MVA 250MVA 300MVA 300MVA 270MVA 320MVA 400MVA 208.1MVA 301MVA 365.8MVA 301MVA 300MVA 301MVA 400MVA 400MVA 277.4MVA 400MVA
Flow rate / / Voltage volt.dev. 7 8 242.3MVA 102.0% 261.1MVA 126.2% 254.3MVA 106.6% 361.1MVA 180.3% 194.4MVA 104.8% 342.8MVA 106.8% 327.8MVA 111.5% 466.5MVA 133.2% 312.8MVA 106.4% 231.3MVA 128.2% 304.5MVA 103.4% 311.5MVA 105.2% 312.6MVA 106.1% 314.3MVA 106.6% 511.9MVA 184.1% 354.7MVA 106.4% 306.4MVA 103.9% 324.4MVA 110.4% 306.5MVA 103.9% 314.9MVA 107.7% 413.9MVA 103.5% 432.5MVA 108.1% 432.5MVA 108.1% 401MVA 160.4% 394.4MVA 157.7% 363.8MVA 121.3% 307.5MVA 102.5% 259.2MVA 132.1% 346.4MVA 109.9% 506.1MVA 126.5% 191.8MVA 108.6% 342.9MVA 117.8% 385.9MVA 110.9% 320.8MVA 109.4% 303.3MVA 101.1% 300.3MVA 101.8% 471.5MVA 117.9% 471.5MVA 117.9% 324.3MVA 111.1% 425.1MVA 106.3%
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
critical elements GRE
400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.6.6 – Geographical position of critical elements for 2015-dry hydrology scenario – topology 2010
4.43
4.7 Scenario 2015 – dry hydrology – topology 2015 This part of the Study presents the results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2015 - dry hydrology and expected network topology for 2015.
4.7.1 Lines loadings Figure 4.7.1 shows power exchanges between areas for 2015-dry hydrology scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 4.7.2. Area totals are shown in Table 4.7.1. Figure 4.7.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 25% of their thermal limits. UKR 44
0 19
AUT
6 40
450
SVK
HUN 81
33 94
29
SLO
8 24
ITA
CRO
ROM
199
3 73 78
328
SRB
63
BIH 89
221
52
MNG
BUL 18
304
33
9 35
1 24
291
ALB
145
90
MKD
18
TUR
86
GRE Figure 4.7.1 - Area exchanges in analyzed electric power systems for 2015-dry hydrology scenario
As it can be seen, new elements that are expected to be build till 2015 cause totally different distribution of power flows in the southern part of the region (Albania, FYR of Macedonia, Serbia and Montenegro). Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that the network losses are decreased as a consequence of building of new elements for 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of loses is around 40 MW.
4.44
LEVIC 1400.0
CENTREL
200 141
251 113
GABICK1400.0
450.0 MW
222.8 MW
112 24.7
405.4 OKAINA1 401.6
234.2
JSOMB31 393.8
224.4 UMUKACH 412.0
44. 66. 3 7
ROM
220 96.1
221 SOFIA_W4 38.3 412.5
61.0 38.2
205 122
414.3
104 JPODG211 86.1
JPODG121229.3
2 4.2 21.2
1 1. 5. 1 5
343 109
402.0AVDEJA2 226.7 AFIERZ2224.6
143 100
9.2 29.1
143 101
374 67.8
3 28. 1 27.
342 127
JTKOSA2 232.1 JTKOSB1 419.1 3 28. 1 27.
15 8. .6 3
402.7
JPRIZ22224.5
SK 1
226.2
410.6SK 4
-444.0 MW
MKD
143 139
393.7
C_MOGILA
.2 90 .1 38
411.9
414.4
DUBROVO
60.5 19.4
QES/H
K
415.8
24 90 1 .9
KV: 110 , 220 , 400
10 12 .2 .6
1 18 6.3 7 17.8 22.1 K-KEXRU 417.9
7.6 64.8 17.7 4BABAESK 71.1 415.6
4HAMITAX 7.6 415.4 76.1
413.6
0.0 MW
-0.1 MW KARACQOU 250 419.6 50.0
FILIPPOI
419.5
.2 5 10 0. 9
.1 3 6 .3 50 LAGAD K 414.4
AHS_FLWR417.3
KARDIA K 86.6 417.8 43.8
MI_3_4_1
BLAGOEV414.5 412.0
231 8 65.
86.1 114
414.0
.0 90 .7 54
STIP 1
408.2
AZEMLA1
766.0 MW
JVRAN31 407.4
ALB
-720.0 MW
BUL
JLESK21 405.0
410.0
230 4 84.
AKASHA1
242 3 51.
DOBRUD4 417.4
415.4
6 8 7. 5. 1
143 139
BITOLA 2
206 9. 9
104 42.5
AEC_400 JNIS2 1 403.5
7.6 64.8
JHPERU21 85.7 229.7 19.1
CRG -108.0 MW
79.8 79.8 39.8 61.1
86.4 14.2
JHPIVA21 238.3
26.6 26.5 20.2 58.8
136 31.7
124 48.3
135 35.7
756.0 MW SRB 864.0 MW
1 3. 24 2
30.5 47.2
AVDEJA1
GIS REGIONAL MODEL - DRY HYDRO 2015 TOPOLOGY 2015
TANTAREN
407.8
SCG
JVARDI22 231.1
30.5 44.9
60.5 42.2
233.6
77.6 54.8
401.8
372 93.9
RP TREB
P.D.FIE
77.6 55.8
32.7 15.6
28.0 37.4
SA 20 232.1
ISACCEA 405.7
-368.9 MW
JSUBO31 396.4
28.0 37.4
408.1 133 MO-4 15.1 234.1
BIH
759.0 MW
27.6 ARAD 40.6 402.0
401.7
232.1 VISEGRA 232.6
402.7
199 JSMIT21 80.8
24.3 12.1
MO-4
TE TUZL
ROSIORI 402.4
.0 61 .0 12
131 14.5
333 7.2
UGLJEVIK
225.8
53.3 NADAB 68.5 402.6
.0 61 .0 12
330 32.3
GRADACAC
220.5
53.2 49.4
27.6 19.3
JHDJE11
RP TREB 407.8
SHAW POWER TECHNOLOGIES INC. R
450.0 MW
61.0 38.2
198 35.1 404.9
162 5 76.
232.3
UKR
UMUKACH2
182 46. 2
222.8
4 11 2 . 46
7.1 0. 7
.0 39 .4 33
PRIJED2
2 62. 8 22.
CRO
-1085.9 MW
404.1
31.9 46.5
MSAFA 4
407.7
HE ZAKUC
31.8 72.5
.2 29 38 1
76 35 .7 .1
219.9
7.1 7.3
38.7 25.7
408.4
76 35 .7 .1 DAKOVO
222.5 MEDURIC
ERNESTIN
227.0
401.1
MRACLIN
KONJSKO
10.6 29.2
36.1 45.0
12.6 7.1
ZERJAVIN
6 15 2 3.
TUMBRI
229.3
10.8 7.6
29.4 162
402.3 6 15 2 3.
PEHLIN
.5 .5 29 .3 29 .3 85 85 ZERJAVIN 403.6
2 6. .3 5
MELINA
29.6 22.0
29.6 22.0 227.2
3 25 2.8 .0
12 3. . 6 1
LCIRKO2
401.1
9.2 0.1
229.4
MPECS 4
LKRSKO1
76. 8 8 76 3.2 83 .8 .2
12.2 76.3
SLO 105 9.5
230.3
12.2 72.8
215.0 MW 10 32 5 .9
35.6 27.7
MBEKO 4 404.9
408.4
161 24.8
IPDRV121
MHEVI 4
112 46.9
LDIVAC2
MSAJO 4 410.0
LMARIB1 402.5
61.8 27.1
401.0
229.0
6.2 4.6
183 21.4
230.5
HUN
156 28.1
182 0.7
23.9 26.3
MTLOK 2
35.5 20.9
-1250.0 MW
156 28.1
401.0
53.4 20.3
24.1 12.5
MKISV 2 226.3
407.7
MGYOR 2
37. 0 10. 7
153 45. 6
IRDPV111
54.0 5.6
MSAJI 4408.1
4
350 UZUKRA01 297 772.5
0 44. 128
37. 10. 0 7
233.5
LPODLO2228.9
403.3
MGOD
ONEUSI2
LDIVAC1
0 25 .8 90
OWIEN 2
37.0 41.9
155 48.9
37.0 41.9
OOBERS2238.7
112 100
346 804
MAISA 7 714.8
MGYOR 4
199 95.0
UCTE
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.7.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-dry hydrology scenario
4.45
Table 4.7.1 - Area totals in analyzed electric power systems for 2015-dry hydrology scenario AREA GENERATION LOAD LOSSES INTERCHANGE ALBANIA 893.6 1542 71.6 -720 BULGARIA 7363.9 6450 147.8 766 BIH 3141.2 2305 77.1 759 CROATIA 2637.7 3665 58.7 -1085.9 MACEDONIA 985.2 1409 20.2 -444 ROMANIA 7722.9 7798.4 293.5 -368.9 SERBIA 8396.3 7308 224.3 864 MONTENEGRO 586.3 678 16.4 -108 TOTALS 31727.1 31155.4 909.6 -337.8
Histogram 45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 4.7.3 - Histogram of interconnection lines loadings for 2015-dry hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following Table 4.7.2 lists all network elements loaded over 80% of their thermal limits. Figure 4.7.4 shows histogram of branch loadings in the system. Table 4.7.2 - Network elements loaded over 80% of their thermal limits for 2015-dry hydrology scenario BRANCH LOADINGS ABOVE AREA ALB ROM SRB
ALB
BIH ROM SRB
80.0 % OF RATING: LOADING MVA Lines HL 220kV AKASHA2-ARRAZH2 1 242.7 HL 220kV BUC.S-B-FUNDENI 1 260.6 HL 220kV JBGD3 21-JOBREN2 1 294.6 Transformers TR 220/110 kV AELBS1 1 75.4 TR 220/110 kV AELBS1 2 75.4 TR 220/110 kV AELBS1 3 81 TR 220/110 kV AFIER 1 136.9 TR 220/110 kV AFIER 2 112.2 TR 220/110 kV AFIER 3 107.1 TR 220/110 kV AFIERZ 1 52.1 TR 220/110 kV AFIERZ 2 52.1 TR 220/110 kV AKASHA 1 83.5 TR 220/110 kV AKASHA 2 83.5 TR 400/110 kV UGLJEV 1 240.7 TR 220/110 kV FUNDE2 1 199.6 TR 220/110 kV FUNDEN 1 168.2 TR 400/220 kV IERNUT 1 324.2 TR 220/110 kV JBGD3 1 170.9 TR 220/110 kV JBGD3 2 130 ELEMENT
RATING MVA
PERCENT
270 320 301
89.9 81.4 97.9
90 90 90 120 90 90 60 60 100 100 300 200 200 400 200 150
83.8 83.8 90 114.1 124.7 119 86.9 86.9 83.5 83.5 80.2 99.8 84.1 81.1 85.5 86.6
4.46
Histogram 350 300 Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 4.7.4 - Histogram of branch loadings for 2015-dry hydrology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
As it can be seen from these outputs, most of the network elements are loaded less then 75% of their thermal limits and most of the elements loaded over 80% are transformers in some substations, so some internal network reinforcements are necessary to sustain this load-demand level and production pattern. There are some elements that are overloaded (transformers 220/110 kV in substation Fierza in Albania). This leads to conclusion that transmission network is not able to sustain this load-demand level and this production pattern needs reinforcement as necessary. It should be pointed out that it is expected that transformers in substation Fierza will be replaced with more powerful transformer units. Also, planned network reinforcements compared to network topology 2010, reduce loading of some elements in southern part of Serbia.
4.7.2 Voltage Profile in the Region Figure 4.7.5 shows histogram of voltages in monitored substations. Voltages in all monitored substations are found within permitted limits. It is concluded that voltage profile is satisfying and that most of the substations have magnitudes in range 1-1.05 p.u. Compared to the 2010 topology, voltage profile is somewhat better, especially in southern and central part of Serbia, as well as in Albania.
4.47
Histogram 100 90
Frequency
80 70 60 50 40 30 20 10
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 4.7.5 - Histogram of voltages in monitored substations for 2015-dry hydrology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
4.7.3 Security (n-1) analysis Results of security (n-1) analysis for 2015-dry hydrology scenario are presented in Table 4.7.3. Figure 4.7.6 shows the geographical position of the critical elements in monitored systems. Like for expected topology 2010 (previous chapter), it can be concluded that all identified insecure situations are located in internal networks that belong to monitored power systems of Albania, Romania and Serbia. Also, the planned network reinforcements till 2015 resolve some of the noticed critical contingencies, especially in southern part of Serbia. The rest of the conclusions are the same as in case of the analyzed topology 2010, and that is that certain level of network reinforcement is necessary to make this regime more secure.
4.48
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.7.6 – Geographical position of critical elements for 2015-dry hydrology scenario
4.49
Table 4.7.3 - Network overloadings for 2015-dry hydrology scenario, single outages Area 1 AL RO RO RO CS CS CS CS CS CS CS
contingency 2 220kV AELBS12 -AFIER 2 220kV FUNDENI -BUC.S-B 220kV STEJARU -GHEORGH 400kV DOMNESTI-BRAZI 220kV JBBAST2 -JBGD3 21 220kV JBGD172 -JBGD8 22 220kV JBGD3 22-JBGD8 21 220kV JHIP 2 -JPANC22 220kV JNSAD32 -JOBREN2 220kV JNSAD32 -JZREN22 220kV JOBREN2 -JVALJ32
OHL OHL OHL OHL OHL OHL OHL OHL OHL OHL OHL
CS
OHL 400kV JBGD8 1 -JOBREN11 1
CS CS CS CS AL RO RO RO RO RO
OHL 400kV JBGD8 1 OHL 400kV JHDJE11 OHL 400kV JKRAG21 OHL 400kV JPANC21 TR 400/110 AZEMLA TR 400/110 BRASOV TR 400/110 DIRSTE TR 400/220 BRAZI TR 400/220 BUC.S TR 400/220 IERNUT
-JBGD201 -JTDRMN1 -JTKOLB1 -JTDRMN1 1 1 1 1 1 1
CS
TR 400/220 JBGD8
1
CS CS RO RO
TR TR TR TR
400/220 400/220 400/220 400/220
JBGD8 2 JPANC2 1 MINTIA 1 ROSIORI 1
1 1 1 1 1 1 1 1 1 1 1
A 1 A 1
overloadings / Area out of limits voltages 3 4 AL HL 220kV AKASHA2-ARRAZH2 RO HL 220kV BUC.S-B-FUNDENI RO TR 400/220kV/kV IERNUT RO HL 220kV BUC.S-B-FUNDENI CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD172-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 22-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 AL HL 220kV AKASHA2-ARRAZH2 RO TR 400/110kV/kV DIRSTE RO TR 400/110kV/kV BRASOV RO HL 220kV BUC.S-B-FUNDENI RO TR 400/220kV/kV BUC.S RO HL 220kV STEJARU-GHEORGH CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 22-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 CS HL 220kV JBGD3 21-JOBREN2 RO HL 220kV PESTIS-MINTIA A RO TR 400/220kV/kV IERNUT
# 5 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1
limit / Unom 6 270MVA 320MVA 400MVA 320MVA 301MVA 365.8MVA 301MVA 301MVA 301MVA 301MVA 301MVA 301MVA 365.8MVA 301MVA 301MVA 301MVA 301MVA 270MVA 250MVA 250MVA 320MVA 400MVA 208.1MVA 301MVA 365.8MVA 301MVA 301MVA 277.4MVA 400MVA
Flow rate / / Voltage volt.dev. 7 8 376.7MVA 151.9% 342.5MVA 106.6% 406.2MVA 101.5% 330.3MVA 102.0% 331MVA 112.3% 467.1MVA 133.0% 314MVA 106.6% 305.8MVA 103.6% 313.5MVA 105.6% 314.5MVA 106.5% 301.6MVA 101.5% 514.9MVA 184.3% 359.3MVA 107.2% 308.3MVA 104.2% 324.2MVA 110.1% 307.8MVA 104.0% 316MVA 107.8% 263.6MVA 108.6% 401.1MVA 160.4% 394.7MVA 157.9% 346.3MVA 109.8% 506MVA 126.5% 190.9MVA 107.9% 344.1MVA 117.9% 388.2MVA 111.3% 322MVA 109.5% 301.9MVA 102.0% 325.2MVA 111.3% 425.1MVA 106.3%
4.7.4 Summary of Impacts - 2015 topology versus 2010 topology Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that the network losses are reduced as a consequence of building of new elements for 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of losses is around 40 MW. Also, planned network reinforcements compared to network topology 2010, reduce load of some elements in southern part of Serbia. Compared to the 2010 topology, voltage profile is somewhat better, especially in southern and central part of Serbia, as well as in Albania. Realization of the planed investments till 2015 has impact on secure operation of the network. Some of the insecure states identified with 2010 topology are relieved and do not exist with expected 2015 network topology. Also, levels of overloadings due to outages are decreased. All in all overall network performance is better, especially in the region where new planed investments are to be realized (Albania, southern Serbia and Montenegro).
4.50
4.8 Scenario 2015 – wet hydrology – 2010 topology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2015 wet hydrology and expected network topology for 2010.
4.8.1 Line loadings Area totals and power exchanges for the 2015-base case-wet hydrology-topology 2010 scenario are shown in Figure 4.8.1 and Table 4.8.1. Power flows along regional interconnection lines and system balances are shown in Figure 4.8.2. Power flows along interconnection lines are also given in Table 4.8.2, while Figure 4.8.3 shows histogram of tie lines loadings. SVK 11
46
1
4 50
UKR
1
AUT
69
HUN 99
54 15
86
SLO
9 26
ITA
CRO
ROM
256
13
3
1 38
366
SRB
320
BIH
26 5
1 26
28 0
MNT 368
89
31
BUL 1
0
109
ALB
201
9 10
MKD
TUR 1
0 37
GRE 2 50
Figure 4.8.1 - Area exchanges in analyzed electric power systems for 2015-base case-wet hydrology-2010 topology scenario
4.51
Table 4.8.1 - Area totals in analyzed electric power systems for 2015-base case-wet hydrology-topology 2010 scenario Country Albania Bulgaria Bosnia and Herzegovina Croatia Macedonia Romania Serbia and UNMIK Montenegro TOTAL - SE EUROPE
Generation (MW) 1124.5 7553.2 2154.2 2799.9 869.5 7953.9 8413.1 778.7 31646.9
Load (MW) 1528.9 6446.1 2278.6 3660.4 1407.6 7704.0 7209.2 669.8 30904.6
Bus Shunt (Mvar) 0 0 0 0 0 0 0 0.5 0.5
Line Shunt (Mvar) 0 14.7 0 0 0 74.3 12.7 1.7 103.4
Losses (MW) 85.8 137.4 74.8 60.9 18.9 298.9 278.4 21.6 976.6
Net Interchange (MW) -490.1 955.0 -199.3 -921.3 -557.0 -123.3 912.7 85.0 -338.3
Figure 4.8.3 shows that the tie lines in the region are mostly loaded less than 25% of their thermal limits for the analyzed hydrological base case scenario in year 2015, examined on network topology in 2010. Among total number of forty nine 400 kV and 220 kV interconnection lines in the region only eight are loaded between 25% and 50% of their thermal ratings. Only one line (OHL 400 kV Sarajevo 20 – Piva between Bosnia and Herzegovina and Montenegro) is loaded more than 50% of its thermal rating. Table 4.8.3 lists all network elements, observing only lines 400 kV and 220 kV and transformers 400/x kV and 220/x kV, that are loaded over 80% of their thermal limits. Most of the elements loaded over 80% are transformers in some substations and internal 110 kV and 220 kV lines. Thus, certain internal network reinforcements are necessary to sustain given load-demand level and generation pattern. All three 220/110 kV transformers in the Fierze substation in Albania are overloaded in this scenario. There are eight 220/110 kV transformers in Albania which are highly loaded. Line 220 kV from Tirana to Rashbull is loaded near its limit. There are fourteen 110 kV lines in Albania loaded over 80% of their thermal rating and five of them are overloaded (the largest overloading is noticed for the 110 kV line Fierze-F.arrez). Power systems of Bulgaria and Bosnia and Herzegovina have several highly loaded branches in the 110 kV networks. Highly loaded high voltage branches are 220 kV line M.East-St.Zagora in Bulgaria and transformer 400/110 kV in TPP Ugljevik in Bosnia and Herzegovina. Line 110 kV Orasje-Zupanja between Croatia and Bosnia and Herzegovina is overloaded too (135 % Ithermal). There are ten 220 kV and four 110 kV internal lines in Romania which are loaded over 80% of their thermal limits, whereas four of them are overloaded. These lines are related to the Lotru, Sibiu, Tg.Jiu and Parosen nodes. Transformer 400/220 kV in the Urechesti substation is slightly overloaded in this scenario. Three 220 kV lines and nineteen 110 kV lines in the Serbian power system are highly loaded or overloaded when all branches are available in the analyzed scenario. Highly loaded 220 kV lines are connected to the Obrenovac substation, while 110 kV lines are located mostly in the areas of Belgrade, Bor, Kragujevac, Sombor and Novi Sad. One 220 kV line and nine 110 kV lines are overloaded, ranging between 104% Ithermal and 129% Ithermal.
4.52
LEVIC 1400.0
CENTREL
200 136
251 112
GABICK1400.0
450.0 MW
MSAJO 4 410.0
87.2 49.9
224.4 UMUKACH 412.0
23.2 ARAD 75.7 394.4
ROM
211 127
-123.4 MW
JSUBO31 391.4
JHDJE11
133 47.0
133 46.1
P.D.FIE TANTAREN
397.6
233 3.0
409.3
UGLJEVIK 395.7
SCG
226.4
218 19.6
JHPIVA21 221 232.9 34.2
18.9 32.5
JHPERU21 18.7 224.0 40.0
75.8 116
76.1 JPODG211 154 JPODG121221.7
CRG 85.0 MW
955.0 MW
SK 1 219.0
BITOLA 2
C_MOGILA
SK 4 401.1
412.5
407.9
AZEMLA1
367 232
KARDIA K 373 415.0 212
QES/H
30.9 5.0
AHS_FLWR415.4
K
411.6
415.3
4 20 3.1 7
0.8 23.3 K-KEXRU 417.8
4HAMITAX 0.0 0.1 415.3 72.9 0.7 61.5 4BABAESK 72.3 415.5
0.0 MW
0.0 MW
KARACQOU 250 418.1 50.0
FILIPPOI
0 16 .7 .3
8 0. .7 86
9 49. 0 82.
7 3. .5 37 LAGAD K 412.7
386.0
MI_3_4_1 419.1
BLAGOEV411.6 408.0
30.8 66.0
8 49. 104
ALB
-490.1 MW
410.7
8 10 .7 57
STIP 1
DUBROVO 366.9
9 10 4 . 32
402.6
0 0 0. 9. 1
91.5 195
BUL
JLESK21 375.6
3 20 1.4 .3
4.9 51.1
92.2 163
AVDEJA2 215.4AFIERZ2217.7 379.3
MKD
KV: 110 , 220 , 400
DOBRUD4 415.8
412.6
281 SOFIA_W4 152 408.6
JVRAN31 0.000
-557.0 MW
AKASHA1
278 191
333 57.1
9 17. 8.9
9 17. 8.9
83.7 111
AEC_400 JNIS2 1 388.0
JPRIZ22 215.1 JTKOSA2 221.8JTKOSB1400.0 3 28 1. .2 5
385.2
997.8 MW SRB 912.7 MW
332 30.0
RP TREB 228.9
JVARDI22 86.9 225.8 64.9
17.8 19.2
SA 20 226.4
86.5 64.2
17.8 19.2
VISEGRA 227.6
AVDEJA1
GIS REGIONAL MODEL - WET HYDRO 2015 TOPOLOGY 2010
ISACCEA 402.9
396.2
5.1 43.6
221.0 TE TUZL
398.4 23.2 17.9
257 JSMIT21 105
84.0 87.7
401.4 55.1 MO-4 30.1 231.5
BIH
-199.3 MW
ROSIORI 399.8
.4 77 .0 28 .4 77 .0 28
MO-4
75.4 NADAB 104 396.6
86.1 180
JSOMB31 388.7
255 67.3 401.3
7 63. 5 97.
54.5 18.8
238 71.8
219.5
.1 95 .9 36
237 21.7
GRADACAC
75.2 86.0
77.2 76.6
218.6
RP TREB 394.6
SHAW POWER TECHNOLOGIES INC. R
10. 100 9
20 46. 5 2
10.4 1.3
33.6 37.5
219.6
7 47. 5 16.
.0 34 .9 44
PRIJED2
403.8
87.0 67.0
UKR
450.0 MW
3.7 57.1
DAKOVO
222.9MEDURIC
10.4 6.6
CRO
-921.3 MW
HE ZAKUC 234.0
10.7 29.1
MSAFA 4
397.4
KONJSKO
10.8 7.5
.8 85 58 1
27 234 .8
401.4
MRACLIN
63.5 43.1
ERNESTIN
93.9 39.7
20.4 4.2
5 16 8 5. 5 16 8 5.
TUMBRI
406.7
45. 5 1 45 07 10 .5 7
.8 .8 52 .6 52 .6 80 80 ZERJAVIN 403.8 ZERJAVIN 227.3
403.0
PEHLIN 229.9
227.4
45 59 .3 .5 45 59 .3 .5
LCIRKO2
401.3
.4 13 2.8
MELINA
35.7 UMUKACH2 27.4
MBEKO 4 400.5
408.4
MPECS 4
LKRSKO1
20 5. .4 9
35.5 20.6
52.9 26.2
SLO
10 401.3 40 3 .7 LDIVAC2
229.5
52.9 26.2
215.0 MW
47.5 21.2
15.1 73.3
MHEVI 4
13.4 7.0
15.1 69.8
21.2 228.9 27.1
LMARIB1 402.6
103 17.3
230.5
178 13.2
21.3 13.2
MTLOK 2 230.5
HUN
165 30.5
IPDRV121
177 7.7
50.2 21.4
MKISV 2 226.3
-1250.0 MW
165 30.5
401.0
MGYOR 2
50.7 6.3
44. 12. 7 5
44. 12. 7 5
156 44. 1 IRDPV111
407.3
4 11. 9 15
LPODLO2229.0
MSAJI 408.1
4
212 2.2
44.7 43.7
44.7 43.7
234.2 ONEUSI2 233.5
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 292 772.5
0.0 61.5
OKAINA1 401.7
158 48.0
OOBERS2238.7
346 807
77.2 76.6
97.8 23.2
405.4
199 89.9
UCTE
223.3 MW
MAISA 7 713.9
MGYOR 4 0 25 .7 97.7 89 102 403.3
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.8.2 - Power flows along interconnection lines in the region for 2015 - base case - wet hydrology scenario – topology 2010
4.53
Table 4.8.2 - Power flows along regional interconnection lines for 2015 - base case-wet hydrology scenario-topology 2010 Power Flow
Interconnection line OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x220 kV ckt.1 OHL 2x220 kV ckt.2 OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV
Zemlak (ALB) Fierze (ALB) V.Dejes (ALB) V.Dejes (ALB) Ugljevik (B&H) Mostar (B&H) Ugljevik (B&H) Trebinje (B&H) Trebinje (B&H) Prijedor (B&H) Prijedor (B&H) Gradacac (B&H) Tuzla (B&H) Mostar (B&H) Visegrad (B&H) Sarajevo 20 (B&H) Trebinje (B&H) Blagoevgrad (BUL) M.East 3 (BUL) M.East 3 (BUL) M.East 3 (BUL) C.Mogila (BUL) Dobrudja (BUL) Kozloduy (BUL) Kozloduy (BUL) Sofia West (BUL) Zerjavinec (CRO) Zerjavinec (CRO) Ernestinovo (CRO) Ernestinovo (CRO) Tumbri (CRO) Tumbri (CRO) Melina (CRO) Ernestinovo (CRO) Zerjavinec (CRO) Pehlin (CRO) Dubrovo (MCD) Bitola (MCD) Skopje (MCD) Skopje (MCD) Skopje (MCD) Arad (ROM) Nadab (ROM) Rosiori (ROM) Portile De Fier (ROM) Subotica (SER) Ribarevine (MON) Pljevlja (MON) Pljevlja (MON)
Kardia (GRE) Prizren (SER) Podgorica (MON) Podgorica (MON) Ernestinovo (CRO) Konjsko (CRO) S. Mitrovica (SER) Podgorica (MON) Plat (CRO) Mraclin (CRO) Medjuric (CRO) Djakovo (CRO) Djakovo (CRO) Zakucac (CRO) Vardiste (SER) Piva (MON) Perucica (MON) Thessaloniki (GRE) Filippi (GRE) Babaeski (TUR) Hamitabat (TUR) Stip (MCD) Isaccea (ROM) Tantarena (ROM) Tantarena (ROM) Nis (SER) Heviz (HUN) Heviz (HUN) Pecs (HUN) Pecs (HUN) Krsko (SLO) Krsko (SLO) Divaca (SLO) S.Mitrovica (SER) Cirkovce (SLO) Divaca (SLO) Thessaloniki (GRE) Florina (GRE) Kosovo B (UNMIK) Kosovo A (UNMIK) Kosovo A (UNMIK) Sandorfalva (HUN) Bekescaba (HUN) Mukacevo (UKR) Djerdap (SER) Sandorfalva (HUN) Kosovo B (UNMIK) Bajina Basta (SER) Pozega (SER)
MW -367.1 -31.4 -4.9 -83.7 63.7 237.9 -232.7 -75.8 -104.8 34.0 10.4 47.7 95.1 55.1 -86.5 -217.9 18.9 -3.7 205.4 0.0 -0.7 108.7 212.0 77.4 77.4 280.6 -52.8 -52.8 45.5 45.5 -165.2 -165.2 103.3 -255.3 -13.4 20.4 -30.8 -49.8 -331.6 -17.8 -17.8 23.2 75.4 11.4 133.0 86.1 -452.0 40.2 105.0
Mvar -231.6 20.3 -51.1 -111.5 -97.5 -71.8 -3.0 115.9 40.5 -44.9 -6.6 16.5 36.9 -30.1 64.2 -19.6 32.5 -57.1 -46.2 -19.0 -16.3 -32.4 -2.2 28.0 28.0 151.6 -80.6 -80.6 -106.9 -106.9 5.8 5.8 3.0 67.3 -2.8 -4.2 -66.0 -103.8 30.0 -19.2 -19.2 -75.7 -103.7 -159.3 46.1 -180.5 4.3 5.4 42.5
% of thermal rating 33 14 19 11 9 19 18 13 37 18 4 18 35 18 35 58 14 8 30 5 5 16 15 8 8 45 7 7 9 9 14 14 10 21 5 6 5 8 25 8 8 7 11 14 11 16 35 14 38
4.54
Figure 4.8.4 shows histogram of 400 kV and 220 kV regional internal lines and 400/x kV and 220/x kV transformers loadings. 37% of observed branches are loaded below 25% of their thermal ratings, 36% are loaded between 25% and 50%, 19% are loaded between 50% and 75%, 7% of observed branches are loaded between 75% and 100% of their thermal ratings and 1% of them are overloaded (ten branches in total) if all branches are in operation for the analyzed scenario. Table 4.8.3 - Network elements loaded over 80% of thermal limits for 2015-base case-wet hydrology-2010 topology scenario (branches 400 kV and 220 kV) AREA ALB BUL
ROM
SRB
ALB
B&H
ROM
SRB
ELEMENT Lines OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV MI_2_220-ST ZAGORA OHL 220 kV MINTIA-SIBIU OHL 220 kV P.D.F.II-CETATE1 OHL 220 kV LOTRU-SIBIU ckt.1 OHL 220 kV LOTRU-SIBIU ckt.2 OHL 220 kV URECHESI-TG.JIU OHL 220 kV P.D.F.A-CETATE1 OHL 220 kV P.D.F.A-RESITA ckt.1 OHL 220 kV P.D.F.A-RESITA ckt.2 OHL 220 kV TG.JIU-PAROSEN OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV JBGD3 21-JOBREN2 Transformers TR 220/110 kV AFIERZ2-AFIERZ5 ckt.1 TR 220/110 kV AFIERZ2-AFIERZ5 ckt.2 TR 220/110 kV AELBS12-AELBS15 ckt.1 TR 220/110 kV AELBS12-AELBS15 ckt.2 TR 220/110 kV AELBS12-AELBS15 ckt.3 TR 220/110 kV AKASHA2-AKASH25 ckt.1 TR 220/110 kV ARRAZH2-ARRAZB5 ckt.1 TR 220/110 kV ARRAZH2-ARRAZB5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.3 TR 400/110 kV UGLJEVIK TR 400/220 kV URECHESI TR 400/220 kV BUC.S-BUC.S-B ckt.2 TR 400/220 kV BUC.S-BUC.S-B ckt.3 TR 220/110 kV FUNDENI TR 220/110 kV FUNDENI-FUNDE2B TR 400/220 kV JBGD8-JBGD8 22 TR 400/220 kV JTKOSB1-JTKOSB2 ckt.1 TR 400/220 kV JTKOSB1-JTKOSB2 ckt.2 TR 400/110 kV JJAGO41-JJAGO45 TR 220/110 kV JBGD3 21-JBGD 351 TR 220/110 kV JBGD3 22-JBGD 352 TR 220/110 kV JTKOSA2-JTKOSA5 ckt.2 TR 220/110 kV JTKOSA2-JTKOSA5 ckt.3 TR 220/110 kV JZREN22-JZREN25
LOADING MVA
RATING MVA
PERCENT
259.3 191.0 324.2 269.0 303.6 303.6 280.4 206.0 239.1 239.1 280.4 285.4 313.3
270.0 228.6 381.1 277.4 277.4 277.4 277.4 208.1 277.4 277.4 208.1 320.0 301.0
96.0 83.5 85.1 97.0 109.4 109.4 101.1 99.0 86.2 86.2 134.7 89.2 104.1
54.6 54.6 81.4 81.4 87.5 87.2 80.3 80.3 141.1 115.6 110.4 270.0 414.4 340.0 340.0 175.9 208.6 338.0 324.6 324.6 247.4 197.2 134.5 131.9 134.2 121.9
60.0 60.0 90.0 90.0 90.0 100.0 100.0 100.0 120.0 90.0 90.0 300.0 400.0 400.0 400.0 200.0 200.0 400.0 400.0 400.0 300.0 200.0 150.0 150.0 150.0 150.0
91.1 91.1 90.5 90.5 97.2 87.2 80.3 80.3 117.5 128.5 122.6 90.0 103.6 85.0 85.0 88.0 104.3 84.5 81.1 81.1 82.5 98.6 89.7 87.9 89.5 81.3
4.55
45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.8.3 - Histogram of interconnection lines loadings for 2015-base case-wet hydrology-2010 topology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
300
Frequency
250 200 150 100 50 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.8.4 - Histogram of 400 kV and 220 kV regional lines loadings for 2015-base case-wet hydrology-2010 topology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.8.2 Voltage Profile in the Region Voltage profile in the region within this scenario which is defined by given generation and demand pattern is seen as satisfactory despite several appearances of certain bus voltage deviations. The deviations are shown in Table 4.8.4, which includes only 400 kV and 220 kV network buses. Bus voltage magnitudes which are found below permitted limits (90% Vnominal in 220 kV network and 95% Vnominal in 400 kV network) are detected in Albania (three 400 kV and two 220 kV nodes) and Serbia (three 400 kV nodes). Bus voltage magnitudes that are found above permitted limits (110% Vnominal in 110 kV and 220 kV networks and 105% Vnominal in 400 kV network) are detected only in Bulgaria in one node. Figure 4.8.5 shows histogram of bus voltage magnitudes in monitored 400 kV and 220 kV substations.
4.56
Table 4.8.4 - Bus voltage deviations for 2015-base case-wet hydrology-2010 topology scenario, complete network Country
Voltages
Node
ALBANIA
BOSNIA AND HERZEGOVINA BULGARIA CROATIA MACEDONIA MONTENEGRO ROMANIA
400 kV AELBS21 400 kV AVDEJA1 400 kV AKASHA1 220 kV AFIER 2 220 kV ABABIC2 400 kV MARITSA EAST2 400 kV JBGD201 400 kV JPANC21 400 kV JLESK21
kV 366.7 379.3 366.9 188.3 191.0 420.3 378.9 377.5 375.6
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
90 80 70 60 50 40 30 20 10 0 x<0.9
Frequency
SERBIA AND UNMIK
pu 0.917 0.948 0.917 0.856 0.868 1.051 0.947 0.944 0.939
Bin Figure 4.8.5 - Histogram of voltages in monitored substations for 2015-base case-wet hydrology-2010 topology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
It should be emphasized that these results represent only a situation when additional devices (transformer automatic tap changers, switched shunts, etc.) are not used for voltage regulation. Impacts of such devices, which exist in many points of the SEE regional transmission network, need more comprehensive and thorough analysis.
4.8.3 Security (n-1) analysis Results of security (n-1) analysis for the 2015-base case-wet hydrology-2010 topology scenario are presented in Table 4.8.5 and Table 4.8.6. Critical contingencies which are included there are related only to the branches which are not overloaded in the base case when all branches are available. 4.57
Insecure states for given generation and demand pattern are detected in the power systems of Romania, Serbia, Albania, although there is one contingency in Bulgaria which leads to insecure state. The most often overloaded lines in the Romanian power system are 400 kV OHL Mintia-Sibiu, 220 kV OHL Bucuresti Sud-Fundeni and lines 220 kV connected to the Portile de Fier substation. These lines are overloaded in several contingency cases. Lines 220 kV Lotru-Sibiu, Urechesti-Targa Jiu, Paroseni-Targa Jiu and transformer in 400/220 kV substation Urechesti are already overloaded in the base case when all branches are available. Possible actions to reduce the loading of the critical branches look for a re-dispatching of the generators in Romania within this scenario, especially the HPP LOTRU CIUNGET (dispatched at 510 MW in the base case), HPP PORTILE 1 (921 MW), TPP ROVINARI (540 MW) and TPP PAROSENI. Line 400 kV Mintia-Sibiu has rating of 381 MVA on the model which seems as too low value, so contingencies in which this line is overloaded are not included in the contingency tables. It is overloaded if one among following lines goes out of operation: 400 kV Sibiu-Iernut (loading of Mitia-Sibiu line is 142.3 % Ithermal), 400 kV Iernut-Gadalin (107.7 % Ithermal), 400 kV RosioriGadalin (100.3 % Ithermal), 220 kV Urechesi-Tg.Jiu (117.7 % Ithermal), 220 kV Tg.Jiu-Parosen (117.6 % Ithermal) and 220 kV Baru M-Hajd Ot (100.0 % Ithermal). Line 220 kV Buc.S-B-Fundeni is the double circuit line but one circuit is permanently out of operation on the model which is the reason why this line is included in the contingency tables. Installed capacity in the substations 400/220 Bucuresti Sud, Brasov, Dirste, Sibiu and Brazi in Romania are too low to support this generation/demand scenario. Critical lines in the Serbian power system for this scenario are detected mostly in 220 kV network of the Beograd area. Installed transformer capacities are inadequate in the Kragujevac, Nis, Kosovo B and Pancevo substations. Single outages of 400/110 kV transformers in the stations Brasov and Dirste in Romania are also found critical, since the second transformer 400/110 kV in the Brasov substation is permanently out of operation in the model. The heaviest line overloading (197% Ithermal) in the analyzed scenario is related to 220 kV line in Serbia (Beograd 3-Obrenovac) when the line 400 kV Beograd 1-Obrenovac goes out of operation. The heaviest transformer overloading (168% Sn) is related to the transformer 400/110 kV in the Dirste substation (Romania) when the transformer 400/110 kV in the Brasov substation is outaged (the parallel one is permanently out of operation in the model). Figure 4.8.6 shows geographical positions of the critical elements in the analyzed scenario. A green color reveals 220 kV elements (line 220 kV or transformer 220/x kV), while a red one reveals 400 kV elements (line 400 kV or transformer 400/x kV). According to the obtained and presented results, it may be concluded that the network topology as predicted to exist in 2010 is not suitable for the analyzed generation pattern. Larger investments in the internal networks, especially in the power systems of Romania, Serbia and Albania, will be necessary in order to support such generation pattern.
4.58
Table 4.8.5 - Lines overloadings for 2015–base case-wet hydrology-2010 topology scenario, single outages
OHL 220 kV AFIERZ2-ABURRE2 TR 400/220 kV AELBS21-AELBS22
TR 400/220 kV URECHESI OHL 220 kV LOTRU-SIBIU ckts. 1 & 2 OHL 220 kV URECHESI-TG.JIU OHL 220 kV TG.JIU-PAROSEN OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV AKASHA2-ARRAZH2
Loadings MVA % 418.5 104.6 311.4 109.4 282.1 101.1 282.1 134.7 299.7 104.1 256.7 112.9 253.7 109.1
OHL 400 kV RP TREB-JPODG221
OHL 220 kV AKASHA2-ARRAZH2
242.9
105.4
OHL 220 kV G_ORIAH-MI_2_220 OHL 400 kV TANTAREN-BRADU OHL 400 kV DOMNESTI-BUC.S OHL 400 kV DOMNESTI-BRAZI OHL 220 kV P.D.F.A-CALAFAT OHL 220 kV P.D.F.A-RESITA ckt.1 OHL 220 kV RESITA-TIMIS ckt.1 OHL 220 kV FUNDENI- BUC.S-B TR 400/220 kV BRAZI OHL 400 kV JHDJE11-JTDRMN1 OHL 400 kV JTKOSB1-JPEC 1 OHL 220 kV JBGD172-JBGD8 22 ckt.1 TR 400/220 kV JBGD8
OHL 220 kV MI_2_220_ST.ZAGORA OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV P.D.F.A-CETATE1 OHL 220 kV P.D.F.A-RESITA ckt.2 OHL 220 kV RESITA-TIMIS ckt.2 OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV P.D.F.A-RESITA ckt.1&2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV JBGD172-JBGD8 22 ckt.2 OHL 220 kV JBGD3 22-JBGD8 22
255.4 329.5 321.8 355.5 259.9 338.8 342.8 368.3 369.7 266.6 243.2 475.9 364.7
105.1 108.3 102.7 114.6 128.7 129.6 128.2 118.1 122.0 102.0 107.0 140.2 108.4
Outage
Base case
Overloaded line(s)
Country
ROMANIA SERBIA ALBANIA B&H/MONT /ALB BULGARIA
ROMANIA
SER/ROM SER/ALB SERBIA
Table 4.8.6 - Transformers overloadings for 2015–base case-wet hydrology-2010 topology scenario, single outages
Outage
Overloaded branch(es)
TR 400/220 kV BUC.S-BUC.S-B ckt.1 400/110 kV BRASOV 400/110 kV DIRSTE TR 400/220 kV SIBIU ckt.1
TR 400/220 kV BUC.S-BUC.S-B ckt.2 TR 400/110 kV DIRSTE TR 400/110 kV BRASOV TR 400/220 kV SIBIU ckt.2 TR 400/220 kV BUC.S ckt.1 TR 400/220 kV BUC.S ckt.2 TR 400/110 kV JKRAG ckt.2 TR 400/110 kV NIS ckt.2 TR 400/220 kV JBGD8 1-JBGD8 22 TR 400/110 kV JPANC ckt.2 TR 400/110 kV JTKOSB ckt.2
TR 400/220 kV BRAZI TR 400/110 kV JKRAG ckt.1 TR 400/110 kV NIS ckt.1 OHL 220 kV JBGD3 22-JBGD8 22 TR 400/110 kV JPANC ckt.1 TR 400/110 kV JTKOSB ckt.1
Loadings MVA % 536.5 134.1 420.0 168.0 410.8 164.3 573.0 143.3 413.3 103.3 413.3 103.3 316.5 105.5 340.4 113.5 412.1 103.0 334.0 111.3 439.3 109.8
Country
ROMANIA
SERBIA
4.59
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.8.6 - Geographical positions of the critical elements for 2015-base case-wet hydrology-topology 2010 scenario
4.60
4.9 Scenario 2015 – wet hydrology – topology 2015 This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2015 wet hydrology and expected network topology for 2015.
4.9.1 Line loadings Area totals and power exchanges for the 2015-base case-wet hydrology-topology 2015 scenario are shown in Figure 4.9.1 and Table 4.9.1. Power flows along regional interconnection lines and system balances are shown in Figure 4.9.2. Power flows along interconnection lines are also given in Table 4.9.2, while Figure 4.9.3 shows histogram of tie lines loadings. SVK 3
45
3
4 50
UKR
1
AUT
79
HUN 74
43 9
84
SLO
8 25
ITA
CRO
ROM
246
12
7
6 42 327
SRB
289
BIH
72
6 33
275
MNT 292
79 1
33 1
BUL 1
ALB
9 23
355
MKD
202
9 14
TUR 1
98
GRE 2 50
Figure 4.9.1 - Area exchanges in analyzed electric power systems for 2015-base case-wet hydrology-2015 topology scenario Table 4.9.1 - Area totals in analyzed electric power systems for 2015-base case-wet hydrology-topology 2015 scenario Country Albania Bulgaria Bosnia and Herzegovina Croatia Macedonia Romania Serbia and UNMIK Montenegro TOTAL - SE EUROPE
Generation (MW) 1111.0 7553.3 2155.1 2800.9 870.8 7950.3 8398.5 774.1 31613.9
Load (MW) 1528.9 6446.1 2278.6 3660.4 1407.6 7704.0 7209.2 669.8 30904.6
Bus Shunt (Mvar) 0 0 0 0 0 0 0 0.5 0.5
Line Shunt (Mvar) 0 14.7 0 0 0 74.5 13.2 1.8 104.2
Losses (MW) 72.1 137.5 75.6 61.6 20.2 294.8 263.2 16.9 941.8
Net Interchange (MW) -490.0 955.0 -199.0 -921.1 -557.0 -123.0 913.0 85.0 -337.2
4.61
New elements that are expected to be built till 2015 cause significantly different distribution of power flows in the southern part of the region (Albania, FYR of Macedonia, Serbia, Montenegro). Compared to the expected topology 2010, analyzed in the previous chapter, it can be seen that the network losses are smaller as a consequence of building the new elements in the 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of losses is about 35 MW. Figure 4.9.3 shows that the tie lines in the region are mostly loaded less than 25% of their thermal limits for the analyzed hydrological base case scenario in year 2015, examined on the planned network topology for that year. Among total number of fifty two 400 kV and 220 kV interconnection lines in the region only eight are loaded between 25% and 50% of their thermal ratings. Only one line (OHL 400 kV Sarajevo 20 – Piva between Bosnia and Herzegovina and Montenegro) is loaded more than 50% of its thermal rating. Table 4.9.4 lists all network elements, observing only lines 400 kV and 220 kV and transformers 400/x kV and 220/x kV, that are loaded over 80% of their thermal limits. Most of the elements loaded over 80% are transformers in some substations and internal 110 kV and 220 kV lines. Thus, certain internal network reinforcements are necessary to sustain given load-demand level and generation pattern. Being compared to the same generation pattern, but with the 2010 network topology, the loading relief of some branches and transformers in the southern Serbia and Albania may be noticed. Figure 4.9.4 shows histogram of 400 kV and 220 kV regional internal lines and 400/x kV and 220/x kV transformers loadings. 38% of observed branches are loaded below 25% of their thermal ratings, 36% are loaded between 25% and 50%, 20% are loaded between 50% and 75%, 5% of observed branches are loaded between 75% and 100% of their thermal ratings and 1% of them are overloaded (nine branches in total) if all branches are in operation for the analyzed scenario. Being compared to the same generation pattern on the 2010 network topology, it is noticed that there are no significant changes in the total number of branches and the ranges of internal lines loading. Only one internal branch is loaded below permitted limit in the case of building new interconnection lines as predicted to exist in 2015.
4.62
LEVIC 1400.0
CENTREL
200 136
251 113
GABICK1400.0
450.0 MW
105 23.7
405.4 OKAINA1 401.7
234.2
224.4 UMUKACH 412.0
JSOMB31 389.3
11.8 ARAD 72.8 395.0
ROM
203 128
ISACCEA 403.2
-123.1 MW
JSUBO31 392.0
397.0 JHDJE11
127 24.2
127 23.2
P.D.FIE TANTAREN
398.5
208 4.4
409.7
SCG
JHPIVA21 219 235.1 40.1
5.4 18.5
JHPERU21 5.4 228.7 26.9
CRG 85.0 MW
SK 1 219.6
SK 4 400.1
-557.0 MW 91.5 108
388.8
JVRAN31 397.4
411.3
C_MOGILA
9 14 3 . 26
401.3
407.6 DUBROVO
AZEMLA1
98.1 128
KARDIA K 98.8 416.9 60.5
QES/H
95.5 12.8
23 84 9 .4
AHS_FLWR415.6
K
412.2
KV: 110 , 220 , 400
415.4
7 20 2.7 7
1.0 23.5 K-KEXRU 417.8
4HAMITAX 0.7 0.7 415.3 73.4 1.0 62.1 4BABAESK 72.5 415.5
0.0 MW
-0.1 MW KARACQOU 250 419.1 50.0
FILIPPOI
0 15 .2 .6
2 0. .4 87
260 114
2 5. .0 38 LAGAD K 413.2
405.5
MI_3_4_1 419.2
BLAGOEV412.1 407.4
ALB
-490.0 MW
411.3
9 14 .9 60
STIP 1
259 131
AKASHA1
240 4 45.
955.0 MW
8 5 0. 8. 1
91.5 108
MKD
BITOLA 2
BUL
JLESK21 393.6
113 64.6
3 43 1.1 .9
AVDEJA2 225.8AFIERZ2227.9 394.9
26.7 23.2
28.8 24.9
151 39.6
362 8 11.
91.7 67.4
91.7 67.5
354 44.5
8 26. 2 13.
AVDEJA1
361 26.5
8 26. 2 13.
3 51 0. .5 7
395.3
JPRIZ22 220.6 JTKOSA2 223.4JTKOSB1400.0
DOBRUD4 416.0
413.0
276 SOFIA_W4 111 409.5
21.8 21.7 43.6 79.9
133 JPODG211 111 JPODG121227.6
274 156
1 21 14 .5
133 70.9
AEC_400 JNIS2 1 393.0
0.7 62.1
216 26.6
998.0 MW SRB 913.0 MW
95.3 71.9
RP TREB 231.5
JVARDI22 80.3 226.9 60.3
352 20.1
SA 20 227.8
80.0 59.3
26.7 23.2
VISEGRA 228.6
204 2.9
UGLJEVIK 396.6 226.9
28.6 16.2
221.4 TE TUZL
398.8 11.7 14.8
247 JSMIT21 102
150 14.8
403.9 58.9 MO-4 27.2 232.5
BIH
-199.0 MW
ROSIORI 400.3
.9 61 .0 29 .9 61 .0 29
MO-4
62.7 NADAB 100 397.1
61.8 78.0
246 62.2 401.9
5 73. 0 94.
58.4 16.0
253 59.1
.1 98 .1 37
252 9.9
GRADACAC
219.8
62.6 82.0
61.8 78.0
218.9
RP TREB 401.0
GIS REGIONAL MODEL - WET HYDRO 2015 TOPOLOGY 2015
2.7 94. 4
20 46. 8 3
12.9 1.4
38.3 37.2
219.8
0 50. 5 16.
.7 38 .5 44
PRIJED2
SHAW POWER TECHNOLOGIES INC. R
UKR
450.0 MW
5.1 56.8
DAKOVO
223.0MEDURIC
12.9 6.5
CRO
-921.1 MW
405.0
79.0 49.4
MSAFA 4
398.4
HE ZAKUC 234.4
78.8 67.8
132 132 20.0 39.2
401.5
MRACLIN
KONJSKO
10.7 29.1
.1 84 54 1
28 209 .3
TUMBRI
406.9
51. 2 1 51 03 10 .2 3
ERNESTIN
73.3 39.5
5 16 8 6. 5 16 8 6.
22.4 4.0
227.4
.3 .3 46 .8 46 .8 80 80 ZERJAVIN 404.0 ZERJAVIN 227.4
403.1
PEHLIN 230.0
10.8 7.5
84.4 177
LCIRKO2
51 55 .0 .6 51 55 .0 .6
401.3
.9 12 2.6
MELINA
35.7 UMUKACH2 27.5
46.5 26.3
MPECS 4
LKRSKO1
22 6. .4 0
35.5 20.7
MBEKO 4 400.9
408.5
96.8 39.5
229.6
46.5 26.3
SLO
49.8 21.1
16.0 72.9
MHEVI 4
215.0 MW
11 401.4 41 1 .7 LDIVAC2
MSAJO 4 410.0
LMARIB1 402.7
111 18.4
230.5
15.9 69.4
181 11.5
22.3 228.9 26.8
12.9 7.3
IPDRV121
181 9.3
22.4 12.9
MTLOK 2 230.5
HUN
165 31.5
401.0
51.5 21.0
MKISV 2 226.3
350 UZUKRA01 293 772.5
-1249.9 MW
165 31.5
IRDPV111
407.3
346 807
3.1 154
LPODLO2229.1
MSAJI 408.1
4
MGYOR 2
52.0 6.1
41. 12. 8 5
155 44. 1
41. 12. 8 5
ONEUSI2 233.5
LDIVAC1
MGOD
OWIEN 2
41.9 43.7
41.9 43.7
157 47.7
OOBERS2238.7
199 90.4
UCTE
222.3 MW
MAISA 7 714.0
MGYOR 4 0 25 .3 105 90 101 403.3
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 4.9.2 - Power flows along interconnection lines in the region for 2015 - base case - wet hydrology scenario – topology 2015
4.63
Table 4.9.2 - Power flows along regional interconnection lines for 2015 - base case-wet hydrology scenario-topology 2015 Power Flow
Interconnection line OHL 400 kV Zemlak (ALB) OHL 220 kV Fierze (ALB) OHL 220 kV V.Dejes (ALB) OHL 400 kV V.Dejes (ALB) OHL 400 kV Ugljevik (B&H) OHL 400 kV Mostar (B&H) OHL 400 kV Ugljevik (B&H) OHL 400 kV Trebinje (B&H) OHL 220 kV Trebinje (B&H) OHL 220 kV Prijedor (B&H) OHL 220 kV Prijedor (B&H) OHL 220 kV Gradacac (B&H) OHL 220 kV Tuzla (B&H) OHL 220 kV Mostar (B&H) OHL 220 kV Visegrad (B&H) OHL 220 kV Sarajevo 20 (B&H) OHL 220 kV Trebinje (B&H) OHL 400 kV Blagoevgrad (BUL) OHL 400 kV M.East 3 (BUL) OHL 400 kV M.East 3 (BUL) OHL 400 kV M.East 3 (BUL) OHL 400 kV C.Mogila (BUL) OHL 400 kV Dobrudja (BUL) OHL 2x400 kV ckt.1 Kozloduy (BUL) OHL 2x400 kV ckt.2 Kozloduy (BUL) OHL 400 kV Sofia West (BUL) OHL 2x400 kV ckt.1 Zerjavinec (CRO) OHL 2x400 kV ckt.2 Zerjavinec (CRO) OHL 2x400 kV ckt.1 Ernestinovo (CRO) OHL 2x400 kV ckt.2 Ernestinovo (CRO) OHL 2x400 kV ckt.1 Tumbri (CRO) OHL 2x400 kV ckt.2 Tumbri (CRO) OHL 400 kV Melina (CRO) OHL 400 kV Ernestinovo (CRO) OHL 220 kV Zerjavinec (CRO) OHL 220 kV Pehlin (CRO) OHL 400 kV Dubrovo (MCD) OHL 400 kV Bitola (MCD) OHL 400 kV Skopje (MCD) OHL 2x220 kV ckt.1 Skopje (MCD) OHL 2x220 kV ckt.2 Skopje (MCD) OHL 400 kV Arad (ROM) OHL 400 kV Nadab (ROM) OHL 400 kV Rosiori (ROM) OHL 400 kV Portile De Fier (ROM) OHL 400 kV Subotica (SER) OHL 400 kV Ribarevine (MON) OHL 220 kV Pljevlja (MON) OHL 220 kV Pljevlja (MON) OHL 400 kV* Skopje 4 (MCD) OHL 400 kV* Zemlak (ALB) OHL 400 kV* V.Dejes (ALB) * new lines planned till 2015
Kardia (GRE) Prizren (SER) Podgorica (MON) Podgorica (MON) Ernestinovo (CRO) Konjsko (CRO) S. Mitrovica (SER) Podgorica (MON) Plat (CRO) Mraclin (CRO) Medjuric (CRO) Djakovo (CRO) Djakovo (CRO) Zakucac (CRO) Vardiste (SER) Piva (MON) Perucica (MON) Thessaloniki (GRE) Filippi (GRE) Babaeski (TUR) Hamitabat (TUR) Stip (MCD) Isaccea (ROM) Tantarena (ROM) Tantarena (ROM) Nis (SER) Heviz (HUN) Heviz (HUN) Pecs (HUN) Pecs (HUN) Krsko (SLO) Krsko (SLO) Divaca (SLO) S.Mitrovica (SER) Cirkovce (SLO) Divaca (SLO) Thessaloniki (GRE) Florina (GRE) Kosovo B (UNMIK) Kosovo A (UNMIK) Kosovo A (UNMIK) Sandorfalva (HUN) Bekescaba (HUN) Mukacevo (UKR) Djerdap (SER) Sandorfalva (HUN) Kosovo B (UNMIK) Bajina Basta (SER) Pozega (SER) Vranje (SER) Bitola (MCD) Kosovo B (UNMIK)
MW -98.1 31.1 28.8 150.5 73.5 253.5 -208.1 -133.1 -104.8 38.7 12.9 50.0 98.1 58.9 -80.0 -215.8 5.4 -5.1 208.0 1.0 0.0 149.4 204.0 61.9 61.9 276.1 -46.3 -46.3 51.2 51.2 -165.2 -165.2 111.0 -245.7 -12.9 22.4 -95.3 -259.0 -351.8 -26.7 -26.7 11.8 62.7 3.1 126.8 84.4 -281.4 49.2 113.7 113.6 239.8 -360.9
Mvar -128.3 43.9 -24.9 -39.6 -94.0 -59.1 -4.4 70.9 40.2 -44.5 -6.5 16.5 37.1 -27.2 59.3 -26.6 18.5 -56.8 -46.3 -18.5 -15.6 -26.3 -2.9 29.0 29.0 111.2 -80.8 -80.8 -103.2 -103.2 6.8 6.8 4.3 62.2 -2.6 -4.0 -71.9 -130.7 20.1 -23.2 -23.2 -72.8 -100.0 -154.0 23.2 -176.8 26.7 11.1 45.4 21.5 45.4 -26.5
% of thermal rating 12 20 13 12 9 19 16 13 36 19 5 18 35 19 32 57 9 8 30 5 5 21 15 7 7 42 7 7 9 9 14 14 10 20 4 7 8 24 27 11 11 6 10 13 10 16 22 17 38 10 19 27
4.64
Table 4.9.3 - Network elements loaded over 80% of thermal limits for 2015-base case-wet hydrology-2015 topology scenario (branches 400 kV and 220 kV) AREA ALB BUL
ROM
SRB
ALB
B&H
ROM
SRB
ELEMENT
LOADING MVA
RATING MVA
PERCENT
237.0 190.4 313.4 268.4 303.4 303.4 275.4 205.6 235.6 235.6 275.4 284.6 312.6
270.0 228.6 381.1 277.4 277.4 277.4 277.4 208.1 277.4 277.4 208.1 320.0 301.0
87.8 83.3 82.2 96.8 109.4 109.4 99.3 98.8 84.9 84.9 132.3 88.9 103.8
50.2 50.2 74.8 74.8 80.4 82.3 82.3 134.5 110.3 105.2 267.6 410.3 339.3 339.3 175.7 208.3 334.9 196.6 134.4 121.5
60.0 60.0 90.0 90.0 90.0 100.0 100.0 120.0 90.0 90.0 300.0 400.0 400.0 400.0 200.0 200.0 400.0 200.0 150.0 150.0
83.7 83.7 83.2 83.2 89.3 82.3 82.3 112.1 122.5 116.9 89.2 102.6 84.8 84.8 87.8 104.1 83.7 98.3 89.6 81.0
Lines OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV MI_2_220-ST ZAGORA OHL 220 kV MINTIA-SIBIU OHL 220 kV P.D.F.II-CETATE1 OHL 220 kV LOTRU-SIBIU ckt.1 OHL 220 kV LOTRU-SIBIU ckt.2 OHL 220 kV URECHESI-TG.JIU OHL 220 kV P.D.F.A-CETATE1 OHL 220 kV P.D.F.A-RESITA ckt.1 OHL 220 kV P.D.F.A-RESITA ckt.2 OHL 220 kV TG.JIU-PAROSEN OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV JBGD3 21-JOBREN2 Transformers TR 220/110 kV AFIERZ2-AFIERZ5 ckt.1 TR 220/110 kV AFIERZ2-AFIERZ5 ckt.2 TR 220/110 kV AELBS12-AELBS15 ckt.1 TR 220/110 kV AELBS12-AELBS15 ckt.2 TR 220/110 kV AELBS12-AELBS15 ckt.3 TR 220/110 kV AKASHA2-AKASH25 ckt.1 TR 220/110 kV AKASHA2-AKASH25 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.3 TR 400/110 kV UGLJEVIK TR 400/220 kV URECHESI TR 400/220 kV BUC.S-BUC.S-B ckt.1 TR 400/220 kV BUC.S-BUC.S-B ckt.2 TR 220/110 kV FUNDENI TR 220/110 kV FUNDENI-FUNDE2B TR 400/220 kV JBGD8-JBGD8 22 TR 220/110 kV JBGD3 21-JBGD 351 TR 220/110 kV JBGD3 22-JBGD 352 TR 220/110 kV JZREN22-JZREN25
Frequency
50 45 40 35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.9.3 - Histogram of interconnection lines loadings for 2015-base case-wet hydrology-2015 topology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.65
300
Frequency
250 200 150 100 50 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 4.9.4 - Histogram of 400 kV and 220 kV regional lines loadings for 2015-base case-wet hydrology-2015 topology scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
4.9.2 Voltage Profile in the Region Voltage profile in the region within this scenario which is defined by given generation and demand pattern is seen as satisfactory despite several appearances of certain bus voltage deviations. The deviations are shown in Figure 4.9.5, which includes only 400 kV and 220 kV network buses. Table 4.9.4 - Bus voltage deviations for 2015-base case-wet hydrology-2015 topology scenario, complete network Country
Node
ALBANIA BOSNIA AND HERZEGOVINA BULGARIA CROATIA MACEDONIA MONTENEGRO ROMANIA SERBIA AND UNMIK
400 kV MARITSA EAST2 400 kV JPANC21
Voltages pu 1.051 0.947
kV 420.4 378.8
Bus voltage magnitudes which are found below permitted limits (90% Vnominal in 220 kV network and 95% Vnominal in 400 kV network) are detected only in Serbia (one 400 kV node). Bus voltage magnitudes that are found above permitted limits (110% Vnominal in 110 kV and 220 kV networks and 105% Vnominal in 400 kV network) are detected only in Bulgaria in one node. Figure 4.3.11 shows a histogram of voltages in monitored 400 kV and 220 kV substations. Being compared to the same generation pattern on the 2010 network topology, it is noticed that there are significant voltage profile improvements, especially in the power systems of Albania and Serbia.
4.66
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
Frequency
90 80 70 60 50 40 30 20 10 0
Bin Figure 4.9.5 - Histogram of voltages in monitored substations for 2015-base case-wet hydrology-2015 topology scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
4.9.3 Security (n-1) analysis Results of security (n-1) analysis for the 2015-base case-wet hydrology-2015 topology scenario are presented in Table 4.9.5 and Table 4.9.6. Critical contingencies which are included there are related only to the branches which are not overloaded in the base case when all branches are available. Insecure states for given generation and demand pattern are detected in the power systems of Romania, Serbia, Albania, although there is one contingency in Bulgaria and Bosnia and Herzegovina each which leads to insecure state. Being compared to the same generation and demand scenario on the 2010 network topology, it is concluded that there are several new contingency cases in the power system of Albania and one new contingency case in the power systems of Romania and Bosnia and Herzegovina (marked with red color in Table 4.9.5 and Table 4.9.6). At the same time, several contingency cases do not appear any more (marked in blue color in Table 4.9.5 and Table 4.9.6). These contingency cases are related to the power systems of Albania, Serbia and Romania, although it is noticed that the influence of the new investments is less significant in the power system of Romania than it is in Albania and southern Serbia. There are no contingency cases in the 2015 network topology which are related to the interconnection lines. The same conclusion is valid for the 2010 network topology and analyzed generation/demand scenario. Figure 4.9.6 shows geographical positions of the critical elements in the analyzed scenario. A green color reveals 220 kV elements (line 220 kV or transformer 220/x kV), while a red one reveals 400 kV elements (line 400 kV or transformer 400/x kV). According to the obtained and presented results, it may be concluded that the network topology as predicted to exist in 2015 is not suitable for the analyzed generation pattern. Larger investments in the internal networks, especially in power systems of Romania, Serbia and Albania, are necessary shall such generation pattern be supported. 4.67
Table 4.9.5 - Lines overloadings for 2015–base case-wet hydrology-2015 topology scenario, single outages Outage
Overloaded line(s)
OHL 400 kV AELBS21-AZEMLA1 OHL 220 kV AELBS12-AFIER 2 TR 400/110 kV AZEMLA1-AZEMLK5 OHL 220 kV AFIERZ2-ABURRE2 TR 400/220 kV AELBS21-AELBS22
TR 400/220 kV URECHESI OHL 220 kV LOTRU-SIBIU ckt. 1 & 2 OHL 220 kV URECHESI-TG.JIU OHL 220 kV TG.JIU-PAROSEN OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV AKASHA2-ARRAZH2
OHL 400 kV RP TREB-JPODG221
OHL 220 kV AKASHA2-ARRAZH2
OHL 220 kV G_ORIAH-MI_2_220 OHL 400 kV TANTAREN-BRADU OHL 400 kV DOMNESTI-BUC.S OHL 400 kV DOMNESTI-BRAZI OHL 220 kV P.D.F.A-CALAFAT OHL 220 kV P.D.F.A-RESITA ckt.1 OHL 220 kV RESITA-TIMIS ckt.1 OHL 220 kV FUNDENI- BUC.S-B TR 400/220 kV BRAZI OHL 400 kV JHDJE11-JTDRMN1 OHL 400 kV JTKOSB1-JPEC 1 OHL 220 kV JBGD172-JBGD8 22 ckt.1 TR 400/220 kV JBGD8
OHL 220 kV MI_2_220_ST.ZAGORA OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV P.D.F.A-CETATE1 OHL 220 kV P.D.F.A-RESITA ckt.2 OHL 220 kV RESITA-TIMIS ckt.2 OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV P.D.F.A-RESITA ckt.1&2 OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV JBGD172-JBGD8 22 ckt.2 OHL 220 kV JBGD3 22-JBGD8 22
Base case
Loadings MVA % 414.9 103.7 311.3 109.4 277.5 299.9 242.5 359.7 254.1
254.6 328.6 321.0 354.5 259.6 335.1 338.3 367.8 369.5
132.3 103.8 100.5 143.7 102.6
104.7 107.7 102.3 114.1 128.2 127.6 126.1 117.8 121.8
Country
ROMANIA SERBIA
ALBANIA
B&H/MONT /ALB BULGARIA
ROMANIA
SER/ROM SER/ALB
475.6 366.1
139.6 108.4
SERBIA
Table 4.9.6 - Transformers overloadings for 2015–base case-wet hydrology-2015 topology scenario, single outages Outage
Overloaded branch(es)
OHL 400 kV BLUKA 6-TS TUZL OHL 220 kV BUC.S-B-FUNDENI TR 400/220 kV BUC.S-BUC.S-B ckt.1 TR 400/110 kV BRASOV TR 400/110 kV DIRSTE TR 400/220 kV SIBIU ckt.1
TR 400/110 kV UGLJEVIK TR 400/220 kV BRAZI TR 400/220 kV BUC.S-BUC.S-B ckt.2 TR 400/110 kV DIRSTE TR 400/110 kV BRASOV TR 400/220 kV SIBIU ckt.2 TR 400/220 kV BUC.S ckt.1 TR 400/220 kV BUC.S ckt.2 TR 400/110 kV JKRAG ckt.2 TR 400/110 kV NIS ckt.2 TR 400/220 kV JBGD8 1-JBGD8 22 TR 400/110 kV JPANC ckt.2 TR 400/110 kV JTKOSB ckt.2
TR 400/220 kV BRAZI TR 400/110 kV JKRAG ckt.1 TR 400/110 kV NIS ckt.1 OHL 220 kV JBGD3 22-JBGD8 22 TR 400/110 kV JPANC ckt.1 TR 400/110 kV JTKOSB ckt.1
Loadings MVA % 311.0 103.7 414.2 103.6 535.9 134.0 419.2 167.7 410.2 164.1 571.7 142.9 413.1 103.3 413.1 103.3 314.4 104.8 411.2 332.5
102.8 110.8
Country B&H
ROMANIA
SERBIA
4.68
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 4.9.6 - Geographical positions of the critical elements for 2015-base case-wet hydrology-topology 2015 scenario
4.9.4 Summary of Impacts - 2015 topology versus 2010 topology Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that the network losses are smaller as a consequence of building the new elements for 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of losses is around 35 MW. Comparing to the same generation pattern on the 2010 network topology, it is noticed that there are no significant changes in the total number of branches and the ranges of internal lines loading. Being compared to the same generation pattern on the 2010 network topology, it is noticed that there are significant voltage profile improvements, especially in the power systems of Albania and Serbia. Being compared to the same generation and demand scenario on the 2010 network topology, it is concluded that there are several new contingency cases in the power system of Albania and one new contingency case in the power systems of Romania and Bosnia and Herzegovina. At the same time, several contingency cases do not appear any more. These contingency cases are related to the power systems of Albania, Serbia and Romania, although it is noticed that the influence of the new investments is less significant in the power system of Romania than it is in Albania and southern Serbia. Planned new investments in 2015 make overall network performance better, especially in the region where new planed investments are to be realized (Albania, southern Serbia and Montenegro), but do 4.69
not solve all contingences which are happening for analyzed generation and demand scenario. Further internal network reinforcements, especially in the power systems of Romania, Albania and Serbia, will be necessary in order to allow such generation dispatch with significant level of network operation security.
4.70
5 LOAD FLOW AND SENSITIVITY CASES
CONTINGENCY
ANALYSIS
–
5.1
Introduction In this chapter load-flow and security (n-1) analysis for sensitivity cases defined in Chapter 2 is described. The analyzed network models are: Special conditions Import/Export
Year
Topology
2010
2010 2010 2015 2010 2010 2015
2015 2010
High load
2015
The load-flow analysis includes line loading and voltage profile analysis, analysis of losses and also analysis of power flows through interconnection lines. The system reliability and adequacy is checked using “n-1” contingency criterion. List of contingencies includes: • all interconnection lines; • all 400 and 220 kV lines in analyzed region, except lines which outage cause “island” operation (in case of parallel and double circuit lines, outage of one line is considered); • all transformers 400/x kV in analyzed region (in case of parallel transformers, outage of one transformer is considered). Current thermal limits are used as rated limits of lines and transformers, as described in Chapter 2. Voltage limits are defined in Chapter 2, also. Every branch with current above its thermal limit is treated as overloaded. States with overloaded branches and/or voltages below or above defined voltage limits are treated as "insecure".
5.1 Scenario 2010 – average hydrology – import/export - 2010 topology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2010 – sensitivity case – average hydrology – import 1500 MW. Concerning the import/export case, the simulated regime means the following: ▪ ▪ ▪ ▪
Import 750 MW from UCTE Import 500 MW from Turkey Export 500 MW to Greece Import 750 MW from Ukraine
5.1.1 Line loadings Area totals and power exchanges for the 2010-sensitivity case-average hydrology-import 1500 MW scenario are shown in Figure 5.1.1 and Table 5.1.1. Power flows along regional interconnection lines and system balances are shown in Figure 5.1.2. Power flows along interconnection lines are also given in Table 5.1.2, while Figure 5.1.3 shows histogram of tie lines loadings. 5.2
SVK 74
4 54
4
AUT
6
4 50
UKR
13
HUN 16
1
9 55 35 6
164
SLO
4 77
ITA
CRO
ROM
140
16
0
4 21
29
SRB
135
BIH
37
1 30
4 08
MNT
70 2
67
91 1
36
BUL
0
TUR
77
ALB
381
3 22
MKD
230
5 28
GRE 2 50
Figure 5.1.1 - Area exchanges in analyzed electric power systems for 2010-sensitivity case-average hydrology-import 1500 MW scenario
Table 5.1.1 - Area totals in analyzed electric power systems for 2010-sensitivity case-average hydrology-import 1500 MW scenario Country Albania
Generation (MW) 898.2
Load (MW) 1288.5
Bus Shunt (Mvar) 0
Line Shunt (Mvar) 0
Losses (MW) 49.7
Net Interchange (MW) -440.0
Bulgaria
6827.0
5967.5
0
14.2
131.2
714.0
Bosnia and Herzegovina
2398.3
1965.0
0
0
54.3
379.0
Croatia
1705.2
3143.3
0
0
44.9
-1483.0
Macedonia
965.5
1178.3
0
0
20.1
-233.0
Romania
6877.4
6733.1
0
80.0
169.1
-104.8
Serbia and UNMIK
6591.7
6901.7
0
13.4
198.6
-521.9
Montenegro
542.1
670.2
0.5
1.5
16.9
-147.0
26805.4
27847.6
0.5
109.1
684.8
-1836.7
TOTAL - SE EUROPE
By comparing the average hydrology situation in 2010 and balanced SE Europe power system to the average hydrology situation and 1500 MW of power import, significant increase of power flows is noticed along Slovenian-Croatian, Ukrainian-Romanian and Bosnian-Montenegrin interfaces. However, interconnection lines are not jeopardised since they are loaded far below their thermal ratings. Power flows through Bosnian-Croatian, Serbian-Bosnian, Serbian-Croatian, SerbianMontenegrin and Grecian-Albanian interfaces are decreased at the same time. 5.3
Power losses, compared to the situation of balanced SE Europe power system, are increased in the power systems of Bulgaria (7.9 %) and Montenegro (9 %). In other power systems these losses are decreased, with the most significant drop in Romania (-16 %) and Serbia and UNMIK (-10.1 %). Regional power losses are decreased (-7.1 %) when the situation includes additional power import. Figure 5.1.3 shows that the tie lines in the region are mostly loaded less than 25% of their thermal limits for the analyzed import/export scenario in year 2010. Among total number of forty nine 400 kV and 220 kV interconnection lines in the region only seven are loaded between 25% and 50% of their thermal ratings. Only one line (OHL 400 kV Sofia – Nis between Bulgaria and Serbia) is loaded more than 50% of its thermal rating, which is set at lower value (692.8 MVA) on the Bulgarian side compared to the line rating on the Serbian side (1330.2 MVA). Table 5.1.3 lists all network elements loaded over 80% of their thermal limits. As it can be seen from this output list, most of the elements loaded over 80% are transformers in some substations and internal 110 kV and 220 kV lines. Thus, certain internal network reinforcements are necessary to sustain given load-demand level and generation pattern including import of 1500 MW from analyzed directions. Figure 5.1.4 shows histogram of 400 kV and 220 kV regional internal lines and 400/x kV and 220/x kV transformers loadings. Some 46% of observed branches are loaded below 25% of their thermal ratings, 36% are loaded between 25% and 50%, 16% are loaded between 50% and 75% and only 1% of observed branches are loaded between 75% and 100% of their thermal ratings. Two branches (transformers 220/110 kV Fierze in Albania, 102% - 106% Sn) are overloaded when all branches are in operation for the analyzed scenario. By comparing the average hydrology situation in 2010 and balanced SE Europe power system to the average hydrology situation and 1500 MW of power import it is noticed that power system of Bosnia and Herzegovina is slightly relieved, while some highly loaded branches appear in the power system of Bulgaria. Distribution of internal branches loading stays almost the same.
5.4
LEVIC 1400.0
CENTREL
200 148
251 113
GABICK1400.0
450.0 MW
UCTE
288 38.6
405.0 OKAINA1 402.6
233.5
224.4 UMUKACH 412.0
457 39. 8
MSAFA 4
226.3
JSOMB31 398.4
139 38.6 409.0
73.1 ARAD 26.9 407.0
ROM
-104.9 MW
JSUBO31 400.6
404.9 JHDJE11
159 54.1
160 53.1
P.D.FIE TANTAREN
407.7
121 17.9
JHPIVA21 73.9 235.2 6.1
104 13.4
JHPERU21 103 228.3 16.4
CRG -147.0 MW
405 149
3 45 6.1 .9
46.0 1.3
131 108
SK 1 219.1
BITOLA 2
C_MOGILA
SK 4 401.3
414.1
409.6
AZEMLA1
284 148
KARDIA K 287 414.7 102
QES/H
66.4 18.5
AHS_FLWR415.8
K
FILIPPOI
411.0
KV: 110 , 220 , 400
230 54.4 K-KEXRU 417.2
4HAMITAX 120 120 414.2 90.9 231 80.3 4BABAESK 96.8 414.4
500.0 MW -500.1 MW
KARACQOU 250 416.3 50.0
414.6
2 31 1.3 6
1 9. 49 3
0 15 06 1
1 10. 2 43.
.5 67 .8 44 LAGAD K 412.1
397.4
MI_3_4_1 419.2
BLAGOEV412.9 409.4
0 12 .2 4
1 10. 6 65.
ALB
-440.0 MW
412.4
2 22 .3 42
STIP 1
DUBROVO 384.3
4 22 2 . 38
403.3
66.3 42.2
145 27.5
51.1 90.5
7.6 2 10.
7.6 2 10.
393.2 AVDEJA2 226.4AFIERZ2226.7
MKD
130 145
714.0 MW
JVRAN31 0.000
-233.0 MW
AKASHA1
BUL
JLESK21 382.6
JPRIZ22 219.0 JTKOSA2 221.4JTKOSB1395.7 3 53 5. .1 7
394.7
DOBRUD4 420.7
415.6
410 SOFIA_W4 128 410.7
217 JPODG211 113 JPODG121227.1
51.2 43.6
218 78.7
AEC_400 JNIS2 1 392.5
120 80.3
73.6 17.7
-668.9 MW SRB -521.9 MW
7.6 20.7
RP TREB 232.3
JVARDI22 14.1 230.9 61.3
7.6 20.7
SA 20 232.7
14.0 59.1
46.2 7.0
VISEGRA 233.0
199 45.6
SCG
233.9
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2010 SENSITIVITY CASE - IMPORT 1500 MW
416.2
UGLJEVIK 406.6
RP TREB 402.9
SHAW POWER TECHNOLOGIES INC. R
ISACCEA 414.5
140 JSMIT21 89.2
145 2.6
409.6 61.2 MO-4 14.0 235.1
BIH
379.0 MW
406.1 73.0 33.3
3 11 .8 23 3 11 8 . 23
MO-4
228.8 TE TUZL
3 40. 6 60.
60.7 2.5
81.4 50.3
226.5
ROSIORI 410.4
197 93.9
ERNESTIN
5 10 8 . 35
81.3 14.2
9 58. 9 17.
.2 14 .2 17
PRIJED2
GRADACAC
87.5 NADAB 39.4 407.8
114 25.5
40.3 8.7
14.1 8.2
227.0
87.4 20.0
114 25.5
DAKOVO
227.4MEDURIC
40.5 16.3
CRO
-1483.0 MW
410.6
374 50.7
4 16 5 10
407.5
HE ZAKUC 234.6
370 22.4
31 40. 5 0
404.4
MRACLIN
KONJSKO
10.9 29.3
67.7 48.6
TUMBRI
410.3
57 121 .1
1 27 5 . 42 1 27 5 . 42
10.5 26.3
407.5
PEHLIN 233.9
11.1 7.7
UKR
1200.0 MW
163 128
.1 .1 51 .8 51 .8 69 69 ZERJAVIN 407.3 ZERJAVIN 230.5 .0 5 95 9. 2
MELINA
228.8
1 16 27 .7 1 16 27 .7
LCIRKO2
403.3
127 3 12 1.1 31 7 .1
10 36 .5 .3
35.9 UMUKACH2 28.1
51.3 38.6
51.3 38.6
MPECS 4
LKRSKO1
40.2 2.1
230.8
35.8 21.3
MBEKO 4 408.6
410.2
103 38.6
30.1 39.1
SLO
58.6 22.6
30.1 35.4
MHEVI 4
215.0 MW
87 403.0 11 .2 1 LDIVAC2
MSAJO 4 410.0
LMARIB1 403.9
87.0 87.9
231.4
102 72.0
45.6 228.6 19.9
96.1 34.1
IPDRV121
102 93.9
46.0 7.2
MTLOK 2 230.5
HUN
271 62.8
401.2
79.4 12.2
350 UZUKRA01 304 772.5
-1250.0 MW
271 62.8
IRDPV111
MKISV 2 226.3
408.2
MGYOR 2
80.6 0.8
106 25. 7
213 24. 7 LPODLO2229.7
MSAJI 408.2
4
346 800
452 0 22.
106 25. 7
ONEUSI2 232.8
LDIVAC1
MGOD
OWIEN 2
106 56.2
106 56.2
217 40.6
OOBERS2238.7
199 102
971.8 MW
MAISA 7 716.0
MGYOR 4 0 25 .2 287 91 75.9 403.4
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 5.1.2 - Power flows along interconnection lines in the region for 2010-sensitivity case-average hydrology-import 1500 MW scenario
5.5
Table 5.1.2 - Power flows along regional interconnection lines for 2010-sensitivity case-average hydrology-import 1500 MW scenario Power Flow Interconnection line OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 2x400 kV ckt.1 OHL 2x400 kV ckt.2 OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 2x220 kV ckt.1 OHL 2x220 kV ckt.2 OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 400 kV OHL 220 kV OHL 220 kV
Zemlak (ALB) Fierze (ALB) V.Dejes (ALB) V.Dejes (ALB) Ugljevik (B&H) Mostar (B&H) Ugljevik (B&H) Trebinje (B&H) Trebinje (B&H) Prijedor (B&H) Prijedor (B&H) Gradacac (B&H) Tuzla (B&H) Mostar (B&H) Visegrad (B&H) Sarajevo 20 (B&H) Trebinje (B&H) Blagoevgrad (BUL) M.East 3 (BUL) M.East 3 (BUL) M.East 3 (BUL) C.Mogila (BUL) Dobrudja (BUL) Kozloduy (BUL) Kozloduy (BUL) Sofia West (BUL) Zerjavinec (CRO) Zerjavinec (CRO) Ernestinovo (CRO) Ernestinovo (CRO) Tumbri (CRO) Tumbri (CRO) Melina (CRO) Ernestinovo (CRO) Zerjavinec (CRO) Pehlin (CRO) Dubrovo (MCD) Bitola (MCD) Skopje (MCD) Skopje (MCD) Skopje (MCD) Arad (ROM) Nadab (ROM) Rosiori (ROM) Portile De Fier (ROM) Subotica (SER) Ribarevine (MON) Pljevlja (MON) Pljevlja (MON)
Kardia (GRE) Prizren (SER) Podgorica (MON) Podgorica (MON) Ernestinovo (CRO) Konjsko (CRO) S. Mitrovica (SER) Podgorica (MON) Plat (CRO) Mraclin (CRO) Medjuric (CRO) Djakovo (CRO) Djakovo (CRO) Zakucac (CRO) Vardiste (SER) Piva (MON) Perucica (MON) Thessaloniki (GRE) Filippi (GRE) Babaeski (TUR) Hamitabat (TUR) Stip (MCD) Isaccea (ROM) Tantarena (ROM) Tantarena (ROM) Nis (SER) Heviz (HUN) Heviz (HUN) Pecs (HUN) Pecs (HUN) Krsko (SLO) Krsko (SLO) Divaca (SLO) S.Mitrovica (SER) Cirkovce (SLO) Divaca (SLO) Thessaloniki (GRE) Florina (GRE) Kosovo B (UNMIK) Kosovo A (UNMIK) Kosovo A (UNMIK) Sandorfalva (HUN) Bekescaba (HUN) Mukacevo (UKR) Djerdap (SER) Sandorfalva (HUN) Kosovo B (UNMIK) Bajina Basta (SER) Pozega (SER)
MW -283.7 36.1 -46.0 -144.6 40.3 81.4 -120.9 218.2 -104.8 38397 40.5 58.9 104.6 61.2 -14.0 -73.6 103.7 67.7 314.9 -119.9 -149.5 223.5 198.6 -113.5 -113.5 409.7 -51.1 -51.1 -126.8 -126.8 -270.6 -270.6 -87.0 -139.2 -95.0 -10.5 -66.3 -10.1 51.2 7.6 7.6 73.1 87.5 -452.1 159.5 -163.4 -38.0 -73.1 30.9
Mvar -148.0 45.9 -1.3 -27.5 -60.6 -50.3 17.9 78.7 40.1 -17.2 -16.3 17.9 35.8 -14.0 59.1 -17.7 13.4 -48.6 -40.0 4.2 9.3 -38.2 -45.6 -23.8 -23.8 128.1 -69.8 -69.8 -31.1 -31.1 42.5 42.5 73.5 38.6 29.5 26.3 -42.2 -65.6 43.6 -20.7 -20.7 -26.9 -39.4 22.0 53.1 -127.7 12.2 5.8 31.4
% of thermal rating 24 21 16 11 6 7 10 19 36 7 13 21 36 19 20 19 33 12 44 11 10 32 15 9 9 60 6 6 10 10 24 24 12 12 32 11 6 5 8 7 7 14 8 38 12 17 5 24 17
5.6
45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 5.1.3 - Histogram of interconnection lines loadings for 2010-sensitivity case-average hydrology-import 1500 MW scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Table 5.1.3 - Network elements loaded over 80% of thermal limits for 2010-sensitivity case-average hydrology-import 1500 MW scenario AREA ALB BUL
ALB ROM
ELEMENT Lines OHL 110 kV AFIERZ5-AFARRZ5 OHL 220 kV M.EAST-ST.ZAGORA Transformers TR 220/110 kV AFIER 2-AFIER 5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.3 TR 220/110 kV FUNDENI-FUNDE2B
LOADING MVA
RATING MVA
PERCENT
61.7 188.8
68.0 228.6
90.7 82.6
117.1 96.0 91.6 173.9
120.0 90.0 90.0 200.0
97.6 106.6 101.8 86.9
400 350
Frequency
300 250 200 150 100 50 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 5.1.4 - Histogram of 400 kV and 220 kV regional lines loadings for 2010-sensitivity case-average hydrologyimport 1500 MW scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
5.7
5.1.2 Voltage Profile in the Region Voltage profile in the region within this scenario which is defined by given generation pattern and power import is seen as satisfactory despite several appearances of certain bus voltage deviations. The deviations are shown in Table 5.1.4, which includes only 400 kV and 220 kV network buses. Table 5.1.4 - Bus voltage deviations for 2010-sensitivity case-average hydrology-import 1500 MW scenario, complete network Country
Node
ALBANIA BOSNIA AND HERZEGOVINA
BULGARIA CROATIA MACEDONIA MONTENEGRO ROMANIA SERBIA AND UNMIK
Voltages pu 1.052 1.053 1.052 1.104 1.101 1.102 1.103 -
400 kV VARNA4 400 kV MARITSA EAST2 400 kV DOBRUD4 220 kV SESTRIMO 220 kV BPC_220 220 kV AEC_220 220 kV TECVARNA -
kV 420.8 421.0 420.7 242.8 242.2 242.4 242.7 -
Bus voltage magnitudes which are found below permitted limits (90% Vnominal in 220 kV network and 95% Vnominal in 400 kV network) are not detected in the analyzed scenario. Bus voltage magnitudes that are found above permitted limits (110% Vnominal in 110 kV and 220 kV networks and 105% Vnominal in 400 kV network) are detected only in Bulgaria, where tree 400 kV buses and four 220 kV buses have the magnitudes slightly above permitted limits. Figure 5.1.5 shows histogram of voltages in monitored 400 kV and 220 kV substations. 120 Frequency
100 80 60 40 20 x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 5.1.5 - Histogram of voltages in monitored substations for 2010-sensitivity case-average hydrology-import 1500 MW scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
5.8
It should be emphasized that these results represent only a situation when additional devices (transformer automatic tap changers, switchable shunts, etc.) are not used for voltage regulation. Impacts of such devices, which exist in many points of the SEE regional transmission network, need more comprehensive and thorough analysis.
5.1.3 Security (n-1) analysis Results of security (n-1) analysis for the 2010-sensitivity case-average hydrology-import 1500 MW scenario are presented in Tables 5.1.5 - 5.1.6. Insecure system situations for given generation pattern and power import are detected in the power systems of Albania, Bulgaria, Romania and Serbia. Loss of 220 kV line between the Rrashbul and Tirana substations can cause overloading of 220 kV line between the Elbassan and Fier substations in Albania. The opposite case is also found critical. Loss of 400 kV line in Bulgaria, M.East 2-Bourgas can cause overloading of 400 kV line PlovdivM. East 3. Loss of 220 kV line M. East 2-G.Oryahovitsa can cause overloading of 220 kV line M. East 2-St. Zagora. Single outages of 400/110 kV transformers in the stations Brasov and Dirste in Romania are also found critical, since in the model the second transformer 400/110 kV in the Brasov substation is permanently switched out of operation. Loss of OHL 220 kV in the Belgrade area can cause overloading of the parallel line. Loss of 220 kV line between pumped storage power plant Bajina Basta and SS Pozega is also found critical. Loss of one 400/110 kV transformer in the Nis substation is critical due to possible overloading of the other parallel one but this problem could be solved by dispatcher intervention. Figure 5.1.6 shows geographical positions of critical elements in the analyzed scenario. A green colour reveals 220 kV elements (line 220 kV or transformer 220/x kV), while a red one reveals 400 kV elements (line 400 kV or transformer 400/x kV). According to the obtained and presented results, it may be concluded that certain reinforcements in the internal networks of Romania, Bulgaria, Albania and Serbia are necessary shall this generation pattern and 1500 MW of power import be made more secure. None of the identified congestions is located at the border lines. By comparing the average hydrology situation in 2010 and balanced SE Europe power system to the average hydrology situation and 1500 MW of power import, it may be noticed that some critical contingencies in the Romanian power system disappear, especially those connected with Mintia substation, while some new contingencies appear in the power system of Bulgaria (lines around Maritsa East substation). This is due to different dispatching conditions of DEVA 1 power plant in Romania (disconnected in import/export scenario, dispatched with 850 MW in the base case) and power import through Turkish-Bulgarian interface that goes through Maritsa East 3 substation.
5.9
Table 5.1.5 - Lines overloadings for 2010-sensitivity case-average hydrology-import 1500 MW scenario, single outages Outage
Overloaded line(s)
OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV AELBS12-AFIER 2 OHL 400 kV BURGAS-MI_2_400 OHL 220 kV G_ORIAH-MI_2_220 OHL 220 kV JBGD172-JBGD8 22 ckt.1 OHL 220 kV JBBAST2-JPOZEG2
OHL 220 kV AELBS12-AFIER 2 OHL 220 kV AKASHA2-ARRAZH2 OHL 400 kV PLOVDIV4-MI_400 OHL 220 kV MI_2_220-ST.ZAGORA OHL 220 kV JBGD172-JBGD8 22 ckt.2 OHL 220 kV JPOZEG2-JVARDI22
Loadings MVA % 254.8 116.3 263.3 100.6 762.3 107.4 255.0 104.2 438.3 122.9 294.0 100.0
Country ALBANIA BULGARIA SERBIA
Table 5.1.6 - Transformers overloadings for 2010-sensitivity case-average hydrology-import 1500 MW scenario, single outages Outage
Overloaded branch(es)
TR 400/220 kV BUC.S ckt.1 400/110 kV BRASOV 400/110 kV DIRSTE 400/110 kV NIS ckt.1
TR 400/220 kV BUC.S ckt.2 400/110 kV DIRSTE 400/110 kV BRASOV 400/110 kV NIS ckt.2
Loadings MVA % 407.4 101.9 343.9 137.5 340.6 136.2 304.8 101.6
Country ROMANIA SERBIA
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 5.1.6 - Geographical positions of the critical elements for 2010-sensitivity case-average hydrology-import 1500 MW scenario
5.10
5.2 Scenario 2010 – average hydrology – high load This part of the Study presents the results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2010 - average hydrology – high load and with new generation facilities implemented. High load conditions denotes high load growth rate scenario. This scenario (higher growth rate) is analyzed in order to evaluate network performance for "heavy" load conditions.
5.2.1 Lines loadings Figure 5.2.1 shows power exchanges between areas for 2010-average hydrology high load scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 5.2.2. Area totals are shown in Table 5.2.1 and comparison of the average hydro regimes with normal load projection and high load projection is shown in Table 5.2.2. As it can be seen, increase of load level for around 3.61% on regional level, causes network losses to rise for up to 177 MW or 24%. This is consequence of higher network load and somewhat lower voltage levels. Figure 5.2.3 shows histogram of tie lines loadings. It can be concluded that the most of the tie lines are loaded less than 25% of their thermal limits. UKR 450
SVK
7
7 45
3 17
AUT
HUN 12
8
49 31
72
SLO
4 26
ITA
CRO
ROM
239
2 56 11
306
SRB
267
BIH
5
4 15
6 31
306
MNG
BUL 10
145
1
5 10
30
ALB
170
85
MKD
10
TUR
38 0
GRE Figure 5.2.1 - Area exchanges in analyzed electric power systems for 2010-average hydrology high load scenario – 2010 topology
5.11
LEVIC 1400.0
CENTREL
200 140
251 116
GABICK1400.0
450.0 MW
101 23.6
405.5 OKAINA1 402.4
234.2
82.9 49.6
UKR
450.0 MW
224.4 UMUKACH 412.0
6.7 55. 8
JSOMB31 393.1
ROM
401.8 JHDJE11
115 26.2
115 25.2
P.D.FIE TANTAREN
403.2
213 32.1
413.7
UGLJEVIK 403.8
JHPIVA21 160 234.9 12.8
27.8 19.3
JHPERU21 27.7 228.5 27.4
46.0 97.5
46.2 JPODG211 139 JPODG121227.5
CRG -163.0 MW
858.0 MW
SK 4 407.3
BITOLA 2
416.3
412.1
378 158
KARDIA K 383 416.6 130
QES/H
31.1 23.4
AHS_FLWR417.5
AZEMLA1
K
MI_3_4_1 419.7
413.1
FILIPPOI 415.7
2 19 6.8 7
9.7 22.0 K-KEXRU 417.9
4HAMITAX 4.0 4.0 415.4 76.8 9.7 65.5 4BABAESK 71.1 415.6
0.0 MW
-0.1 MW KARACQOU 250 419.0 50.0
5 11 .7 .6
8 5. .5 91
0.7 4 31.
.5 22 .2 46 LAGAD K 414.1
396.2
413.1
BLAGOEV413.8 412.2
31.1 38.7
0.7 1 54.
ALB
-484.0 MW
C_MOGILA
.3 85 .7 45
STIP 1
DUBROVO 381.7
.5 85 .2 47
408.2
4.0 65.5
122 6.3
11.5 28.0
SK 1 223.1
0 1 4. 5. 1
25.5 128
BUL
JLESK21 0.000
1 43 05 .0
27.2 5.4
25.8 89.1
AVDEJA2 228.1AFIERZ2227.9 388.8
MKD
KV: 110 , 220 , 400
DOBRUD4 418.2
414.9
307 SOFIA_W4 113 411.1
JVRAN31 0.000
-261.0 MW
AKASHA1
304 154
122 41.3
6 11. 4 17.
6 11. 4 17.
25.8 89.1
AEC_400 JNIS2 1 394.3
JPRIZ22 224.6 JTKOSA2 227.1JTKOSB1406.8 44 106 .9
392.9
561.3 MW SRB 724.2 MW
11.5 28.0
RP TREB 231.9
159 12.8
27.1 3.7
SA 20 231.1
JVARDI22 54.0 229.3 66.7
312 25.7
SCG
53.7 65.2
25.8 62.6
VISEGRA 231.4
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2010 HIGH LOAD - NEW GENERATION - TOPOLOGY 2010
309 88.4
-56.8 MW
JSUBO31 395.6
240 JSMIT21 97.6
233.2
RP TREB 401.1
SHAW POWER TECHNOLOGIES INC. R
ISACCEA 409.3
2 2. 2 4.
406.8 134 MO-4 15.2 234.0
BIH
141.1 MW
39.0 ARAD 59.1 399.4
2 2. 2 4.
MO-4
228.0 TE TUZL
401.7 39.0 0.1
2.2 46.4
239 55.6 406.2
2 65. 0 63.
132 14.8
309 46.2
GRADACAC
225.5
ROSIORI 403.9
2.2 46.4
225.2
.3 85 .5 40
307 3.0
5 43. 2 22.
.4 52 .5 26
PRIJED2
89.2 NADAB 81.1 401.1
19 44. 3 4
4.0 2.5
52.1 18.8
226.4
89.1 62.8
22.5 49.1
DAKOVO
226.5MEDURIC
4.0 10.9
CRO
-1095.9 MW
406.5
82.7 67.4
MSAFA 4
403.1
HE ZAKUC 232.2
10.7 29.2
.2 72 38 1
65 213 .6
403.5
MRACLIN
KONJSKO
10.8 7.6
72.5 162
ERNESTIN
65.0 5.9
31.0 13.9
0 17 1 . 22 0 17 1 . 22
TUMBRI
409.1
46. 3 7 46 0.9 70 .3 .9
.4 .4 61 .3 61 .3 72 72 ZERJAVIN 405.9 ZERJAVIN 229.6
406.1
PEHLIN 232.9
228.4
46 21 .2 .8 46 21 .2 .8
LCIRKO2
402.7
.9 17 8.1
MELINA
35.7 UMUKACH2 27.6
61.5 35.2
MPECS 4
LKRSKO1
30 23 .9 .7
35.5 20.8
MBEKO 4 403.9
409.4
84.3 45.0
230.5
61.5 35.2
SLO
43.3 27.4
26.8 54.3
MHEVI 4
215.0 MW
84 402.6 77 .8 .5 LDIVAC2
MSAJO 4 410.0
LMARIB1 403.6
84.9 53.8
231.2
26.8 50.7
170 27.3
21.4 229.0 26.9
17.9 17.9
IPDRV121
170 48.3
21.5 13.0
MTLOK 2 230.5
HUN
170 46.7
401.3
50.5 21.1
MKISV 2 226.3
350 UZUKRA01 297 772.5
-1249.9 MW
170 46.7
IRDPV111
407.6
346 804
6.9 118
LPODLO2229.7
MSAJI 408.1
4
MGYOR 2
51.0 6.1
44. 18. 3 4
156 39. 6
44. 18. 3 4
ONEUSI2 233.5
LDIVAC1
MGOD
OWIEN 2
44.3 49.7
44.3 49.7
158 43.2
OOBERS2238.7
199 94.5
UCTE
222.2 MW
MAISA 7 714.7
MGYOR 4 0 25 .6 101 93 102 403.5
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 5.2.2 - Power flows along interconnection lines in the region with balances of the systems for 2010-average hydrology high load scenario – 2010 topology
5.12
Table 5.2.1 - Area totals in analyzed electric power systems for 2010- average hydrology high load scenario – 2010 topology AREA ALBANIA BULGARIA BIH CROATIA MACEDONIA ROMANIA SERBIA MONTENEGRO TOTALS
GENERATION 931.7 7282.5 2202.8 2254.6 991.1 7113.3 8103.8 542.3 29422.1
LOAD 1358 6278 2004 3295 1234 6859.4 7131 686 28845.4
LOSSES 57.7 146.5 57.8 55.4 18.1 310.6 248.6 19.2 913.9
INTERCHANGE -484 858 141.1 -1095.9 -261 -56.7 724.2 -163 -337.3
Table 5.2.2 – Comparison of Area totals in analyzed electric power systems for 2010- average hydrology versus average hydrology high load scenario – 2010 topology LOAD LOSSES AREA normal normal high load high load load load ALBANIA 1287.3 1358 5.49% 50.4 57.7 14.48% BULGARIA 5977.3 6278 5.03% 121.6 146.5 20.48% BIH 1971.3 2004 1.66% 58.6 57.8 -1.37% CROATIA 3136.7 3295 5.05% 49 55.4 13.06% MACEDONIA 1198.2 1234 2.99% 20.1 18.1 -9.95% ROMANIA 6728.3 6859.4 1.95% 201.2 310.6 54.37% SERBIA 6873.1 7131 3.75% 220.8 248.6 12.59% MONTENEGRO 669.2 686 2.51% 15.5 19.2 23.87% TOTALS 27841.4 28845.4 3.61% 737.1 913.9 23.99%
Histogram 45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 5.2.3 - Histogram of interconnection lines loadings for 2010- average hydrology high load scenario – 2010 topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Table 5.2.3 shows all network elements loaded over 80% of their thermal limits. As it can be seen some lines 220 kV voltage level in Albania, Romania and Serbia are loaded over 80%. Also, most of the elements loaded over 80% are transformers in some substations, again, in Albania, Romania and Serbia. Figure 5.2.4 shows histogram of branch loadings in the system. 5.13
As for the conclusion regarding thermal loadings in this scenario it can be said that most of the network elements are loaded up to 75% of their thermal limits, but there are some elements highly loaded, even overloaded. It can be concluded that overall load of the system is higher than by normal load projection. Higher load-demand level causes that increase of load of the elements which supply large consumption areas are is higher than increase of load-demand level. This goes especially for transformer units over which large consumption areas are connected to high voltage network. Also, most of the elements loaded over 80% are transformers in some substations, and loading of these elements is higher than in case of normal load projection. There are some elements that are overloaded (220 kV lines Targu Jiu – Paroseni and Urechesti-Targu Jiu in Romania, and 220/110 kV transformers in Fier substation in Albania), and this load is higher than in case of normal load projection. Like in previous scenarios analyzed, higher engagement of TPP Paroseni resolves this overloads of the 220 kV lines Targu Jiu – Paroseni and Urechesti-Targu Jiu and decreases the load of the 400/220 transformer in Urechesti substation. Also, it is expected that transformers in Fierza substation will be replaced with more powerful transformer units. Table 5.2.3 - Network elements loaded over 80% of their thermal limits for 2010-average hydrology high load scenario – 2010 topology BRANCH LOADINGS ABOVE
80.0 % OF RATING: LOADING ELEMENT MVA
AREA
HL HL HL HL
ROM
TR TR TR TR TR TR TR TR TR
ALB
ROM
SRB
Lines P.D.F.A-RESITA 1 P.D.F.A-RESITA 2 TG.JIU-PAROSEN 1 URECHESI-TG.JIU 1 Transformers 220/110 kV AFIER 1 220/110 kV AFIER 2 220/110 kV AFIER 3 400/220 kV URECHE 1 220/110 kV FUNDE2 1 220/110 kV JTKOSA 2 220/110 kV JTKOSA 3 220/110 kV JZREN2 2 400/220 kV JBGD8 1
220kV 220kV 220kV 220kV
RATING MVA
PERCENT
226.8 226.8 277.8 277.8
277.4 277.4 208.1 277.4
81.7 81.7 133.5 100.1
122.2 100.1 95.6 344.4 178.6 131.5 133.9 120.2 326.3
120 90 90 400 200 150 150 150 400
101.8 111.3 106.2 86.1 89.3 87.7 89.3 80.1 81.6
Histogram 350 300 Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 5.2.4 - Histogram of branch loadings for 2010- average hydrology high load scenario – 2010 topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
5.14
5.2.2 Voltage Profile in the Region Figure 5.2.5 shows histogram of voltages in monitored substations. Voltages in almost all monitored substations are found within permitted limits. Voltage profile in network of Albania is somewhat near low limits, but this can be resolved by changing of the setting of the tap changing transformers in some substations. Also, voltage levels are somewhat lower comparing to normal load projection scenario. Higher load of network elements, which is consequence of the higher demand level, causes voltage drops along network elements to be higher. Histogram 120
Frequency
100 80 60 40 20
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 5.2.5 - Histogram of voltages in monitored substations for 2010- average hydrology high load scenario – 2010 topology ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
5.2.3 Security (n-1) analysis Results of security (n-1) analysis for 2010-average hydrology high load scenario and expected topology for 2010 are presented in Table 5.2.4. Figure 5.2.6 shows the geographical position of the critical elements in monitored systems. It can be concluded that all identified insecure situations are located in internal networks that belong to monitored power systems of Albania, Romania and Serbia. In most critical case in Romanian system, the critical elements are 220 kV lines Targu Jiu – Paroseni and Urechesti-Targu Jiu and 400/220 kV transformer in Urechesti substation, but these elements are overloaded in case of full topology also, which is the main reason why they appear as critical by most outages analyzed. As it has been stated before, this can be resolved by higher engagement of the TPP Paroseni. Compared to the normal load projection (chapter 4.1) it can be concluded that the critical elements are almost the same. The only difference is overload of the 400/110 kV transformer unit in SS Pancevo. This is cosequence of higher load of these transformers in full network topology compared to the normal demand scenario. 5.15
Like by normal demand scenario (chapter 4.1), some of the overloadings identified can be relieved by certain dispatch actions (splitting busbars, changing lower voltage network topology in order to redistribute load-demand or change of generation units engagement). All in all, certain reinforcement of internal network is necessary in order to make this regime more secure. Especially, taking into consideration that higher demand causes higher load of transformer units in whole monitored region. Table 5.2.4 - Network overloadings for 2010- average hydrology high load scenario , single outages – 2010 topology Area 1
contingency 2
AL
BASE CASE OHL 220kV AELBS12 -AFIER 2
1
RO
OHL 220kV P.D.F.A -RESITA
1
RO
OHL 220kV RESITA
-TIMIS
1
RO
OHL 220kV PESTIS
-MINTIA A 1
RO
OHL 220kV CLUJ FL -AL.JL
1
RO
OHL 220kV AL.JL
1
RO
OHL 400kV TANTAREN-URECHESI 1
RO
OHL 400kV TANTAREN-BRADU
1
RO
OHL 400kV TANTAREN-SIBIU
1
RO
OHL 400kV URECHESI-P.D.FIE
1
RO
OHL 400kV URECHESI-DOMNESTI 1
RO
OHL 400kV MINTIA
-ARAD
1
RO
OHL 400kV MINTIA
-SIBIU
1
RO
OHL 400kV DOMNESTI-BRAZI
1
RO
OHL 400kV SMIRDAN -GUTINAS
1
RO
OHL 400kV BRASOV
1
CS
OHL 220kV JBGD172 -JBGD8 22 1
CS
OHL 400kV JBOR 21 -JHDJE11
1
CS
OHL 400kV JHDJE11 -JTDRMN1
1
CS
OHL 400kV JNSAD31 -JSUBO31
1
RO RO CS CS
TR TR TR TR
400/110 400/110 400/110 400/110
-GILCEAG
-BRADU
BRASOV 1 DIRSTE 1 JNIS2 1 JPANC2 1
overloadings / out of limits voltages Area 3 4 RO HL 220kV TG.JIU-PAROSEN AL HL 220kV AKASHA2-ARRAZH2 RO HL 220kV URECHESI-TG.JIU RO HL 220kV P.D.F.A-RESITA RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV RESITA-TIMIS RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN CS HL 220kV JBGD172-JBGD8 22 RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO TR 400/110kV/kV DIRSTE RO TR 400/110kV/kV BRASOV CS TR 400/110kV/kV JNIS2 1 CS TR 400/110kV/kV JPANC21
# 5 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2
limit / Unom 6 208.1MVA 270MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 365.8MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 250MVA 250MVA 300MVA 300MVA
rate Flow / / Voltage volt.dev. 7 8 285.6MVA 133.5% 289.9MVA 112.2% 301.5MVA 106.1% 331.5MVA 122.8% 301.5MVA 141.4% 295.7MVA 103.9% 348.7MVA 127.0% 295.7MVA 138.5% 296.3MVA 104.8% 290.4MVA 139.7% 271MVA 126.4% 308.8MVA 109.1% 308.8MVA 145.4% 292.5MVA 102.6% 300.1MVA 105.9% 300.1MVA 141.1% 331.1MVA 117.3% 331.1MVA 156.4% 268.7MVA 124.5% 400.6MVA 100.1% 305.6MVA 107.7% 305.6MVA 143.6% 263.1MVA 123.1% 326.2MVA 115.5% 326.2MVA 153.9% 296.2MVA 104.0% 296.2MVA 138.7% 296.9MVA 104.5% 296.9MVA 139.3% 296.3MVA 104.3% 296.3MVA 139.0% 453.5MVA 129.0% 300.9MVA 106.1% 300.9MVA 141.4% 315.8MVA 111.9% 315.8MVA 149.1% 304.1MVA 107.2% 304.1MVA 142.8% 353.9MVA 141.6% 350MVA 140.0% 323.1MVA 107.7% 318.8MVA 106.3%
5.16
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 5.2.6 – geographical position of critical elements for 2010- average hydrology high load scenario – 2010 topology
5.17
5.3 Scenario 2015 – average hydrology – import/export – 2010 topology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2015 – sensitivity case – average hydrology – import 1500 MW – topology 2010. Concerning the import/export case, the simulated regime means the following: ▪ ▪ ▪ ▪
Import 750 MW from UCTE Import 500 MW from Turkey Export 500 MW to Greece Import 750 MW from Ukraine
Calculations on the model characterized by the 2010 network topology, appropriate GTMax generation dispatch, predicted load level in 2015 and power import/export as explained above, could not lead to a convergent load flow solution due to reactive power problems. Lack of reactive power in the analyzed situation is visible especially in the power system of Albania. If the power plants reactive limits are ignored in the model, a convergent solution is found and the following can be concluded: ▪
There is a permanent lack of reactive power for analyzed generation dispatch, load level and power import/export in the power system of Albania. Generators in power plants Balsh, Fierza and Vau Dejes exceed their Var limits in order to keep nominal voltages. This proves the necessity to install compensation devices or new power plants in the Albanian power system, or to construct new interconnection lines to make network connections stronger.
▪
Generators in Bulgarian power system, which are dispatched in the analyzed scenario and whose reactive power limits are exceeded, are operated mostly in the underexcitation area below their minimum Var limits. This means that there is a sufficient reactive power reserve, but problems with high voltages may be expected especially in lower bus loading conditions (nights, summer).
▪
Reactive power problems in the analyzed situation are not detected in the power systems of Bosnia and Herzegovina, Croatia and Macedonia.
▪
In the power system of Romania, the generator Var limits are occasionally exceeded in both directions (some generators work in the over-excitation area and some in the underexcitation one) in order to achieve scheduled (mostly nominal) voltages in the analyzed situation. The Var limits are not significantly exceeded when observing all dispatched generators in Romania.
▪
Certain lack of reactive power is visibly present in the power system of Serbia and UNMIK. Ten power plants are operated slightly above their maximum Var limits.
▪
Smaller lack of reactive power also exists in the power system of Montenegro that is affected by the poor voltage profile in Albania.
5.18
To provide deeper insight into the voltage problems which are obviously present in the analyzed export/import scenario in 2015, but on the network topology predicted to exist in 2010, it is necessary to conduct more comprehensive and thorough analysis. It is assumed that the utilisation of existing devices such as transformer automatic tap changers and switchable shunts, or the generation re-dispatch may mitigate these voltage problems without a need to construct new lines. If new interconnection lines predicted to exist in 2015 are included in the model, Vranje (Serbia) – Skopje 4 (Macedonia), Zemlak (Albania) – Bitola 2 (Macedonia), and V. Dejes (Albania) – Kosovo B (UNMIK), a convergent solution is found. Power flow solution is explained in the following Chapter. A convergent solution for the 2010 network topology is found when only 400 kV line V.Dejes (Albania) – Kosovo B (UNMIK) is included in the model, but without satisfactory network voltage profile. Two 400 kV nodes in Albania (Elbassan and Tirana) and five 400 kV nodes in Romania (Domnesti, Dirste, Brazi, Brasov, Bradu) have small voltage values (between 374 kV and 379 kV). Two 220 kV nodes in Albania (Fier and Babic) have also small voltage values (193 kV and 196 kV respectively). Sixty two 110 kV nodes, mostly in Albania, have low voltages, ranging between 80 kV and 99 kV. Convergent solution on network topology in 2010 is found also if only 400 kV line Zemlak (Albania) – Bitola (Macedonia) is included on the model, but voltage profile in the network is unsatisfactory again. Two 400 kV nodes in Albania (Elbassan and Tirana) and five 400 kV nodes in Romania (Domnesti, Dirste, Brazi, Brasov, Bradu) have small voltage values (between 373 kV and 379 kV). Two 220 kV nodes in Albania (Fier and Babic) have small voltage values also (192 kV and 195 kV respectively). Seventy five 110 kV nodes, mostly in Albania, have low voltages, ranging between 78 kV and 99 kV. To conclude, the analyzed scenario which is characterized by large power import in 2015, but on the 2010 network topology, can not be supported from a transmission network viewpoint due to voltage problems. Their existence is the most obvious in the power system of Albania due to scarce reactive power sources. To mitigate such problems it is necessary to construct at least one new 400 kV interconnection line between Albania and UNMIK or Macedonia.
5.19
5.4 Scenario 2015 – average hydrology – import/export – 2015 topology This part of the Study presents results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as Scenario 2015 – sensitivity case – average hydrology – import 1500 MW – topology 2015.
5.4.1 Lines loadings Area totals and power exchanges for the 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario are shown in Figure 5.4.1. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 5.4.2. Area totals are shown in Table 5.4.1. Table 5.4.2 shows power flows along regional interconnection lines for 2015sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario SVK 68
5 20
3
AUT
0
4 50
UKR
61
HUN 62
4 61 17 8
1
SLO
9 82
ITA
CRO
ROM
175
0
3 36
390
SRB
245
BIH
20
88
3 36
MNT
88 2
162
28
26 4
BUL
7 28
217
ALB
352
7 21
MKD
TUR 212
65
GRE 2 50
Figure 5.4.1 - Area exchanges in analyzed electric power systems for 2010-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario
5.20
Table 5.4.1 - Area totals in analyzed electric power systems for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario Country Albania
Generation (MW) 1027.5
Load (MW) 1544.0
Bus Shunt (Mvar) 0
Line Shunt (Mvar) 0
Losses (MW) 71.5
Net Interchange (MW) -588.0
Bulgaria
7582.2
6418.9
0
14.6
142.7
1006.0
Bosnia and Herzegovina
2394.9
2293.8
0
0
70.1
31.0
Croatia
2173.9
3660.1
0
0
58.8
-1545.0
Macedonia
1076.3
1393.7
0
0
22.5
-340.0
Romania
7187.7
7831.2
0
74.6
253.9
-972.0
Serbia and UNMIK
8029.8
7270.7
0
14.1
215.1
530.0
Montenegro
731.9
675.0
0.6
1.8
15.6
39.0
30204.2
31087.4
0.6
105.0
850.3
-1839.0
TOTAL - SE EUROPE
By comparing the average hydrology situation in 2015 and balanced SE Europe power system to the average hydrology situation and 1500 MW of power import, a significant increase of the power flows is noticed along the Slovenian-Croatian and Ukrainian-Romanian interfaces. However, the interconnection lines are not jeopardized since their loading levels fall far below their thermal ratings. In the same time, power flows through other interfaces between countries in the SE Europe are mostly decreased. Power losses, in comparison to the situation of balanced SE Europe power system, are increased only in the power system of Macedonia (5%). In other power systems power losses are decreased, the most significantly in the power systems of Romania (-26%) and Montenegro (-23%). Power losses are decreased (-16%) in the region when analyzing the additional power import. Figure 5.4.3 shows that all tie lines in the region are loaded less than 50% of their thermal limits for the analyzed import/export scenario in year 2015. Among total number of fifty two 400 kV and 220 kV interconnection lines in the region only ten are loaded between 25% and 50% of their thermal ratings. Other tie lines are loaded less than 25% of their thermal ratings. Table 5.4.3 lists all network elements loaded over 80% of their thermal limits. As it can be seen from this output list, most of the elements loaded over 80% are transformers in some substations and internal 110 kV and 220 kV lines. 110 kV lines which are loaded over 80% Ithermal are not shown in the table. Certain internal network reinforcements are necessary to sustain given loaddemand level and production pattern including import of 1500 MW from analyzed directions. Figure 5.4.4 shows histogram of 400 kV and 220 kV regional internal lines and 400/x kV and 220/x kV transformers loadings. Some 40% of observed branches are loaded below 25% of their thermal ratings, 36% are loaded between 25% and 50%, 20% are loaded between 50% and 75% and 5% of observed branches are loaded between 75% and 100% of their thermal ratings. Four branches (transformers 220/110 kV Fierze in Albania, 102% - 106% Sn and 220/110 kV transformer in Fundeni substation in Romania) are overloaded when all branches are in operation. By comparing the average hydrology situation in 2015 and balanced SE Europe power system to the average hydrology situation and 1500 MW of power import, it is noticed that power system of Romania becomes slightly relieved while some highly loaded branches are present in the power systems of Albania, Serbia and Bulgaria. Distribution of internal branches loading is slightly changed because a number of branches loaded between 25% and 75% of their thermal ratings is increased compared to the situation characterized by balanced SE Europe power system. 5.21
LEVIC 1400.0
CENTREL
200 140
251 102
GABICK1400.0
450.0 MW
244 38.8
404.4
233.3
121 25. 3
224.4 UMUKACH 412.0
510 66. 5
MSAFA 4
ROM
JHDJE11
P.D.FIE
2.1 31.2
2.1 32.3
302 107
305 SOFIA_W4 62.6 410.0
TANTAREN
402.0
204 2.8
42.0 11.2
JHPERU21 41.8 229.9 19.0
0.6 43.1
0.7 JPODG211 87.8 JPODG121229.2
CRG 39.0 MW
JPRIZ22 222.9 JTKOSA2 227.3JTKOSB1408.0
SK 4 404.5
-340.0 MW
MKD
111 119
392.6
ALB
408.7 DUBROVO
27 75 9 .7
AHS_FLWR415.3
AZEMLA1
58.6 111
KARDIA K 59.0 415.4 40.8
QES/H
K
411.2
FILIPPOI 414.6
9 28 6.7 5
214 55.6 K-KEXRU 417.2
KV: 110 , 220 , 400
4HAMITAX 128 128 414.0 84.4 214 73.9 4BABAESK 98.8 414.3
500.0 MW -500.2 MW
KARACQOU 250 416.7 50.0
1 1. 58 9
9 15 .7 97
.4 50 .9 39 LAGAD K 412.2
406.4
MI_3_4_1 418.0
BLAGOEV412.2 408.8
184 5 82.
-588.0 MW
412.0
411.6
6 19 .0 47
STIP 1
184 102
AKASHA1
280 7 39.
C_MOGILA
7 19 0 . 36
404.8
7 12 .6 1
111 119
BITOLA 2
1006.0 MW
JVRAN31 401.8
61.8 59.9 SK 1 222.5
DOBRUD4 413.8
413.2
BUL
JLESK21 398.6
6 14 1. .2 9
1 29 7.1 .0
AVDEJA2 227.7AFIERZ2227.9 399.4
11.1 32.8
9.7 15.2
33.3 23.9
290 0 47.
111 78.7
111 78.7
218 5.8
3 11. 3 22.
289 68.7
3 11. 3 22.
1 37 6. .8 9
399.6
AEC_400 JNIS2 1 398.3
128 73.9
JHPIVA21 158 237.3 34.1
32.7 32.8 37.2 74.4
156 34.2
569.0 MW SRB 530.0 MW
61.0 50.9
RP TREB 232.6
JVARDI22 28.9 231.2 41.1
217 47.0
SA 20 230.8
28.8 38.7
11.1 32.8
VISEGRA 232.5
396 3.9
SCG
230.8
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2015 SENSITIVITY CASE - IMPORT 1500 MW - TOPOLOGY 2015
410.2
UGLJEVIK 400.3
RP TREB 404.3
SHAW POWER TECHNOLOGIES INC. R
391 88.3
-972.0 MW
JSUBO31 395.8
400.5
9.8 5.6
405.9 113 MO-4 10.9 233.2
BIH
31.0 MW
ISACCEA 401.3
149 JSMIT21 74.3
33.3 4.6
MO-4
18.6 ARAD 54.7 399.3
.5 28 .1 27 .5 28 .1 27
112 6.7
228 30.6
224.7 TE TUZL
401.6 18.6 4.7
28.5 76.6
221.8
JSOMB31 393.2
148 25.3 403.5
8 13. 5 63.
227 21.9
219.6
ROSIORI 400.5
28.5 76.6
ERNESTIN
1 10 3 . 45
5.9 3.2
.0 16 .2 20
PRIJED2
GRADACAC
6.1 NADAB 77.6 400.5
29 48. 1 8
5.9 11.1
16.0 11.8
218.6
6.0 58.5
50.5 53.9
DAKOVO
220.8MEDURIC
0 52. 8 22.
CRO
-1545.0 MW
404.4
321 52.6
.0 33 22 1
402.1
HE ZAKUC 231.0
318 32.6
181 181 14.1 32.7
399.8
MRACLIN
407.7
31 204 .1
37.4 4.6
5 26 5 . 11 5 26 5 . 11
TUMBRI
KONJSKO
10.9 29.2
61.1 9.8
.7 .7 77 .8 77 .8 86 86 ZERJAVIN 401.3 ZERJAVIN 225.7
402.4
PEHLIN 229.8
226.3
.8 74 6.5
MELINA
11.0 7.6
UKR
1200.0 MW
32.8 147
LCIRKO2
399.9
25 35 .5 .4 25 35 .5 .4
37 14 .5 .2
35.9 UMUKACH2 27.7
77.9 17.8
77.9 17.8
MPECS 4
LKRSKO1
25. 5 8 25 4.1 84 .5 .1
229.3
35.8 21.0
MBEKO 4 403.5
407.2
13.8 6.5
49.9 67.1
SLO
51.8 27.5
49.9 63.7
MHEVI 4
215.0 MW
10 400.8 60 7 .1 LDIVAC2
MSAJO 4 410.0
LMARIB1 400.9
107 36.9
230.3
108 3.4
40.7 228.4 21.1
75.5 13.0
IPDRV121
108 25.4
41.0 8.1
MTLOK 2 230.5
HUN
265 31.6
400.6
73.5 13.7
350 UZUKRA01 296 772.5
-1250.0 MW
265 31.6
IRDPV111
MKISV 2 226.3
407.6
MGYOR 2
74.5 1.5
99.5 47.5
LPODLO2227.8
MSAJI 408.2
4
346 805
504 9 68.
121 25. 3
214 21. 9
ONEUSI2 232.6
LDIVAC1
MGOD
OWIEN 2
121 55.0
121 55.0
OKAINA1 399.7
218 38.7
OOBERS2236.5
199 94.3
UCTE
974.2 MW
MAISA 7 714.7
MGYOR 4 0 25 .7 243 79 78.8 402.9
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 5.4.2 - Power flows along interconnection lines in the region for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario
5.22
Table 5.4.2 - Power flows along regional interconnection lines for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario Interconnection line OHL 400 kV Zemlak (ALB) OHL 220 kV Fierze (ALB) OHL 220 kV V.Dejes (ALB) OHL 400 kV V.Dejes (ALB) OHL 400 kV Ugljevik (B&H) OHL 400 kV Mostar (B&H) OHL 400 kV Ugljevik (B&H) OHL 400 kV Trebinje (B&H) OHL 220 kV Trebinje (B&H) OHL 220 kV Prijedor (B&H) OHL 220 kV Prijedor (B&H) OHL 220 kV Gradacac (B&H) OHL 220 kV Tuzla (B&H) OHL 220 kV Mostar (B&H) OHL 220 kV Visegrad (B&H) OHL 220 kV Sarajevo 20 (B&H) OHL 220 kV Trebinje (B&H) OHL 400 kV Blagoevgrad (BUL) OHL 400 kV M.East 3 (BUL) OHL 400 kV M.East 3 (BUL) OHL 400 kV M.East 3 (BUL) OHL 400 kV C.Mogila (BUL) OHL 400 kV Dobrudja (BUL) OHL 2x400 kV ckt.1 Kozloduy (BUL) OHL 2x400 kV ckt.2 Kozloduy (BUL) OHL 400 kV Sofia West (BUL) OHL 2x400 kV ckt.1 Zerjavinec (CRO) OHL 2x400 kV ckt.2 Zerjavinec (CRO) OHL 2x400 kV ckt.1 Ernestinovo (CRO) OHL 2x400 kV ckt.2 Ernestinovo (CRO) OHL 2x400 kV ckt.1 Tumbri (CRO) OHL 2x400 kV ckt.2 Tumbri (CRO) OHL 400 kV Melina (CRO) OHL 400 kV Ernestinovo (CRO) OHL 220 kV Zerjavinec (CRO) OHL 220 kV Pehlin (CRO) OHL 400 kV Dubrovo (MCD) OHL 400 kV Bitola (MCD) OHL 400 kV Skopje (MCD) OHL 2x220 kV ckt.1 Skopje (MCD) OHL 2x220 kV ckt.2 Skopje (MCD) OHL 400 kV Arad (ROM) OHL 400 kV Nadab (ROM) OHL 400 kV Rosiori (ROM) OHL 400 kV Portile De Fier (ROM) OHL 400 kV Subotica (SER) OHL 400 kV Ribarevine (MON) OHL 220 kV Pljevlja (MON) OHL 220 kV Pljevlja (MON) OHL 400 kV* Skopje 4 (MCD) OHL 400 kV* Zemlak (ALB) OHL 400 kV* V.Dejes (ALB) * new lines planned till 2015
Kardia (GRE) Prizren (SER) Podgorica (MON) Podgorica (MON) Ernestinovo (CRO) Konjsko (CRO) S. Mitrovica (SER) Podgorica (MON) Plat (CRO) Mraclin (CRO) Medjuric (CRO) Djakovo (CRO) Djakovo (CRO) Zakucac (CRO) Vardiste (SER) Piva (MON) Perucica (MON) Thessaloniki (GRE) Filippi (GRE) Babaeski (TUR) Hamitabat (TUR) Stip (MCD) Isaccea (ROM) Tantarena (ROM) Tantarena (ROM) Nis (SER) Heviz (HUN) Heviz (HUN) Pecs (HUN) Pecs (HUN) Krsko (SLO) Krsko (SLO) Divaca (SLO) S.Mitrovica (SER) Cirkovce (SLO) Divaca (SLO) Thessaloniki (GRE) Florina (GRE) Kosovo B (UNMIK) Kosovo A (UNMIK) Kosovo A (UNMIK) Sandorfalva (HUN) Bekescaba (HUN) Mukacevo (UKR) Djerdap (SER) Sandorfalva (HUN) Kosovo B (UNMIK) Bajina Basta (SER) Pozega (SER) Vranje (SER) Bitola (MCD) Kosovo B (UNMIK)
Power Flow MW Mvar -58.6 -110.9 17.1 29.0 -9.7 -15.2 33.3 -23.9 -13.8 -63.5 228.5 -30.6 -203.8 -2.8 -0.6 43.1 -104.8 40.0 16.0 -20.2 5.9 3.2 52.0 22.8 100.8 45.3 113.4 -10.9 -28.8 38.7 -156.5 -34.2 42.0 11.2 50.5 -53.9 290.6 -48.8 -127.3 -1.6 -158.4 1.9 197.4 -36.0 396.1 3.9 28.5 27.1 28.5 27.1 304.5 62.6 -77.7 -86.8 -77.7 -86.8 -25.5 -84.1 -25.5 -84.1 -264.6 11.5 -264.6 11.5 -106.6 22.8 -148.4 25.3 -74.8 6.5 -37.4 4.6 -61.0 -50.9 -183.9 -101.9 -216.8 -47.0 -11.1 -32.8 -11.1 -32.8 -18.6 -54.7 6.1 -77.6 -503.9 -68.9 -2.1 -32.3 -32.8 -147.1 -148.4 -17.0 -11.3 9.6 75.9 40.3 61.9 14.2 -279.2 -75.7 -289.3 -68.7
% of thermal rating 9 14 6 3 5 17 16 7 36 8 4 20 37 36 16 41 15 10 41 12 10 28 29 6 6 44 9 9 7 7 23 23 11 12 25 12 5 17 16 11 11 5 6 43 2 11 11 9 29 6 21 22
5.23
45 40
Frequency
35 30 25 20 15 10 5 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 5.4.3 - Histogram of interconnection lines loadings for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Table 5.4.3 - Network elements loaded over 80% of thermal limits for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario AREA ALB BUL ROM SRB
ALB
B&H ROM
SRB
ELEMENT Lines OHL 220 kV AKASHA2-ARRAZH2 OHL 220 kV MI_2_220-ST ZAGORA OHL 400 kV PLOVDIV4-MI_400 OHL 220 kV BRADU-TIRGOVI OHL 220 kV P.D.F.A-CETATE1 OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV JBGD3 21-JOBREN2 Transformers TR 220/110 kV AFIERZ2-AFIERZ5 ckt.1 TR 220/110 kV AFIERZ2-AFIERZ5 ckt.2 TR 220/110 kV ABURRE2-ABURRL5 ckt. 1 TR 220/110 kV ABURRE2-ABURRL5 ckt. 2 TR 220/110 kV ABURRE2-ABURRL5 ckt. 3 TR 220/110 kV AELBS12-AELBS15 ckt.1 TR 220/110 kV AELBS12-AELBS15 ckt.2 TR 220/110 kV AELBS12-AELBS15 ckt.3 TR 220/110 kV AKASHA2-AKASH25 ckt.1 TR 220/110 kV AKASHA2-AKASH25 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.1 TR 220/110 kV AFIER 2-AFIER 5 ckt.2 TR 220/110 kV AFIER 2-AFIER 5 ckt.3 TR 400/110 kV UGLJEVIK TR 400/110 kV BRASOV TR 220/110 kV FUNDENI TR 220/110 kV FUNDENI-FUNDE2B TR 220/110 kV JBGD3 21-JBGD 351 TR 220/110 kV JBGD3 22-JBGD 352 TR 220/110 kV JZREN22-JZREN25
LOADING MVA
RATING MVA
PERCENT
235.7 191.0 605.2 246.9 204.3 266.0 277.4
270.0 228.6 692.8 302.6 208.1 320.0 301.0
87.3 83.5 87.4 81.6 98.2 83.1 92.2
50.9 50.9 49.1 49.1 49.1 74.0 74.0 79.5 82.9 82.9 130.7 107.1 102.2 256.3 202.5 181.0 214.4 169.4 126.8 121.5
60.0 60.0 40.0 40.0 40.0 90.0 90.0 90.0 100.0 100.0 120.0 90.0 90.0 300.0 250.0 200.0 200.0 200.0 150.0 150.0
84.8 84.8 81.8 81.8 81.8 82.2 82.2 88.3 82.9 82.9 108.9 119.0 113.6 85.4 81.0 90.5 107.2 84.7 84.5 81.0
5.24
350 300 Frequency
250 200 150 100 50 0 x<25
25<x<50
50<x<75
75<x<100
x>100
Bin
Figure 5.4.4 - Histogram of 400 kV and 220 kV regional branches loadings for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
5.4.2 Voltage Profile in the Region
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
100 90 80 70 60 50 40 30 20 10 0 x<0.9
Frequency
Voltage profile in the region within this scenario which is defined by given generation pattern and power import is seen as satisfactory because there are no voltages outside permitted limits. Figure 5.4.5 shows histogram of voltages in monitored 400 kV and 220 kV substations.
Bin Figure 5.4.5 - Histogram of voltages in monitored substations for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
5.25
5.4.3 Security (n-1) analysis Results of security (n-1) analysis for the 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario are presented in Tables 5.3.4 - 5.3.5. Insecure system situations for given generation pattern and power import are detected in the power systems of Albania, Bulgaria, Bosnia and Herzegovina, Croatia, Romania and Serbia. Some possible actions for transmission system relief during certain contingency cases are previously described while the transformer overloadings in Zerjavinec (Croatia), Nis and Pancevo (Serbia) substations may be removed by system operator actions. Figure 5.4.6 shows geographical positions of critical elements in the analyzed scenario. A green colour reveals 220 kV elements (line 220 kV or transformer 220/x kV), while a red one reveals 400 kV elements (line 400 kV or transformer 400/x kV). According to the obtained and presented results, it may be concluded that certain reinforcements in the internal networks of Romania, Bulgaria, Albania and Serbia are necessary shall this generation pattern and 1500 MW of power import be made more secure. None of the identified congestions is located at the border lines. Table 5.4.4 - Lines overloadings for 2015-sensitivity case-average hydrology-import 1500 MW scenario-topology 2015, single outages Outage
Overloaded line(s)
OHL 220 kV AELBS12-AFIER 2 OHL 400 kV BURGAS-MI_2_400 OHL 220 kV G_ORIAH-MI_2_220 OHL 400 kV VISEGRA-HE VG OHL 400 kV TANTAREN-BRADU OHL 400 kV DOMNESTI-BRAZI OHL 220 kV P.D.F.A-CALAFAT OHL 220 kV P.D.F.A-RESITA ckt.1 OHL 220 kV FUNDENI-BUC.S-B TR 400/220 kV ROSIORI
OHL 220 kV AKASHA2-ARRAZH2 OHL 400 kV PLOVDIV4-MI_400 OHL 220 kV MI_2_220-ST.ZAGORA OHL 220 kV RP KAKAN-KAKANJ5 OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV P.D.F.A-CETATE1 OHL 220 kV P.D.F.A-RESITA ckt.2 OHL 220 kV BUC.S-B-FUNDENI OHL 400 kV GADALIN-CLUJ E OHL 220 kV BRADU-TIRGOVI OHL 220 kV BUC.S-B-FUNDENI OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD3 22-JBGD8 22 OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD3 21-JOBREN2 OHL 220 kV JBGD172-JBGD8 22 ckt.2
TR 400/220 kV BRAZI TR 400/220 kV JBGD8 ckt.2 TR 400/220 kV JBGD8 ckt.1 OHL 400 kV JBGD8 1-JOBREN11 OHL 400 kV JHDJE11-JTDRMN1 OHL 400 kV JPANC21-JTDRMN1 OHL 220 kV JBBAST2-JBGD3 21 OHL 220 kV JBGD3 22-JBGD8 21 OHL 220 kV JBGD172-JBGD8 22 ckt.1
Loadings MVA % 351.1 136.4 742.9 104.9 255.1 105.0 335.1 102.3 312.8 103.4 319.8 103.1 257.9 125.0 273.3 100.9 342.7 110.2 242.2 105.7 285.9 105.9 355.6 118.4 307.4 104.7 329.2 112.9 373.7 107.3 468.7 167.2 321.3 109.1 302.0 103.1 304.8 103.6 300.2 102.0 464.7 132.6
Country ALBANIA BULGARIA B&H
ROMANIA
SERBIA
5.26
Table 5.4.5 - Transformer overloadings for 2015-sensitivity case-average hydrology-import 1500 MW scenariotopology 2015, single outages Outage
Overloaded branch(es)
OHL 400 kV BLUKA 6-TS TUZL TR 400/110 kV ZERJAVIN ckt.1 OHL 400 kV BRASOV-DIRSTE OHL 220 kV BUC.S-B-FUNDENI TR 400/220 kV BUC.S ckt.1 TR 400/110 kV BRASOV TR 400/110 kV DIRSTE TR 400/110 kV NIS ckt.1 TR 400/110 kV PANCEVO ckt.1
TR 400/110 kV UGLJEVIK TR 400/110 kV ZERJAVIN ckt.2 TR 400/110 kV BRASOV TR 400/220 kV BRAZI TR 400/220 kV BUC.S ckt.2 TR 400/110 kV DIRSTE TR 400/110 kV BRASOV TR 400/110 kV NIS ckt.2 TR 400/110 kV PANCEVO ckt.2
Loadings MVA % 302.7 100.9 300.8 100.3 253.8 101.5 418.6 104.6 505.1 126.3 434.5 173.8 423.8 169.5 304.8 101.6 305.8 101.9
Country B&H CROATIA
ROMANIA
SERBIA
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 5.4.6 – Geographical positions of the critical elements for 2015-sensitivity case-average hydrology-import 1500 MW-topology 2015 scenario
5.4.4 Summary of Impacts - 2015 topology versus 2010 topology Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that planned investments make analyzed generation, demand and power import scenario feasible. This scenario could not be solved on 2010 topology because lack of reactive power support especially in the power system of Albania. Construction of at least one new interconnection line from Albania (V.Dejes or Zemlak) to UNMIK (Kosovo B) or Macedonia (Bitola) makes this scenario feasible but voltage profile in Albania, Montenegro and Serbia is poor. If all planned new lines are in operation voltage profile is satisfactory but some internal reinforcements will be necessary to make this generation pattern and power import more secure. 5.27
5.5 Scenario 2015 – average hydrology – high load – 2010 topology This part of the Study presents the results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2015 - average hydrology high load and expected network topology for 2010 with new generation facilities implemented.
5.5.1 Lines loadings Figure 5.5.1 shows power exchanges between areas for 2015-average hydrology high load scenario and 2010 topology. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 5.5.2. Area totals are shown in Table 5.5.1 and comparison of the average hydro regimes with normal load projection and high load projection is shown in Table 5.5.2. Difference of load-demand level for these two regimes for 2015 is around 8.11% on regional level. As a consequence of this high load level, network losses are increased by 262 MW or 25%. Further differences are explained in detail in following chapter. UKR 450
SVK
52
8 39
1 16
AUT
HUN 62
60 12
3
180
SLO
27
ITA
ROM
5
CRO
318
97 8 43
883
SRB
249
BIH 61 5
5 31
109
MNG
BUL 59
849
7 28
7 20
169
ALB
30
63
MKD
59
TUR
38 9
GRE Figure 5.5.1 - Area exchanges in analyzed electric power systems for 2015-average hydrology high load scenario – topology 2010
Figure 5.5.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 50% of their thermal limits, but there are some that are loaded up to 75% of their thermal limit like the 220 kV line from Pizren (Serbia-UNMIK)-Fierza (Albania).
5.28
LEVIC 1400.0
CENTREL
200 124
251 106
GABICK1400.0
450.0 MW
MSAJO 4 410.0
224.4 UMUKACH 412.0
53. 276 3
221.3
22.5 5.2
49.4 32.1
222.0MEDURIC
220.6
58.1 ARAD 130 381.3
ROM
43.1 51.8
P.D.FIE TANTAREN
395.6
228 113
43.1 50.8
187 7.8
402.8
UGLJEVIK 396.1
SCG
JVARDI22 61.7 226.4 64.7
61.4 63.3
SA 20 225.4
CRG 587.0 MW
AEC_400 JNIS2 1 390.4
109 168
DOBRUD4 408.8
409.5
109 SOFIA_W4 109 406.0
JHPERU21 30.9 225.3 41.6
30.7 34.4
315 JPODG211 125 JPODG121223.8
2 1. 05 8
76.7 31.4
209 148
SK 1 223.2
SK 4 408.2
BITOLA 2
413.9
408.8
QES/H
76.7 0.0
KARDIA K 393 415.1 217
K
411.9
FILIPPOI 415.4
2 12 0.3 7
59.1 23.6 K-KEXRU 417.7
KV: 110 , 220 , 400
4HAMITAX 26.2 26.2 414.9 64.8 59.0 53.5 4BABAESK 72.2 415.2
0.0 MW
-0.1 MW KARACQOU 250 418.2 50.0
3 26 2 . 9 .3
.9 32 6.1 7
.6 92 .4 27 LAGAD K 412.9
0 92. 1 67.
AZEMLA1
386 232
MI_3_4_1 417.4
BLAGOEV409.6 409.7
AHS_FLWR415.9 385.6
408.5
.2 5 26 6. 2
1 92. 7 88.
ALB
-883.0 MW
C_MOGILA
.2 63 .4 47
STIP 1
DUBROVO 366.3
.1 63 .5 44
407.8
76.8 60.3
209 148
717 113
3 69. 8 26.
3 69. 8 26.
AVDEJA2 218.1AFIERZ2218.4 378.4
MKD
208 174
899.0 MW
JVRAN31 0.000
-617.0 MW
AKASHA1
BUL
JLESK21 0.000
JPRIZ22 224.7 JTKOSA2 230.2JTKOSB1419.8 15 210 .8
387.2
709 71.3
313 103
68.6 34.0
RP TREB 229.2
JHPIVA21 264 234.3 45.3
2639.2 MW SRB 2052.2 MW
68.6 34.0
VISEGRA 228.4
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2015 HIGH LOAD - NEW GENERATION - TOPOLOGY 2010
421 123
-1039.9 MW
JSUBO31 384.7
JHDJE11
229.7
RP TREB 393.6
SHAW POWER TECHNOLOGIES INC. R
ISACCEA 387.7
395.6
77.5 26.3
223.6 TE TUZL
391.4 58.4 77.6
319 JSMIT21 119
210 131
396.9 191 MO-4 4.1 230.0
BIH
113.2 MW
ROSIORI 382.8
9 22 3 . 73 9 22 3 . 73
MO-4
3.9 NADAB 170 384.5
180 177
JSOMB31 381.7
317 88.6 401.6
157 103
185 11.0
494 5.6
GRADACAC
219.6
2 10 8 . 45
489 2.9
8 52. 2 23.
.8 49 .1 39
PRIJED2
4.2 155
12 57. 2 1
DAKOVO
22.5 13.0
CRO
-1447.8 MW
393.0
24.2 46.0
MSAFA 4
395.8
HE ZAKUC 224.1
24.1 73.1
UKR
450.0 MW
92.3 64.1
MRACLIN
KONJSKO
10.7 28.9
0 18 9 15
41 188 .6
399.2
156 52.8
ERNESTIN
100 47.7
9.9 15.0
1 16 4 . 12 1 16 4 . 12
TUMBRI
406.7
108 1 10 08 10 8 8
.0 .0 46 .8 46 .8 89 89 ZERJAVIN 401.3 ZERJAVIN 226.1
399.9
PEHLIN 228.0
226.6
1 62 08 .6 1 62 08 .6
LCIRKO2
399.7
8 7. .4 10
MELINA
35.7 UMUKACH2 26.9
10.8 7.3
MBEKO 4 392.1
407.1
MPECS 4
LKRSKO1
9. 4. 9 9
35.5 20.1
46.1 15.9
SLO
82 400.1 7. .7 8 LDIVAC2
228.8
46.1 15.9
215.0 MW
52.6 27.7
9.4 86.8
MHEVI 4
7.8 0.6
9.3 83.4
21.2 228.8 27.3
LMARIB1 401.7
82.8 15.8
230.0
21.3 13.5
MTLOK 2 230.4
HUN
161 12.1
IPDRV121
175 49.8
50.1 21.6
MKISV 2 226.2
-1249.8 MW
161 12.1
400.7
175 29.1
MGYOR 2
50.6 6.6
44. 6.7 9
44. 6.7 9
153 48. 6 IRDPV111
406.4
9 50. 5 31
LPODLO2228.5
MSAJI 408.1
4
427 61.9
44.9 37.8
44.9 37.8
234.1 ONEUSI2 233.4
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 282 772.5
26.2 53.5
OKAINA1 401.0
156 52.3
OOBERS2238.7
346 813
228 113
89.3 21.5
405.2
199 77.9
UCTE
221.2 MW
MAISA 7 712.0
MGYOR 4 0 25 .7 89.2 83 104 403.1
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 5.5.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-average hydrology high load scenario – 2010 topology
5.29
Table 5.5.1 - Area totals in analyzed electric power systems for 2015-average hydrology high load scenario – 2010 topology AREA GENERATION LOAD LOSSES INTERCHANGE ALBANIA 896.1 1680 99 -883 BULGARIA 8157.8 7083 175.8 899 BIH 2479.4 2274 92.2 113.2 CROATIA 2591 3959 79.8 -1447.8 MACEDONIA 895 1489 23 -617 ROMANIA 7684.5 8269.8 454.5 -1039.8 SERBIA 10024.2 7635 337 2052.2 MONTENEGRO 1324.6 702 35.6 587 TOTALS 34052.6 33091.8 1296.9 -336.2 Table 5.5.2 - Comparison of Area totals in analyzed electric power systems for 2015- average hydrology versus average hydrology high load scenario – 2010 topology LOAD LOSSES AREA normal normal high load high load load load ALBANIA 1531 1680 9.73% 81.2 99 21.92% BULGARIA 6483 7083 9.25% 150.7 175.8 16.66% BIH 2279 2274 -0.22% 78.7 92.2 17.15% CROATIA 3657 3959 8.26% 63.4 79.8 25.87% MACEDONIA 1407 1489 5.83% 20 23 15% ROMANIA 7317.4 8269.8 13.02% 347.4 454.5 30.83% SERBIA 7263 7635 5.12% 268.7 337 25.42% MONTENEGRO 671 702 4.62% 25 35.6 42.4% TOTALS 30608.4 33091.8 8.11% 1035.1 1296.9 25.29%
Histogram 35 30 Frequency
25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 5.5.3 - Histogram of interconnection lines loadings for 2015- average hydrology high load scenario – topology 2010 ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following Table 5.5.3 lists all network elements loaded over 80% of their thermal limits. As it can be seen large number of lines 220 kV voltage level in Albania, Romania and Serbia are loaded over 80%. It can be concluded that overall load level of the transmission network increased, especially in parts of the network that supply major consumption areas (Tirana in Albania, Bucharest and Timisoara in Romania, Belgrade in Serbia and Pristina in Serbia-UNMIK). Most of the elements loaded over 80% are 220 kV lines in Romania, but also transformers in some substations that supply the major consumption areas. 5.30
There are some elements that are overloaded (220 kV lines Targu Jiu – Paroseni and Urechesti – Targu Jiu in Romania and 220/110 kV transformers in Fierza and Elbasan 1 substation in Albania, and 400/220 kV and 220/110 kV transformers in Kosovo B and Kosovo A substations in SerbiaUNMIK. This leads to conclusion that transmission network is not able to sustain this load-demand level and this production pattern. Table 5.5.3 - Network elements loaded over 80% of their thermal limits for 2015-average hydrology high load scenario – 2010 topology BRANCH LOADINGS ABOVE AREA ALB
ROM
SRB
ALB
BIH CRO
ROM
SRB
80.0 % OF RATING: LOADING MVA Lines HL 220kV AKASHA2-ARRAZH2 1 287.7 HL 220kV BRADU-TIRGOVI 1 285.4 HL 220kV BUC.S-B-FUNDENI 1 309.4 HL 220kV FILESTI-BARBOSI 1 248.3 HL 220kV L.SARAT-FILESTI 1 241 HL 220kV P.D.F.A-CETATE1 1 207.2 HL 220kV P.D.F.A-RESITA 1 266.9 HL 220kV P.D.F.A-RESITA 2 266.9 HL 220kV P.D.F.II-CETATE1 1 271.1 HL 220kV PAROSEN-BARU M 1 227.6 HL 220kV RESITA-TIMIS 1 229.6 HL 220kV RESITA-TIMIS 2 229.6 HL 220kV TG.JIU-PAROSEN 1 320.7 HL 220kV URECHESI-TG.JIU 1 320.4 HL 400kV GADALIN-CLUJ E 1 208.4 HL 220kV JBGD3 21-JOBREN2 1 291 Transformers TR 220/110 kV ABURRE 1 49.5 TR 220/110 kV ABURRE 2 49.5 TR 220/110 kV ABURRE 3 49.5 TR 220/110 kV AELBS1 1 87.7 TR 220/110 kV AELBS1 2 87.7 TR 220/110 kV AELBS1 3 94.2 TR 220/110 kV AFIER 1 149 TR 220/110 kV AFIER 2 122.1 TR 220/110 kV AFIER 3 116.5 TR 220/110 kV AFIERZ 1 58 TR 220/110 kV AFIERZ 2 58 TR 220/110 kV AKASHA 1 93.4 TR 220/110 kV AKASHA 2 93.4 TR 220/110 kV ARRAZH 1 87.7 TR 220/110 kV ARRAZH 2 87.7 TR 220/110 kV ATIRAN 2 97.5 TR 220/110 kV ATIRAN 3 102.2 TR 400/110 kV UGLJEV 1 258.8 TR 220/110 kV TESISA 1 178.8 TR 220/110 kV BARBOS 1 167.1 TR 220/110 kV FUNDE2 1 240.8 TR 220/110 kV FUNDEN 1 203.9 TR 220/110 kV TIMIS 1 171.7 TR 400/110 kV BRASOV 1 231.5 TR 400/110 kV CLUJ E 1 208.4 TR 400/110 kV DIRSTE 1 221 TR 400/220 kV BUC.S 1 378.4 TR 400/220 kV BUC.S 2 378.4 TR 400/220 kV IERNUT 1 408.1 TR 400/220 kV URECHE 1 486.6 TR 220/110 kV JBGD3 1 174.9 TR 220/110 kV JBGD3 2 137.1 TR 220/110 kV JPRIS4 1 137 TR 220/110 kV JPRIS4 2 137 TR 220/110 kV JTKOSA 2 151.3 TR 220/110 kV JTKOSA 3 154 TR 220/110 kV JZREN2 2 133.8 TR 400/110 kV JJAGO4 A 245.8 TR 400/220 kV JBGD8 1 332.2 TR 400/220 kV JTKOSB 1 411.6 ELEMENT
RATING MVA
PERCENT
270 302.6 320 277.4 277.4 208.1 277.4 277.4 277.4 277.4 277.4 277.4 208.1 277.4 238.3 301
106.6 94.3 96.7 89.5 86.9 99.6 96.2 96.2 97.7 82 82.8 82.8 154.1 115.5 87.5 96.7
60 60 60 90 90 90 120 90 90 60 60 100 100 100 100 120 120 300 200 200 200 200 200 250 250 250 400 400 400 400 200 150 150 150 150 150 150 300 400 400
82.5 82.5 82.5 97.5 97.5 104.7 124.1 135.7 129.5 96.7 96.7 93.4 93.4 87.7 87.7 81.3 85.2 86.3 89.4 83.6 120.4 101.9 85.9 92.6 83.4 88.4 94.6 94.6 102 121.6 87.5 91.4 91.3 91.3 100.9 102.7 89.2 81.9 83 102.9
5.31
Histogram 300
Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 5.5.4 - Histogram of branch loadings for 2015-average hydrology high load scenario – 2010 topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
5.5.2 Voltage Profile in the Region Figure 5.5.5 shows histogram of voltages in monitored substations. Overall voltage profile is not adequate. In most of the network, especially in major consumption areas of Albania and Romania, voltages in some monitored substations are below limits. Using of voltage control devices (tap changing transformers, shunt devices) in Albania and Romania is not analyzed, but especially Albania, these devices have very limited abilities for improving voltage profile. All in all it can be concluded that conditions in some parts of the transmission network in this regime are dangerously close to voltage collapse. Histogram 80 70
Frequency
60 50 40 30 20 10 x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 5.5.5 - Histogram of voltages in monitored substations for 2015-dry hydrology scenario – 2010 topology ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
5.32
5.5.3 Security (n-1) analysis Results of security (n-1) analysis for 2015-average hydrology high load scenario and expected topology for 2010 are presented in Table 5.5.4. Figure 5.5.6 shows the geographical position of the critical elements in monitored systems. As it can be seen, by lot of investigated contingencies, insecure states are identified. Almost all elements that are loaded over 80% in base case (Table 5.5.3), represent critical elements in n-1 analyses. Furthermore, for lot of contingency cases (losing of major interconnection and internal lines) results could not be presented because of mathematical instability of the model. This indicates that all these cases are not feasible in reality, and that these contingencies can lead to voltage collapse and partial black outs in some parts of the monitored network. Table 5.5.4 - Network overloadings for 2015-dry hydrology scenario , single outages – 2010 topology Area 1
contingency 2
BASE CASE
AL AL IN IN RO RO
OHL OHL OHL OHL OHL OHL
220kV 220kV 400kV 400kV 220kV 220kV
AVDEJA2 -ATIRAN2 ATIRAN2 -AKASHA2 KONJSKO -MO-4 ISACCEA -DOBRUD4 STUPARE -BRADU URECHESI-SARDANE
RO
OHL 220kV URECHESI-TG.JIU
1
RO
OHL 220kV P.D.F.A -CALAFAT
1
RO
OHL 220kV P.D.F.A -RESITA
1
RO
OHL 220kV RESITA
1
RO RO
OHL 220kV CRAIOV A-TR. MAG 1 OHL 220kV CRAIOV B-ISALNI A 1
RO
OHL 220kV TG.JIU
-PAROSEN
RO
OHL 220kV PESTIS
-MINTIA A 1
RO
OHL 220kV MINTIA B-AL.JL
1
RO
OHL 220kV FUNDENI -BUC.S-B
1
RO
OHL 220kV STEJARU -GHEORGH
1
RO RO
OHL 220kV GHEORGH -FINTINE OHL 220kV CLUJ FL -MARISEL
1 1
RO
OHL 220kV CLUJ FL -AL.JL
1
RO
OHL 220kV AL.JL
1
RO RO RO
OHL 220kV BRAZI A-TELEAJEN 1 OHL 220kV TELEAJEN-STILPU 1 OHL 400kV TANTAREN-URECHESI 1
RO
OHL 400kV TANTAREN-SLATINA
-TIMIS
-GILCEAG
1 1 1 1 1 1
1
1
Area 3 AL RO RO RO RO RO CS CS CS AL AL HR RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO
overloadings / out of limits voltages 4 HL 220kV AKASHA2-ARRAZH2 TR 400/220kV/kV URECHESI HL 220kV LOTRU-SIBIU HL 220kV LOTRU-SIBIU HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 HL 220kV AKASHA2-ARRAZH2 HL 220kV AKASHA2-ARRAZH2 HL 220kV XRA_ZA21-HE ZAKUC TR 400/220kV/kV URECHESI HL 220kV AREF-RIURENI TR 400/220kV/kV URECHESI HL 400kV MINTIA-SIBIU HL 220kV P.D.F.A-RESITA HL 220kV P.D.F.A-RESITA HL 220kV PESTIS-MINTIA A HL 220kV P.D.F.A-CETATE1 TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV P.D.F.A-RESITA HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV RESITA-TIMIS TR 400/220kV/kV URECHESI TR 400/220kV/kV URECHESI HL 400kV MINTIA-SIBIU HL 220kV P.D.F.A-RESITA HL 220kV P.D.F.A-RESITA HL 220kV PESTIS-MINTIA A TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 400kV GADALIN-CLUJ E HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 220kV BRADU-TIRGOVI HL 220kV BUC.S-B-FUNDENI TR 400/220kV/kV URECHESI TR 400/220kV/kV IERNUT TR 400/220kV/kV IERNUT TR 400/220kV/kV URECHESI TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 220kV BUC.S-B-FUNDENI HL 220kV BUC.S-B-FUNDENI TR 400/220kV/kV URECHESI TR 400/220kV/kV URECHESI HL 220kV BRADU-TIRGOVI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN
# 5 1 1 1 2 1 1 1 2 3 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
limit / Unom 6 270MVA 400MVA 277.4MVA 277.4MVA 277.4MVA 208.1MVA 400MVA 400MVA 400MVA 270MVA 270MVA 297MVA 400MVA 277.4MVA 400MVA 381.1MVA 277.4MVA 277.4MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 277.4MVA 400MVA 400MVA 381.1MVA 277.4MVA 277.4MVA 277.4MVA 400MVA 277.4MVA 208.1MVA 238.3MVA 277.4MVA 208.1MVA 302.6MVA 320MVA 400MVA 400MVA 400MVA 400MVA 400MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 320MVA 320MVA 400MVA 400MVA 302.6MVA 277.4MVA 208.1MVA
Flow / Voltage 7 263MVA 483.6MVA 275.6MVA 275.6MVA 307.7MVA 298.9MVA 432MVA 451.4MVA 451.4MVA 275.2MVA 274.6MVA 343.9MVA 506.7MVA 252.6MVA 455.2MVA 387.2MVA 269.1MVA 269.1MVA 256.1MVA 259.6MVA 504MVA 325.7MVA 355.4MVA 315.2MVA 494.2MVA 317.8MVA 351.8MVA 464.8MVA 499.6MVA 386.7MVA 269.1MVA 269.1MVA 257.2MVA 507.3MVA 326MVA 313.5MVA 216.3MVA 296.3MVA 288.2MVA 273.6MVA 389.3MVA 495.9MVA 487.2MVA 412.5MVA 497MVA 471.7MVA 294.1MVA 286.3MVA 514.1MVA 333MVA 320.8MVA 307.4MVA 307.8MVA 467.2MVA 559.7MVA 272.9MVA 292.5MVA 284.5MVA
rate / volt.dev. 8 106.6% 120.9% 102.1% 102.1% 115.5% 154.1% 108.0% 112.9% 112.9% 123.9% 111.1% 115.1% 126.7% 106.6% 113.8% 116.9% 108.8% 108.8% 105.5% 129.9% 126.0% 123.6% 145.4% 165.0% 123.6% 119.9% 136.8% 116.2% 124.9% 117.0% 109.0% 109.0% 106.3% 126.8% 124.6% 166.4% 101.8% 111.1% 148.3% 108.2% 134.8% 124.0% 121.8% 103.1% 124.3% 117.9% 110.1% 146.9% 128.5% 127.8% 170.6% 105.4% 105.6% 116.8% 139.9% 104.1% 112.9% 150.6%
5.33
Area 1
contingency 2
RO
OHL 400kV URECHESI-P.D.FIE
RO
OHL 400kV URECHESI-DOMNESTI 1
RO
OHL 400kV MINTIA
-ARAD
1
RO
OHL 400kV MINTIA
-SIBIU
1
RO RO
OHL 400kV P.D.FIE -SLATINA OHL 400kV DOMNESTI-BUC.S
1 1
RO
OHL 400kV DOMNESTI-BRAZI
1
RO RO RO RO
OHL OHL OHL OHL
-L.SARAT -CERNAV -CERNAV -ROMAN
1 1 2 1
RO
OHL 400kV BRASOV
-BRADU
1
RO
OHL 400kV IERNUT
-GADALIN
1
CS CS CS CS CS
OHL OHL OHL OHL OHL
CS
OHL 220kV JLESK22 -JNIS 22
1
CS CS CS CS
OHL OHL OHL OHL
1 1 1 1
CS
OHL 400kV JBGD8 1 -JOBREN11 1
CS CS
OHL 400kV JBGD8 1 -JBGD201 OHL 400kV JBOR 21 -JHDJE11
A 1
CS
OHL 400kV JNIS2 1 -JJAGO41
A
CS
OHL 400kV JNSAD31 -JSUBO31
1
CS
OHL 400kV JOBREN12-JTKOLB1
A
CS
OHL 400kV JPANC21 -JTDRMN1
1
CS
OHL 400kV JRPMLA1 -JSMIT21
1
BG CS CS CS CS
TR TR TR TR TR
CS
TR 400/110 JPEC
BG
TR 400/110 PLOVDIV 1
MK
TR 400/110 SK 1
RO RO
TR 400/110 SMIRDAN TR 400/220 BRAZI
400kV 400kV 400kV 400kV
220kV 220kV 220kV 220kV 220kV
220kV 220kV 220kV 220kV
GR.IAL GR.IAL GR.IAL BACAU
JBBAST2 -JBGD3 21 JBGD172 -JBGD8 22 JBGD3 22-JBGD8 21 JBGD3 22-JBGD8 22 JHIP 2 -JPANC22
JNSAD32 JNSAD32 JOBREN2 JTKOSA2
400/110 400/110 400/110 400/110 400/110
-JOBREN2 -JZREN22 -JVALJ32 -JTKOSB2
CAREVEC 1 JBGD20 A JKRAG2 1 JNIS2 1 JPANC2 1 A
1 1 1
1
1 1 1 2 1
Area 3 RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO CS CS CS CS CS CS CS CS CS CS CS CS CS CS CS RO RO RO RO CS CS CS RO RO RO RO RO RO RO RO CS RO RO BG CS CS CS CS CS CS CS BG CS CS CS RO RO RO RO RO
overloadings / out of limits voltages 4 TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV URECHESI HL 220kV BRADU-TIRGOVI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV P.D.F.A-RESITA HL 220kV P.D.F.A-RESITA HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV URECHESI HL 220kV BUC.S-B-FUNDENI TR 400/220kV/kV URECHESI TR 400/220kV/kV BUC.S TR 400/220kV/kV BUC.S HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 220kV BUC.S-B-FUNDENI HL 220kV BUC.S-B-FUNDENI HL 400kV GR.IAL-CERNAV HL 400kV GR.IAL-CERNAV TR 400/220kV/kV URECHESI TR 400/220kV/kV URECHESI HL 220kV BRADU-TIRGOVI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 400kV MINTIA-SIBIU TR 400/220kV/kV IERNUT HL 220kV JBGD3 21-JOBREN2 HL 220kV JBGD172-JBGD8 22 HL 220kV JBGD3 21-JOBREN2 TR 400/220kV/kV JBGD8 1 HL 220kV JBGD3 21-JOBREN2 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 HL 220kV JBGD3 21-JOBREN2 HL 220kV JBGD3 21-JOBREN2 HL 220kV JBGD3 21-JOBREN2 HL 220kV JTKOSA2-JTKOSB2 HL 220kV JBGD3 21-JOBREN2 HL 220kV JBGD3 22-JBGD8 22 HL 220kV JBGD3 21-JOBREN2 TR 400/220kV/kV URECHESI TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV P.D.F.A-RESITA HL 220kV P.D.F.A-RESITA HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN HL 220kV JBGD3 21-JOBREN2 TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU TR 400/110kV/kV CAREVEC HL 220kV JBGD3 21-JOBREN2 TR 400/110kV/kV JKRAG21 TR 400/110kV/kV JNIS2 1 TR 400/110kV/kV JPANC21 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/110kV/kV PLOVDIV4 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 HL 220kV L.SARAT-FILESTI TR 400/220kV/kV BUC.S TR 400/220kV/kV BUC.S HL 220kV BRADU-TIRGOVI HL 220kV FUNDENI-BUC.S-B
# 5 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 1 1 1 2 1 2 1 1 1 1 1 1 2 3 1 1 1 2 1 1 1 1 1 1 1 2 1 2 2 2 1 2 3 2 1 2 3 1 1 2 1 1
limit / Unom 6 400MVA 277.4MVA 208.1MVA 400MVA 302.6MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 277.4MVA 277.4MVA 208.1MVA 400MVA 320MVA 400MVA 400MVA 400MVA 277.4MVA 208.1MVA 320MVA 320MVA 791.2MVA 791.2MVA 400MVA 400MVA 302.6MVA 277.4MVA 208.1MVA 381.1MVA 400MVA 301MVA 365.8MVA 301MVA 400MVA 301MVA 400MVA 400MVA 400MVA 301MVA 301MVA 301MVA 365.8MVA 301MVA 365.8MVA 301MVA 400MVA 400MVA 277.4MVA 208.1MVA 400MVA 400MVA 400MVA 400MVA 277.4MVA 277.4MVA 277.4MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 301MVA 400MVA 277.4MVA 275MVA 301MVA 300MVA 300MVA 300MVA 400MVA 400MVA 400MVA 275MVA 400MVA 400MVA 400MVA 277.4MVA 400MVA 400MVA 302.6MVA 320MVA
Flow / Voltage 7 451.1MVA 290.7MVA 282.7MVA 551.6MVA 274.9MVA 329.2MVA 318.2MVA 295.6MVA 283.8MVA 527.9MVA 355.6MVA 262.9MVA 262.9MVA 343.2MVA 518.9MVA 327.2MVA 505.8MVA 436MVA 436MVA 323.6MVA 312.2MVA 374.2MVA 304.5MVA 775.9MVA 773.4MVA 493.8MVA 498.6MVA 304.9MVA 319.2MVA 309MVA 345.1MVA 413.3MVA 314.9MVA 488.5MVA 308.5MVA 425.8MVA 296.7MVA 443.8MVA 463.8MVA 463.8MVA 303.6MVA 303.6MVA 291MVA 453.9MVA 490.7MVA 337MVA 298.4MVA 494.5MVA 496.6MVA 319.6MVA 309.6MVA 444.6MVA 464.6MVA 464.6MVA 511.8MVA 331.7MVA 266.3MVA 266.3MVA 320.3MVA 501MVA 323.4MVA 313MVA 313MVA 497MVA 318.6MVA 281.3MVA 289.5MVA 314.1MVA 353.3MVA 327.4MVA 472.2MVA 493.4MVA 493.4MVA 284.4MVA 448.2MVA 468.3MVA 468.3MVA 302.2MVA 447MVA 447MVA 302.8MVA 290.1MVA
rate / volt.dev. 8 112.8% 108.8% 145.2% 137.9% 106.9% 125.9% 168.0% 113.4% 151.7% 132.0% 135.8% 103.9% 103.9% 181.2% 129.7% 110.4% 126.4% 109.0% 109.0% 123.6% 165.0% 131.0% 103.3% 102.0% 101.6% 123.5% 124.7% 114.7% 121.2% 161.7% 102.9% 103.3% 110.0% 144.0% 107.6% 106.5% 103.4% 111.0% 115.9% 115.9% 105.2% 106.0% 100.8% 119.0% 187.1% 108.2% 104.1% 123.6% 124.1% 121.0% 161.5% 111.1% 116.1% 116.1% 128.0% 126.7% 106.1% 106.1% 169.1% 125.3% 122.9% 164.0% 110.1% 124.2% 120.6% 102.3% 100.6% 104.7% 117.8% 109.1% 118.1% 123.4% 123.4% 103.4% 112.0% 117.1% 117.1% 113.5% 111.8% 111.8% 123.3% 104.0%
5.34
Area 1
contingency 2
RO
TR 400/220 BUC.S
CS
TR 400/220 JBGD8
1
CS
TR 400/220 JBGD8
2
CS
TR 400/220 JNIS2
1
CS
TR 400/220 JTKOSB 1
RO
TR 400/220 MINTIA
1
RO
TR 400/220 SIBIU
1
RO
TR 400/220 SLATINA
1
Area 3 RO RO CS CS CS CS CS CS CS CS RO RO RO RO RO RO
1
overloadings / out of limits voltages 4 HL 220kV BUC.S-B-FUNDENI TR 400/220kV/kV BUC.S HL 220kV JBGD3 21-JOBREN2 HL 220kV JBGD3 22-JBGD8 22 HL 220kV JBGD3 21-JOBREN2 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV JTKOSB1 TR 400/220kV/kV URECHESI HL 220kV URECHESI-TG.JIU HL 220kV TG.JIU-PAROSEN TR 400/220kV/kV SIBIU TR 400/220kV/kV URECHESI TR 400/220kV/kV SLATINA
# 5 1 2 1 2 1 1 2 3 2 3 1 1 1 2 1 2
limit / Unom 6 320MVA 400MVA 301MVA 365.8MVA 301MVA 400MVA 400MVA 400MVA 400MVA 400MVA 400MVA 277.4MVA 208.1MVA 400MVA 400MVA 400MVA
Flow / Voltage 7 387.2MVA 577.8MVA 340.4MVA 398.3MVA 315.3MVA 447.5MVA 467.6MVA 467.6MVA 610MVA 610MVA 501.5MVA 323MVA 311.7MVA 490.9MVA 518.8MVA 460.5MVA
rate / volt.dev. 8 138.6% 144.4% 120.3% 118.3% 110.4% 111.9% 116.9% 116.9% 152.5% 152.5% 125.4% 122.7% 163.7% 122.7% 129.7% 115.1%
SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 5.5.6 – geographical position of critical elements for 2015-average hydrology high load scenario – topology 2010
Some of these problems identified are connected to the problem of new generation units implemented in the model. For some, there is great insecurity how these units will be connected to the transmission network, especially in the case of new generation capacities in Kosovo B region (Serbia-UNIMK). In this regime new 3000 MW generation capacity is analyzed. Problem of feasible connection of such a large generation capacity is not in the scope of this study and separate study, that will analyze this problem alone is necessary to give right answer to this question. All in all, it can be concluded that this regime is not feasible without major reinforcement of transmission network.
5.35
5.6 Scenario 2015 – average hydrology – high load – topology 2015 This part of the Study presents the results of static load flow and voltage profile analyses that are conducted for complete network topology and (n-1) contingencies in the scenario which is denoted as GTmax run for year 2015 - average hydrology high load scenario and expected network topology for 2015 and new planned generation capacities implemented.
5.6.1 Lines loadings Figure 5.6.1 shows power exchanges between areas for 2015-average hydrology high load scenario. Power flows along interconnection lines in the region together with balances of the systems are shown in Figure 5.6.2. Area totals are shown in Table 5.6.1 and comparison of the average hydro regimes with normal load projection and high load projection is shown in Table 5.6.2. Difference of load-demand level for these two regimes is around 8.11% on regional level. As a consequence of this high load level, network losses are increased by 251 MW or 25%. Figure 5.6.3 shows histogram of tie lines loadings. It is concluded that most of the tie lines are loaded less than 50% of their thermal limits. UKR 450
SVK
61
9 38
3 17
AUT
HUN 89
49 15
1
175
SLO
4 26
ITA
CRO
ROM
305
10 30 55
835
SRB
208
BIH 0 71
95
32
MNG
BUL 691
91
1 68
56
ALB 23
7
170
MKD
32
7
56
TUR
57
GRE Figure 5.6.1 - Area exchanges in analyzed electric power systems for 2015-average hydrology high load scenario – 2015 topology
As it can be seen, new elements that are expected to be build till 2015 cause totally different distribution of power flows in the southern part of the region (Albania, FYR of Macedonia, Serbia and Montenegro). Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that the network losses are decreased as a consequence of building of new elements for 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of loses is around 39 MW. 5.36
LEVIC 1400.0
CENTREL
200 125
251 107
GABICK1400.0
450.0 MW
MSAJO 4 410.0
406.9
220.7
224.4 UMUKACH 412.0
62. 264 4
18.0 NADAB 163 385.4
392.0 71.0 70.9
70.7 ARAD 123 382.4
ROM
ISACCEA 388.6
-1040.2 MW
JSUBO31 385.4
396.2 JHDJE11
P.D.FIE
55.4 74.2
55.4 75.2
95.1 125
95.5 SOFIA_W4 60.8 407.1
TANTAREN
209 112
396.9
157 3.0
403.6
UGLJEVIK 396.7
SCG
50.6 29.4
JHPERU21 51.0 228.1 36.2
386 61.2
388 JPODG211 77.7 JPODG121227.2 JPRIZ22 228.7 JTKOSA2 231.8JTKOSB1420.0
-617.0 MW
MKD
184 141
386.0
412.1
2 7. .5 53
STIP 1 408.3 DUBROVO
AZEMLA1
56.2 146
KARDIA K 56.8 416.9 77.2
QES/H
9.9 5.9
23 11 6 4
AHS_FLWR416.0
K
412.4
KV: 110 , 220 , 400
415.5
6 12 0.1 7
56.4 23.7 K-KEXRU 417.8
4HAMITAX 25.0 25.0 414.9 65.5 56.4 54.2 4BABAESK 72.3 415.3
0.0 MW
0.0 MW
KARACQOU 250 419.1 50.0
FILIPPOI
3 25 1.4 .4
.4 31 7.0 7
160 107
.5 93 .4 29 LAGAD K 413.4
404.2
MI_3_4_1 417.5
BLAGOEV410.3 408.9
ALB
-883.0 MW
409.3
.0 8 25 5. 2
237 0 76.
2 7. 6 . 39
406.1
160 127
AKASHA1
184 141
BITOLA 2
C_MOGILA
1 27 84 .7
SK 4 406.9
899.0 MW
JVRAN31 401.5
183 68.0 SK 1 223.8
DOBRUD4 409.2
410.0
BUL
JLESK21 397.2
9.8 67.4
1 17 11 .5
AVDEJA2 222.7AFIERZ2223.7 395.0
77.9 38.8
17.6 36.9
109 39.7
570 142
185 107
185 107
725 134
9 78. 6 32.
566 131
9 78. 6 32.
15 112 .3
395.7
AEC_400 JNIS2 1 396.5
12 57. 6 1
CRG 587.0 MW
717 89.1
RP TREB 230.9
JHPIVA21 258 235.7 52.3
77.9 38.8
SA 20 226.0
2638.9 MW SRB 2051.9 MW
93.2 62.3
JVARDI22 50.8 227.4 59.8
50.7 58.1
17.8 28.4
VISEGRA 229.3
95.1 94.9 46.2 81.9
229.8
AVDEJA1
GIS REGIONAL MODEL - AVERAGE HYDRO 2015 HIGH LOAD - NEW GENERATION - TOPOLOGY 2015
ROSIORI 383.9
306 JSMIT21 114
108 13.4
398.4 195 MO-4 5.2 230.5
BIH
112.9 MW
18.3 148
0 21 6 . 70 0 21 6 . 70
MO-4
223.7 TE TUZL
RP TREB 398.3
SHAW POWER TECHNOLOGIES INC. R
UKR
450.0 MW
411 123
114 1 11 07 10 4 7
JSOMB31 382.4
304 81.8 401.9
168 100
190 11.2
513 3.1
GRADACAC
219.7
5 10 7 . 45
PRIJED2
507 1.9
6 55. 9 22.
.2 55 .4 39
19.5 13.2
CRO
-1448.1 MW
393.7
15.0 45.3
MSAFA 4
397.0
HE ZAKUC 224.5
14.9 73.9
5 17 7 15
38 157 .7
19.6 5.4
54.7 32.8
221.3
104 47.2
DAKOVO
222.1MEDURIC
55.3 27.4
399.2
MRACLIN
167 50.7
ERNESTIN
1 8. .4 10
12.1 15.2
226.6
.2 .2 38 .5 38 .5 90 90 ZERJAVIN 401.4 ZERJAVIN 226.1
1 16 8 . 11 1 16 8 . 11
TUMBRI
KONJSKO
10.7 28.9
67.6 67.6 14.1 34.9
LCIRKO2
1 61 14 .1 1 61 14 .1
399.8
400.0
PEHLIN 228.0
10.8 7.3
MBEKO 4 392.7
407.2
MPECS 4
LKRSKO1
MELINA
35.7 UMUKACH2 27.0
176 176
SLO
12 5. .1 2
35.5 20.2
38.4 15.5
38.4 15.5
215.0 MW
91 400.1 7. .5 6 LDIVAC2
228.9
MHEVI 4
8.1 0.6
10.2 86.6
22.6 228.8 27.0
LMARIB1 401.8
91.6 15.9
230.0
10.1 83.3
178 49.1
22.7 13.1
MTLOK 2 230.4
HUN
161 12.7
IPDRV121
178 28.4
51.9 21.2
MKISV 2 226.2
-1249.9 MW
161 12.7
400.7
MGYOR 2
52.4 6.3
41. 6.5 7
41. 6.5 7
152 48. 7 IRDPV111
406.4
2 60. 4 30
LPODLO2228.5
MSAJI 408.1
4
417 57.5
41.7 37.7
41.7 37.7
234.1 ONEUSI2 233.4
LDIVAC1
MGOD
OWIEN 2
350 UZUKRA01 282 772.5
25.0 54.2
OKAINA1 401.0
155 52.2
OOBERS2238.7
346 813
209 112
98.4 22.2
405.2
199 78.7
UCTE
222.4 MW
MAISA 7 712.1
MGYOR 4 0 25 .2 98.3 84 103 403.1
OWIEN 1
GRE
TUR
BUS -VOLTAGE(KV) BRANCH -MW/MVAR EQUIPMENT -MW/MVAR
Figure 5.6.2 - Power flows along interconnection lines in the region with balances of the systems for 2015-dry hydrology scenario
5.37
Table 5.6.1 - Area totals in analyzed electric power systems for 2015-average hydrology high load scenario – 2015 topology AREA GENERATION LOAD LOSSES INTERCHANGE ALBANIA 897.7 1684 96.7 -883 BULGARIA 8157.4 7083 175.4 899 BIH 2479.7 2272 94.7 112.9 CROATIA 2592.1 3959 81.1 -1448.1 MACEDONIA 895.7 1489 23.7 -617 ROMANIA 7676.4 8269.8 446.7 -1040.1 SERBIA 10023.9 7660 311.9 2051.9 MONTENEGRO 1322.6 708 27.6 587 TOTALS 34045.5 33124.8 1257.8 -337.4 Table 5.6.2 - Comparison of Area totals in analyzed electric power systems for 2015- average hydrology versus average hydrology high load scenario –2015 topology LOAD LOSSES AREA normal normal high load high load load load ALBANIA 1541 1684 9.28% 73.1 96.7 32.28% BULGARIA 6483 7083 9.25% 150.9 175.4 16.24% BIH 2279 2272 -0.31% 79.2 94.7 19.57% CROATIA 3657 3959 8.26% 64 81.1 26.72% MACEDONIA 1407 1489 5.83% 21.4 23.7 10.75% ROMANIA 7317.4 8269.8 13.02% 343.1 446.7 30.2% SERBIA 7279 7660 5.23% 254.4 311.9 22.6% MONTENEGRO 676 708 4.73% 20.3 27.6 35.96% TOTALS 30639.4 33124.8 8.11% 1006.4 1257.8 24.98%
Histogram 40 35
Frequency
30 25 20 15 10 5 0 x<25
25<x<50
50<x<75 75<x<100
x>100
Bin
Figure 5.6.3 - Histogram of interconnection lines loadings for 2015-average hydrology high load scenario – 2015 topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
Following Table 5.6.3 shows all network elements loaded over 80% of their thermal limits. Histogram of branch loadings in the system is shown in Figure 5.6.4. As it can be seen large number of lines 220 kV voltage level in Albania, Romania and Serbia are loaded over 80% for the reasons described in previous chapter in detail. It can be concluded that new expected network topology for 2015 compared to 2010 topology has small influence in overall load level of the transmission network. Almost the same elements are found critical as for topology 2010, especially in parts of the network that supply major consumption areas (Tirana in Albania, Bucharest and Timisoara in Romania, Belgrade in Serbia and Pristina in Serbia-UNMIK). 5.38
Table 5.6.3 - Network elements loaded over 80% of their thermal limits for 2015-average hydrology high load scenario – 2015 topology BRANCH LOADINGS ABOVE AREA ALB
ROM
SRB
ALB
BIH CRO
ROM
SRB
MNG
80.0 % OF RATING: LOADING MVA Lines HL 220kV AKASHA2-ARRAZH2 1 290.4 HL 220kV BRADU-TIRGOVI 1 283.9 HL 220kV BUC.S-B-FUNDENI 1 307.5 HL 220kV FILESTI-BARBOSI 1 245.8 HL 220kV L.SARAT-FILESTI 1 239 HL 220kV LOTRU-SIBIU 1 281.2 HL 220kV LOTRU-SIBIU 2 281.2 HL 220kV P.D.F.A-CETATE1 1 206.3 HL 220kV P.D.F.A-RESITA 1 262.1 HL 220kV P.D.F.A-RESITA 2 262.1 HL 220kV P.D.F.II-CETATE1 1 269.9 HL 220kV RESITA-TIMIS 1 225 HL 220kV RESITA-TIMIS 2 225 HL 220kV TG.JIU-PAROSEN 1 313.8 HL 220kV URECHESI-TG.JIU 1 313.5 HL 220kV JBGD3 21-JOBREN2 1 292 Transformers TR 220/110 kV ABURRE 1 52.2 TR 220/110 kV ABURRE 2 52.2 TR 220/110 kV ABURRE 3 52.2 TR 220/110 kV AELBS1 1 87.8 TR 220/110 kV AELBS1 2 87.8 TR 220/110 kV AELBS1 3 94.4 TR 220/110 kV AFIER 1 151.7 TR 220/110 kV AFIER 2 124.4 TR 220/110 kV AFIER 3 118.7 TR 220/110 kV AFIERZ 1 59.9 TR 220/110 kV AFIERZ 2 59.9 TR 220/110 kV AKASHA 1 94.7 TR 220/110 kV AKASHA 2 94.7 TR 220/110 kV ARRAZH 1 87.5 TR 220/110 kV ARRAZH 2 87.5 TR 220/110 kV ATIRAN 2 96.4 TR 220/110 kV ATIRAN 3 100.6 TR 220/110 kV MO-4 3 124.4 TR 400/110 kV UGLJEV 1 256.1 TR 220/110 kV TESISA 1 179.4 TR 220/110 kV BARBOS 1 166.6 TR 220/110 kV FUNDE2 1 239.8 TR 220/110 kV FUNDEN 1 203 TR 220/110 kV TIMIS 1 170.4 TR 400/110 kV BRASOV 1 230.2 TR 400/110 kV CLUJ E 1 206.4 TR 400/110 kV DIRSTE 1 219.6 TR 400/220 kV BUC.S 1 376.5 TR 400/220 kV BUC.S 2 376.5 TR 400/220 kV IERNUT 1 404.8 TR 400/220 kV URECHE 1 479.7 TR 220/110 kV JBGD3 1 174.8 TR 220/110 kV JBGD3 2 137.5 TR 220/110 kV JTKOSA 2 133.5 TR 220/110 kV JTKOSA 3 135.9 TR 220/110 kV JZREN2 2 133.8 TR 400/220 kV JBGD8 1 330.3 TR 400/220 kV JTKOSB 1 351.9 TR 400/220 kV JTKOSB 2 367.7 TR 400/220 kV JTKOSB 3 367.7 TR 220/110 kV JTPLJE 1 102.4 ELEMENT
RATING MVA
PERCENT
270 302.6 320 277.4 277.4 277.4 277.4 208.1 277.4 277.4 277.4 277.4 277.4 208.1 277.4 301
107.6 93.8 96.1 88.6 86.2 101.4 101.4 99.1 94.5 94.5 97.3 81.1 81.1 150.8 113 97
60 60 60 90 90 90 120 90 90 60 60 100 100 100 100 120 120 150 300 200 200 200 200 200 250 250 250 400 400 400 400 200 150 150 150 150 400 400 400 400 125
87 87 87 97.6 97.6 104.8 126.4 138.2 131.9 99.8 99.8 94.7 94.7 87.5 87.5 80.3 83.9 83 85.4 89.7 83.3 119.9 101.5 85.2 92.1 82.6 87.8 94.1 94.1 101.2 119.9 87.4 91.7 89 90.6 89.2 82.6 88 91.9 91.9 82
Histogram 300
Frequency
250 200 150 100 50 0 x<25
25<x<50 50<x<75 75<x<100
x>100
Bin
Figure 5.6.4 - Histogram of branch loadings for 2015-average hydrology scenario – 2015 topology ("Frequency" denotes number of lines and "Bin" denotes loading range in % of thermal limit)
5.39
This leads to conclusion that planned network reinforcements compared to network topology 2010, reduce loading of some elements in southern part of Serbia, and that in order for transmission network to sustain this load-demand level and this production pattern, additional network reinforcements are necessary, especially in increasing transformer capacity in substations that supply major consumption areas in Albania, Romania and Serbia.
5.6.2 Voltage Profile in the Region Figure 5.6.5 shows histogram of voltages in monitored substations. Like for the investigated topology 2010, overall voltage profile is not adequate, but comparing to 2010 topology voltage profile is much better in monitored parts of Albanian and Serbian network. In some parts of the network, especially in major consumption areas of Romania, voltages in some monitored substations are below allowed limits. Using of voltage control devices (tap changing transformers, shunt devices) can improve voltage profile in this region, but it can be concluded that conditions in some parts of the transmission network of Romania are dangerously close to voltage collapse. Since this is local problem, detailed analyses is necessary to analyze this situation. Histogram 80 70
Frequency
60 50 40 30 20 10
x>1.1
1.05<x<1.1
1.025<x<1.05
1<x<1.025
0.975<x<1
0.95<x<0.975
0.9<x<0.95
x<0.9
0
Bin
Figure 5.6.5 - Histogram of voltages in monitored substations for 2015-average hydrology high load scenario – 2015 topology ("Frequency" denotes number of busses and "Bin" denotes voltage range in p.u.)
5.6.3 Security (n-1) analysis Results of security (n-1) analysis for 2015-average hydrology high load scenario and expected network topology for 2015 are presented in Table 5.6.4. Figure 5.6.6 shows the geographical position of the critical elements in monitored systems.
5.40
Like for expected topology 2010 (previous chapter), it can be concluded that all identified insecure situations are located in internal networks that belong to monitored power systems of Albania, Romania and Serbia. Also, the planned network reinforcements till 2015 resolve some of the noticed critical contingencies, especially in southern part of Serbia. Compared to the similar scenario with normal load projection, it can be concluded that higher load-demand projected and new production capacities modeled, increase the overload level of some critical elements. The rest of the conclusions are the same as in case of the analyzed normal load projection and expected topology 2015, and that is that certain level of network reinforcement is necessary to make this regime more secure. SVK AUT HUN
SLO
ROM CRO
SRB
BIH
MNG
BUL
MKD TUR
ALB
GRE
critical elements 400 kV line or 400/x kV transformer 220 kV line or 220/x kV transformer
Figure 5.6.6 – geographical position of critical elements for 2015-average hydrology high load scenario – 2015 topology
5.41
Table 5.6.4 - Network overloadings for 2015-average hydrology high load scenario , single outages – 2015 topology Area 1
contingency 2 BASE CASE
AL
OHL 220kV AELBS12 -AFIER 2
1
RO
OHL 220kV P.D.F.A -RESITA
1
RO
OHL 220kV RESITA
-TIMIS
1
RO
OHL 220kV PESTIS
-MINTIA A 1
RO
OHL 220kV CLUJ FL -AL.JL
1
RO
OHL 220kV AL.JL
1
RO
OHL 400kV TANTAREN-URECHESI 1
RO
OHL 400kV TANTAREN-BRADU
1
RO
OHL 400kV TANTAREN-SIBIU
1
RO
OHL 400kV URECHESI-P.D.FIE
1
RO
OHL 400kV URECHESI-DOMNESTI 1
RO
OHL 400kV MINTIA
-ARAD
1
RO
OHL 400kV MINTIA
-SIBIU
1
RO
OHL 400kV DOMNESTI-BRAZI
1
RO
OHL 400kV SMIRDAN -GUTINAS
1
RO
OHL 400kV BRASOV
-BRADU
1
CS CS RO RO CS CS RO RO
OHL 220kV JBGD172 OHL 400kV JBGD8 1 TR 400/110 BRASOV TR 400/110 DIRSTE TR 400/110 JNIS2 TR 400/110 JPANC2 TR 400/220 BUC.S TR 400/220 IERNUT
-JBGD8 22 1 -JOBREN11 1 1 1 1 1 1 1
-GILCEAG
overloadings / Area out of limits voltages 3 4 RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN AL HL 220kV AKASHA2-ARRAZH2 RO HL 220kV URECHESI-TG.JIU RO HL 220kV P.D.F.A-RESITA RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV RESITA-TIMIS RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO TR 400/220kV/kV URECHESI RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN RO HL 220kV URECHESI-TG.JIU RO HL 220kV TG.JIU-PAROSEN CS HL 220kV JBGD172-JBGD8 22 CS HL 220kV JBGD3 21-JOBREN2 RO TR 400/110kV/kV DIRSTE RO TR 400/110kV/kV BRASOV CS TR 400/110kV/kV JNIS2 1 CS TR 400/110kV/kV JPANC21 RO TR 400/220kV/kV BUC.S RO HL 220kV STEJARU-GHEORGH
# 5 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1
limit / Unom 6 277.4MVA 208.1MVA 270MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 208.1MVA 400MVA 277.4MVA 208.1MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 277.4MVA 208.1MVA 365.8MVA 301MVA 250MVA 250MVA 300MVA 300MVA 400MVA 208.1MVA
Flow rate / / Voltage volt.dev. 7 8 285.6MVA 100.1% 285.6MVA 133.5% 289.9MVA 112.2% 301.5MVA 106.1% 331.5MVA 122.8% 301.5MVA 141.4% 295.7MVA 103.9% 348.7MVA 127.0% 295.7MVA 138.5% 296.3MVA 104.8% 290.4MVA 139.7% 271MVA 126.4% 308.8MVA 109.1% 308.8MVA 145.4% 292.5MVA 102.6% 300.1MVA 105.9% 300.1MVA 141.1% 331.1MVA 117.3% 331.1MVA 156.4% 268.7MVA 124.5% 400.6MVA 100.1% 305.6MVA 107.7% 305.6MVA 143.6% 263.1MVA 123.1% 326.2MVA 115.5% 326.2MVA 153.9% 296.2MVA 104.0% 296.2MVA 138.7% 296.9MVA 104.5% 296.9MVA 139.3% 296.3MVA 104.3% 296.3MVA 139.0% 453.5MVA 129.0% 293.8MVA 102.6% 353.9MVA 141.6% 350MVA 140.0% 323.1MVA 107.7% 318.8MVA 106.3% 405.6MVA 101.4% 196.5MVA 106.0%
5.6.4 Summary of Impacts - 2015 topology versus 2010 topology Compared to the expected topology 2010, analyzed in previous chapter, it can be seen that the network losses are smaller as a consequence of building of new elements for 2015 network topology, especially in the cases of Albania, Serbia and Montenegro. Overall reduction of loses is around 39 MW. Also, planned network reinforcements compared to network topology 2010, reduce load of some elements in southern part of Serbia. Compared to the 2010 topology, voltage profile is somewhat better, especially in southern and central part of Serbia, as well as in Albania. This is direct consequence of the building of the new 400 kV line Nis-Leskovac-Vranje-Skopje and substation 400/110 kV Vranje. However, voltage profile is still not satisfying. Realization of the planed investments till 2015 has impact on secure operation of the network. Some of the insecure states identified with 2010 topology are relieved and do not exist with expected 2015 network topology. Main conclusion can be that even with 2015 topology, this load-generation regime is not feasible enough and additional network reinforcements are necessary, especially in the major consumption area.
5.42
6 ANALYSES SUMMARY AND RECOMMENDATIONS
6.1
In this chapter, comparison of the all analyzed scenarios is presented. Main issues are impact of different generation patterns and planed network investments on system losses and system security. The authors tried to give main indicators how to resolve some insecure states identified, based on prerequisites and assumptions presented in Chapter 2 and only results of the analyses of scenarios. Deeper impacts of the proposed remedies are not analyzed whether they are or not in compliance with long term investments plans of the countries in the region.
6.1 Reference cases Reference cases consist of nine cases. Three different hydrology scenarios are analyzed (average, dry and wet) for years 2010 and 2015. Also, for each of these generation-load patterns in year 2015 two cases are analyzed (first for 2010 topology, i.e. without any new line or transformer planned for commissioning between 2010 and 2015 and second for expected topology in year 2015).
6.1.1 Analyses comparison Main focus of this subchapter is to analyze influence of different generation patterns and planed network investments on overall network performance and system losses. Table 6.1.1 shows overview of losses on regional level. It can be seen that new elements planned for commissioning between 2010 and 2015 influence reduction of losses in analyzed region, no matter of hydrology. This reduction of losses is between 30 and 40 MW. Table 6.1.1: Peak Hour - Regional Losses (MW)
Topology 2010 2015
Dry 756.9 -
Year 2010 Average 737.1 -
Wet 741.5 -
Dry 951.6 909.6
Year 2015 Average 1,035.1 1,006.4
Wet 976.6 941.8
These changes are consequence of better voltage profile in analyzed region, especially in areas directly influenced by the new elements. For example, new interconnection line Nis-LeskovacVranje-Skopje greatly improves voltage profile in southern part of Serbia and new interconnection lines Podgorica – V.Dejes – Kashar – Elbasan and Kosovo B – V.Dejes – Kashar – Elbasan greatly improve voltage profile in Albania. Higher voltages and reduction of load of some elements that are highly influenced by the new elements, reduce power losses mainly in Albania, Southern Serbia, and in the region as whole.
Table 6.1.2 shows overview of area summaries for analyzed reference cases. Comparing cases with different hydrology (for the same year and topology) it can be concluded following: Since analyzed region is balanced, deficit of power produced by hydro power plants is compensated by greater power produced by thermal power plants. Different hydrology causes different generation and interchange patterns. Because of different generation and interchange patterns, power flows are different and this cause different level of losses, but it is not possible to establish clear connection between these factors. Level of intersystem interchanges is much higher than in present or history. It has to be stated that networks of single systems are developed mainly to cover their demand with their own production capacities, so this kind of power plant engagement and level of interchanges cause power flows and network status that are different from ones recorded. This goes especially Albanian and Serbian system. 6.2
Table 6.1.2: Overview of area summaries for analyzed reference cases (in MW) Year
2010
Hydrology
Topology
Average
2010
Dry
2010
Wet
2010
2010 Average 2015
2010 2015
Dry 2015
2010 Wet 2015
Data type
Albania
B&H
Bulgaria
Croatia
Macedonia
Montenegro
Romania
Serbia
Generation Load Losses Interchange Generation Load Losses Interchange Gen Load Losses Interchange Generation Load Losses Interchange Generation Load Losses Interchange Generation Load Losses Interchange Generation Load Losses Interchange Generation Load Losses Interchange Generation Load Losses Interchange
896.7 1287.3 50.4 -441.0 953.3 1290.5 46.8 -384.0 898.6 1287.3 50.3 -439.0 1116.1 1531.0 81.2 -496.0 1118.1 1541.0 73.1 -496.0 894.7 1521.9 92.7 -720.0 893.6 1542.0 71.6 -720.0 1124.5 1528.9 85.8 -490.1 1111.0 1528.9 72.1 -490.0
2266.1 1971.3 58.6 236.2 2842.4 1989.0 60.3 793.0 2037.1 1961.1 57.0 19.0 2316.6 2279.0 78.7 -41.1 2317.2 2279.0 79.2 -41.0 3140.9 2304.0 78.2 758.8 3141.2 2305.0 77.1 759.0 2154.2 2278.6 74.8 -199.3 2155.1 2278.6 75.6 -199.0
6900.4 5977.3 121.6 787.0 6709.6 5970.0 133.6 606.0 6940.4 5966.2 120.9 839.0 7332.7 6483.0 150.7 699.0 7332.9 6483.0 150.9 699.0 7363.9 6450.0 147.9 766.0 7363.9 6450.0 147.8 766.0 7553.2 6446.1 137.4 955.0 7553.3 6446.1 137.5 955.0
1502.9 3136.7 49.0 -1682.8 2294.6 3147.0 41.6 -894 1735.4 3136.7 50.7 -1452.0 2316.3 3657.0 63.4 -1404.1 2317.0 3657.0 64.0 -1404.0 2636.7 3665.0 58.2 -1086.4 2637.7 3665.0 58.7 -1085.9 2799.9 3660.4 60.9 -921.3 2800.9 3660.4 61.6 -921.1
950.3 1198.2 20.1 -268.0 1021.1 1206.0 18.1 -203.0 1081.8 1194.0 19.8 -132.0 1087.0 1407.0 20.0 -340.0 1088.4 1407.0 21.4 -340.0 985.1 1410.0 19.1 -444.0 985.2 1409.0 20.2 -444.0 869.5 1407.6 18.9 557.0 870.8 1407.6 20.2 -557.0
539.8 669.2 15.5 -147.0 467.8 671.0 16.9 -220.0 586.3 669.2 15.9 -101.0 735.0 671.0 25.0 39.0 735.2 676.0 20.3 39.0 586.3 672.0 22.1 -107.7 586.3 678.0 16.4 -108.0 778.7 669.8 21.6 85.0 774.1 669.8 16.9 85.0
7939.9 6728.3 201.2 930.4 6742.0 6703.8 238.0 -199.9 7342.4 6423.7 206.6 632.1 7712.8 7317.4 347.4 47.9 7708.6 7317.4 343.1 48.1 7724.6 7798.4 295.5 -369.2 7722.9 7798.4 293.5 -368.9 7953.9 7704.0 298.9 -123.3 7950.3 7704.0 294.8 -123.0
7355.9 6873.1 220.8 248.4 7311.7 6944.0 201.6 166.0 7406.2 6875.1 220.4 297.1 8687.6 7263.0 268.7 1156.0 8689.4 7279.0 254.4 1156.0 8397.9 7296.0 237.9 864.0 8396.3 7308.0 224.3 864.0 8413.1 7209.2 278.4 912.7 8398.5 7209.2 263.2 913.0
Total (SE Europe) 28351.9 27841.4 737.1 -336.7 28342.5 27921.3 756.9 -335.9 28028.1 27513.3 741.5 -336.7 31304.1 30608.4 1035.1 -339.3 31306.8 30639.4 1006.4 -338.9 31730.1 31117.3 951.6 -338.5 31727.1 31155.4 909.6 -337.8 31646.9 30904.6 976.6 -338.3 31613.9 30904.6 941.8 -337.2
6.3
Table 6.1.3: Overview of high loaded elements in analyzed reference cases
AREA
ELEMENT
ALB OHL 220 BUL OHL 220 OHL 220 OHL 220 OHL 220 OHL 220 OHL 220 ROM OHL 220 OHL 220 OHL 220 OHL 220 OHL 220 SRB OHL 220
kV kV kV kV kV kV kV kV kV kV kV kV kV
AKASHA2-ARRAZH2 MI_2_220-ST ZAGORA MINTIA-SIBIU P.D.F.II-CETATE1 P.D.F.A-CETATE1 P.D.F.A-RESITA ckt.1 P.D.F.A-RESITA ckt.2 LOTRU-SIBIU ckt.1 LOTRU-SIBIU ckt.2 URECHESI-TG.JIU TG.JIU-PAROSEN BUC.S-B-FUNDENI JBGD3 21-JOBREN2
LOAD LEVEL HYDROLOGY average TOPOLOGY RATING LOAD % MVA MVA
2010 dry
LOAD MVA
wet %
LOAD MVA Lines
270 228.6 381.1 277.4 208.1 277.4 277.4 277.4 277.4 277.4 208.1 320 301
%
average 2010 2015 LOAD LOAD % % MVA MVA 250
92.6
238
88
268 205 236 236
96.5 98.6 85.2 85.2
268 205 232 232
96.4 98.5 83.7 83.7
278 278
100 134
273 273
98.3 131
261
86.7
262
87
51.9 51.9 78 78 83.8 84.1 84.1 117 93.7 107 89 117 97.1 138 95.7 106 87.5 97.2 95.5 106 113 91.4 102 83.5 92.8 91.1 101 108
86.5 86.5 86.6 86.6 93.1 84.1 84.1 115 126 120
50.3 50.3 74.3 74.3 79.8 82.1 82.1 135 111 106
83.8 83.8 82.5 82.5 88.7 82.1 82.1 113 123 117
255 395
84.9 98.9
193 163
96.7 81.4
320
80.1
167 126 124 131 133
83.4 83.7 82.4 87.1 88.7
326 326
81.4 81.4
276 276
99.5 99.5
182
87.3
2015 dry
2010 LOAD % MVA
wet
2015 LOAD % MVA
2010 LOAD % MVA
2015 LOAD % MVA
259 191 324 269 206 239 239 304 304 280 280 285 313
96 83.5 85.1 97 99 86.2 86.2 109 109 101 135 89.2 104
237 190 313 268 206 236 236 303 303 275 275 285 313
87.8 83.3 82.2 96.8 98.8 84.9 84.9 109 109 99.3 132 88.9 104
91.1 91.1 90.5 90.5 97.2 87.2
50.2 50.2 74.8 74.8 80.4 82.3 82.3 135 110 105
83.7 83.7 83.2 83.2 89.3 82.3 82.3 112 123 117
275
102
243
89.9
261 294
81.6 97.5
261 295
81.4 97.9
98.3 98.3 94.1 94.1 101 90.8 90.8 122 134 128 84.7 84.7 81.9 80.8
52.1 52.1 75.4 75.4 81 83.5 83.5 137 112 107
86.9 86.9 83.8 83.8 90 83.5 83.5 114 125 119
54.6 54.6 81.4 81.4 87.5 87.2
253 391
59 59 84.7 84.7 91 90.8 90.8 147 120 115 84.7 84.7 98.2 84.2 242 97.7
241
80.2
193 163
96.5 81.3
200 169
99.9 84.2
200 168
99.8 84.1
270 414 340 340 209 176
90 104 85 85 104 88
268 410 339 339 208 176
89.2 103 84.8 84.8 104 87.8
325
81.3
324
81.1
171 130
85.6 86.5
171 130
85.5 86.6
83.7 98.3 89.6 81
88.9 90.5 80.8 84.4 84.4 81.1 81.1
84.5 98.6 89.7 81.3 87.9 89.5
335 197 134 122
133 136 323 338 338 122 122
338 197 135 122 132 134 325 325
81.1 81.1
247
82.5
Transformers
ALB
B&H
ROM
SRB
TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR
220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 400/110 400/220 400/220 400/220 220/110 220/110 400/220 400/220 400/220 220/110 220/110 220/110 220/110 220/110 400/220 400/220 400/220 220/110 220/110 400/110
kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV
AFIERZ2-AFIERZ5 ckt.1 AFIERZ2-AFIERZ5 ckt.2 AELBS12-AELBS15 ckt.1 AELBS12-AELBS15 ckt.2 AELBS12-AELBS15 ckt.3 AKASHA2-AKASH25 ckt.1 AKASHA2-AKASH25 ckt.2 AFIER 2-AFIER 5 ckt.1 AFIER 2-AFIER 5 ckt.2 AFIER 2-AFIER 5 ckt.3 ARRAZH 1 ARRAZH 2 ATIRAN 3 UGLJEVIK URECHESI BUC.S-BUC.S-B ckt.1 BUC.S-BUC.S-B ckt.2 FUNDE2 1 FUNDEN 1 MINTIA-MINTIA B IERNUT 1 JBGD8 1 JBGD3 1 JBGD3 2 JZREN2 2 JTKOSA 2 JTKOSA 3 JTKOSB 1 JTKOSB 2 JTKOSB 3 JPRIS4 1 JPRIS4 2 JJAGO4
60 60 90 90 90 100 100 120 90 90 100 100 120 300 400 400 400 200 200 400 400 400 200 150 150 150 150 400 400 400 150 150 300
255
84.9
173
86.6
386
96.4
168
84.1
169
84.4
167 126 124
83.3 83.9 82.3
141 118 116 129 110 123 80.3 80.3 80.3 80.3
6.4
Table 6.1.3 shows summary for elements loaded over 80% of their thermal limits. In network planning practice, this is used as one of the main indicators which parts of the transmission network represent weak spots and what network reinforcements are necessary in sense of generation and supply, without taking into consideration the security aspects. Analysis of these results leads to conclusion that transmission network is capable of transferring power from generation facilities to major consumption areas, and network reinforcement is not necessary (without taking n-1 criterion into consideration). But, in some substations, there is not enough transformer capacity to supply demand from transmission network, since the load of these elements do not depend on generation pattern and level of system interchange, but only on load level in these substations. This is problem of local supply, and this should be studied as program of local not regional system development. Increase of transformer installed capacity is needed in substations 220/110 kV Fier, Elbasan, Fierza and Kashar in Albania, 400/110 kV Ugljevik in Bosnia and Herzegovina. Also, it should be noted that level of reactive power consumption in load flow model of Albania is very high comparing to the other systems and not realistic. This is one of the reasons why voltage profile in Albanian network is very close to voltage collapse in some investigated scenarios. Because of the problem with unrealistic reactive power demand new reactive power demand forecast is needed. Influence of voltage control equipment was not tested on regional level, and therefore it is not possible to give answer weather there is possibility to better voltage profile in certain regimes. Also, no light load regimes were analyzed, so there is no possibility to analyze effect of new reactive power control devices.
6.1.2 Overview on possible solutions for system relief In this subchapter, security aspects of network performance in analyzed scenarios are presented. As it has been concluded in Chapter 4, in all investigated scenarios, some elements are highly loaded even in case of full topology. Most of the elements loaded over 80% are transformers in some substations and also there are some overloaded elements (Table 6.1.3). Based on full topology and n-1 contingency analyses, some internal network reinforcements are necessary to sustain analyzed load-demand level and production pattern. In other words, optimum GTMax dispatch, according to analyzed generation and load scenarios, is not possible to achieve with desired level of network security. Internal network reinforcements are necessary in order to achieve such optimal dispatch. Most of the identified critical network elements in Romania can be relieved by dispatching actions (change of network topology or production units engagement). Re-dispatching actions, mostly in the power system of Romania (power plants DEVA 1, LOTRU CIUNGET, PORTILE 1, PAROSENI and ROVINARI) will be necessary to keep desired network security level according to the (n-1) criterion. Also, installing a new transformer unit 400/110 kV in Brasov is planned and helps resolving some critical states in Romanian network. Upgrading the Timisoara substation to 400 kV level and supplying this area from 400 kV network instead from 220 kV would resolve some problems in Romanian network. Reinforcement of local network in vicinity of Belgrade is necessary, but as it has been stated before, this is local development. Problem of supplying Belgrade area must be part of more complex and thorough analyses.
6.5
Central part of the 400 kV network in Serbia is heavy loaded due to large energy transits from Romania, Bulgaria and south of Serbia (Kosovo and Metohija) to Croatia and Hungary. Strengthening of the 400 kV corridor from Romania through Serbia to Croatia (East-West), by building 400 kV lines Romania (e.g. new proposed substation Timisoara)-(Vrsac)-Drmno and Belgrade-Obrenovac can relieve this problem. For all of this, more thorough analyses are needed and only adequate feasibility studies can give the proper answer to the question about the level and type of network reinforcements. Final conclusions concerning year 2010 are: - expected network topology in year 2010 is sufficient for all investigated generation and load pattern for year 2010, except in South Serbia and Belgrade area; - building of the 400 kV corridor Nis-Leskovac-Vranje-Skoplje before 2010 resolves all insecure states identified in network of southern Serbia for investigated regimes in 2010; - network reinforcement in Belgrade area is necessary; - level of reactive power consumption in load flow model of Albania is very high comparing to the other systems and not realistic and this causes some overloads due to low voltage profile in Albanian network; - high loads and overloads of elements in Romania can be relieved by operational methods. Expected network topology for 2015 generally improves network performance, especially in the cases of Albanian and Serbian network. But, additional network reinforcements are necessary, especially in increasing transformer capacities in mentioned substations, over which large consumption areas are supplied. In case of Romania, it is hard to say what reinforcements are necessary, since most of the identified insecure states can be relieved with production redispatch and network topology changes. New proposed lines (Visegrad – Pljevlja, Tumbri – Banja Luka and Pecs – Sombor) do not resolve any of the identified insecure states, since these lines are electrically far from these critical network elements, and therefore do not have significant influence. But, they do increase transfer capabilities of interconnected network. Final conclusions concerning year 2015 are: - new lines commissioned to come into operation between 2010 and 2015 greatly reduce losses in analyzed region, regardless of hydrology; - expected network topology in year 2015 is sufficient for all investigated generation and load pattern for year 2010, except in Belgrade area; - building of the 400 kV corridor Nis-Leskovac-Vranje-Skoplje resolves all insecure states identified in network of southern Serbia for investigated regimes in 2015; - network reinforcement in east-west corridor in Serbia is necessary (this includes Belgrade area also); - level of reactive power consumption in load flow model of Albania is very high comparing to the other systems and not realistic and this causes some overloads due to low voltage profile in Albanian network; - high loads and overloads of elements in Romania can be relieved by operational methods; - proposed interconnection lines candidates do not resolve any of the identified problems.
6.6
6.2 Sensitivity cases Sensitivity cases consist of six scenarios. In all of these cases average hydrology is used. Two different scenarios are analyzed (first 1500 MW of import plus 500 MW of transit and second high load growth) for years 2010 and 2015. Also, for each of these scenarios in year 2015 two cases are analyzed (first for 2010 topology, i.e. without any new line or transformer planned for commissioning between 2010 and 2015 and second for expected topology in year 2015).
6.2.1 Analyses comparison Main focus of this subchapter is to analyze influence of high load growth rate and import/export regime on system losses and overall network performance. Table 6.2.1 shows overview of losses on regional level. It can be seen that new elements planned for commissioning between 2010 and 2015 influence reduction of losses in analyzed region, no matter of hydrology. This reduction of losses is between 30 and 40 MW. Table 6.2.1: Peak Hour - Regional Losses (MW) under Average Hydrologic Conditions
Case Reference Case Imports/Exports High Load Forecast * topogy
Year 2010 2010* 737.1 684.8 913.9
Year 2015 *
2010 1,035.1 NA 1,296.9
2015* 1,006.4 850.3 1,257.8
These changes are consequence of better voltage profile in analyzed region, especially in areas directly influenced by the new elements. For example, new interconnection line Nis-LeskovacVranje-Skopje greatly improves voltage profile in southern part of Serbia and new interconnection lines Podgorica – V.Dejes – Kashar – Elbasan and Kosovo B – V.Dejes – Kashar – Elbasan greatly improve voltage profile in Albania. Higher voltages and reduction of load of some elements that are highly influenced by the new elements, reduce power losses mainly in Albania, Southern Serbia, and in the region as whole. Table 6.2.2 shows overview of area summaries for analyzed reference cases and Table 6.2.3 shows overview of high loaded elements in analyzed sensitivity cases. Import/export sensitivity scenarios Concerning the import/export case, the simulated regime means the following: ▪ Import 750 MW from UCTE ▪ Import 500 MW from Turkey ▪ Export 500 MW to Greece ▪ Import 750 MW from Ukraine Large imports from analyzed directions cause significant increase of power flows along SlovenianCroatian, Ukrainian-Romanian and Bosnian-Montenegrin interfaces in 2010, but interconnection lines are not jeopardised since they are loaded far below their thermal ratings.
6.7
Power losses on network topology in 2010, compared to the situation of balanced SE Europe power system, are increased in the power systems of Bulgaria (7.9 %) and Montenegro (9 %). In other power systems these losses are decreased, with the most significant drop in Romania (-16 %) and Serbia and UNMIK (-10.1 %). Regional power losses are decreased (-7.1 %) when the situation includes additional power import. It can be concluded that for this exchange scenario, power flows and voltage profile are such that transmission network is better utilized, and as a consequence losses are smaller. By comparing the average hydrology situation in 2010 and balanced SE Europe power system to the average hydrology situation and 1500 MW of power import, it may be noticed that some critical contingencies in the Romanian power system disappear, especially those connected with Mintia substation, while some new contingencies appear in the power system of Bulgaria (lines around Maritsa East substation). This is due to different dispatching conditions of DEVA 1 power plant in Romania (disconnected in import/export scenario, dispatched with 850 MW in the base case) and power import through Turkish-Bulgarian interface that goes through Maritsa East 3 substation. The analyzed scenario which is characterized by large power import in 2015, but on the 2010 network topology, can not be supported from a transmission network viewpoint due to voltage problems. Their existence is the most obvious in the power system of Albania due to scarce reactive power sources. To mitigate such problems it is necessary to construct at least one new 400 kV interconnection line between Albania and UNMIK or Macedonia. Large imports from analyzed directions in 2015 cause significant increase of the power flows along the Slovenian-Croatian and Ukrainian-Romanian interfaces. However, the interconnection lines are not jeopardized since their loading levels fall far below their thermal ratings. Power losses, in comparison to the situation of balanced SE Europe power system, are increased only in the power system of Macedonia (5%). In other power systems power losses are decreased, the most significantly in the power systems of Romania (-26%) and Montenegro (-23%). Power losses are decreased (-16%) in the region when analyzing the additional power import. Certain reinforcements in the internal networks of Romania, Bulgaria, Albania and Serbia till 2015 are necessary shall analyzed generation pattern and 1500 MW of power import be made more secure. None of the identified congestions is located at the border lines. High load growth rate Pessimistic (high) load growth rate is more close to load forecast made by electric power utilities in analyzed region. In case of high load growth rate power flows through lines and transformers are greater. This cause greater level of losses, increased number of elements loaded over 80 % and overloaded elements also and greatly decreased level of system security (Table 6.2.3). In case of year 2015 and 2010 topology it is not feasible to realize this generation-load pattern due to network constraints in Albania, but in Serbia and Romania also. As it has been concluded in Chapter 5, in all investigated scenarios, some elements are highly loaded even in case of full topology. Most of the elements loaded over 80% are transformers in some substations and also there are some overloaded elements (Table 6.2.3).
6.8
Table 6.2.2: Overview of area summaries for analyzed sensitivity cases (in MW) Year
Case
Topology
Data type
Generation Load 2010 Losses Interchange Generation Import/export Load 2010 2010 Average hydrology Losses Interchange Generation High load Load 2010 Average hydrology Losses Interchange Generation Load 2010 Losses Reference case Interchange Average hydrology Generation Load 2015 Losses Interchange Generation Load 2010 Losses Import/export Interchange 2015 Average hydrology Generation Load 2015 Losses Interchange Generation Load 2010 Losses High load Interchange Average hydrology Generation Load 2015 Losses Interchange * convergent load flow solution was not found Reference case Average hydrology
Albania
B&H
Bulgaria
Croatia
Macedonia
Montenegro
Romania
Serbia
896.7 1287.3 50.4 -441.0 898.2 1288.5 49.7 -440.0 931.7 1358.0 57.7 -484.0 1116.1 1531.0 81.2 -496.0 1118.1 1541.0 73.1 -496.0 * * * * 1027.5 1544.0 71.5 -588.0 896.1 1680.0 99.0 -883.0 897.7 1684.0 96.7 -883.0
2266.1 1971.3 58.6 236.2 2398.3 1965.0 54.3 379.0 2202.8 2004 57.8 141.1 2316.6 2279.0 78.7 -41.1 2317.2 2279.0 79.2 -41.0 * * * * 2394.9 2293.8 70.1 31.0 2479.4 2274.0 92.2 113.2 2479.7 2272.0 94.7 112.9
6900.4 5977.3 121.6 787.0 6827.0 5967.5 131.2 714.0 7282.5 6278.0 146.5 858.0 7332.7 6483.0 150.7 699.0 7332.9 6483.0 150.9 699.0 * * * * 7582.2 6418.9 142.7 1006.0 8157.8 7083.0 175.8 899.0 8157.4 7083.0 175.4 899.0
1502.9 3136.7 49.0 -1682.8 1705.2 3143.3 44.9 -1483.0 2254.6 3295.0 55.4 -1095.9 2316.3 3657.0 63.4 -1404.1 2317.0 3657.0 64.0 -1404.0 * * * * 2173.9 3660.1 58.8 -1545.0 2591.0 3959.0 79.8 -1447.8 2592.1 3959.0 81.1 -1448.1
950.3 1198.2 20.1 -268.0 965.5 1178.3 20.1 -233.0 991.1 1234.0 18.1 -261.0 1087.0 1407.0 20.0 -340.0 1088.4 1407.0 21.4 -340.0 * * * * 1076.3 1393.7 22.5 -340.0 895.0 1489.0 23.0 -617.0 895.7 1489.0 23.7 -617.0
539.8 669.2 15.5 -147.0 542.1 670.2 16.9 -147.0 542.3 686.0 19.2 -163 735.0 671.0 25.0 39.0 735.2 676.0 20.3 39.0 * * * * 731.9 675.0 15.6 39.0 1324.6 702.0 35.6 587.0 1322.6 708.0 27.6 587.0
7939.9 6728.3 201.2 930.4 6877.4 6733.1 169.1 -104.8 7113.3 6859.4 310.6 -56.7 7712.8 7317.4 347.4 47.9 7708.6 7317.4 343.1 48.1 * * * * 7187.7 7831.2 253.9 -972.0 7684.5 8269.8 454.5 -1039.8 7676.4 8269.8 446.7 -1040.1
7355.9 6873.1 220.8 248.4 6591.7 6901.7 198.6 -521.9 8103.8 7131.0 248.6 724.2 8687.6 7263.0 268.7 1156.0 8689.4 7279.0 254.4 1156.0 * * * * 8029.8 7270.7 215.1 530.0 10024.2 7635.0 337.0 2052.2 10023.9 7660.0 311.9 2051.9
Total (SE Europe) 28351.9 27841.4 737.1 -336.7 26805.4 27847.6 684.8 -1836.7 29422.1 28845.4 913.9 -337.3 31304.1 30608.4 1035.1 -339.3 31306.8 30639.4 1006.4 -338.9 * * * * 30204.2 31087.4 850.3 -1839.0 34052.6 33091.8 1296.9 -336.2 34045.5 33124.8 1257.8 -337.4
6.9
Table 6.2.3: Overview of high loaded elements in analyzed sensitivity cases year regime topology AREA ALB BUL
ROM
SRB
ELEMENT HL HL HL HL HL HL HL HL HL HL HL HL HL HL HL HL HL HL HL
220kV AKASHA2-ARRAZH2 1 220 kV M.EAST-ST.ZAGORA 220kV BRADU-TIRGOVI 1 220kV BUC.S-B-FUNDENI 1 220kV FILESTI-BARBOSI 1 220kV L.SARAT-FILESTI 1 220kV LOTRU-SIBIU 1 220kV LOTRU-SIBIU 2 220kV P.D.F.A-CETATE1 1 220kV P.D.F.A-RESITA 1 220kV P.D.F.A-RESITA 2 220kV P.D.F.II-CETATE1 1 220kV PAROSEN-BARU M 1 220kV RESITA-TIMIS 1 220kV RESITA-TIMIS 2 220kV TG.JIU-PAROSEN 1 220kV URECHESI-TG.JIU 1 220 kV MINTIA-SIBIU 220kV JBGD3 21-JOBREN2 1
average RATING MVA
LOAD MVA
%
270 228.6 302.6 320 277.4 277.4 277.4 277.4 208.1 277.4 277.4 277.4 277.4 277.4 277.4 208.1 277.4 381.1 301
2010 imp/exp LOAD MVA
high load
LOAD % MVA Lines
%
average 2010 2015 LOAD LOAD % % MVA MVA 250
189
92.6
238
88
82.6
227 227
278 278
81.7 81.7
134 100
2015 imp/exp 2010* 2015 LOAD LOAD % % MVA MVA
high load 2010 2015 LOAD LOAD % % MVA MVA
236 191 247 266
87.3 83.5 81.6 83.1
288
107
290
108
285 309 248 241
94.3 96.7 89.5 86.9
204
98.2
207 267 267 271 228 230 230 321 320
99.6 96.2 96.2 97.7 82 82.8 82.8 154 116
284 308 246 239 281 281 206 262 262 270
93.8 96.1 88.6 86.2 101 101 99.1 94.5 94.5 97.3
225 225 314 314
81.1 81.1 151 113
205 236
98.6 85.2
205 232
98.5 83.7
236
85.2
232
83.7
278 278 268 261
134 100 96.5 86.7
273 273 268 262
131 98.3 96.4 87
277
92.2
291
96.7
292
97
81.8 81.8 81.8 82.2 82.2 88.3 109 119 114 84.8 84.8 82.9 82.9
49.5 49.5 49.5 87.7 87.7 94.2 149 122 117 58 58 93.4 93.4 87.7 87.7 97.5 102
82.5 82.5 82.5 97.5 97.5 105 124 136 130 96.7 96.7 93.4 93.4 87.7 87.7 81.3 85.2
259 179 167 241 204 172 232 208 221 378 378 408 487
86.3 89.4 83.6 120 102 85.9 92.6 83.4 88.4 94.6 94.6 102 122
52.2 52.2 52.2 87.8 87.8 94.4 152 124 119 59.9 59.9 94.7 94.7 87.5 87.5 96.4 101 124 256 179 167 240 203 170 230 206 220 377 377 405 480
87 87 87 97.6 97.6 105 126 138 132 99.8 99.8 94.7 94.7 87.5 87.5 80.3 83.9 83 85.4 89.7 83.3 120 102 85.2 92.1 82.6 87.8 94.1 94.1 101 120
175 137 137 137 151 154 134 246 332 412 430 430
87.5 91.4 91.3 91.3 101 103 89.2 81.9 83 103 108 108
175 138
87.4 91.7
134 136 134
89 90.6 89.2
330 352 368 368 102
82.6 88 91.9 91.9 82
Transformers
ALB
BIH CRO
ROM
SRB
MNG
TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR TR
220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 220/110 400/110 220/110 220/110 220/110 220/110 220/110 400/110 400/110 400/110 400/220 400/220 400/220 400/220 400/220 220/110 220/110 220/110 220/110 220/110 220/110 220/110 400/110 400/220 400/220 400/220 400/220 220/110
kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV kV
ABURRE 1 ABURRE 2 ABURRE 3 AELBS1 1 AELBS1 2 AELBS1 3 AFIER 1 AFIER 2 AFIER 3 AFIERZ 1 AFIERZ 2 AKASHA 1 AKASHA 2 ARRAZH 1 ARRAZH 2 ATIRAN 2 ATIRAN 3 MO-4 3 UGLJEV 1 TESISA 1 BARBOS 1 FUNDE2 1 FUNDEN 1 TIMIS 1 BRASOV 1 CLUJ E 1 DIRSTE 1 BUC.S 1 BUC.S 2 IERNUT 1 URECHE 1 MINTIA JBGD3 1 JBGD3 2 JPRIS4 1 JPRIS4 2 JTKOSA 2 JTKOSA 3 JZREN2 2 JJAGO4 A JBGD8 1 JTKOSB 1 JTKOSB 2 JTKOSB 3 JTPLJE 1
60 60 60 90 90 90 120 90 90 60 60 100 100 100 100 120 120 150 300 200 200 200 200 200 250 250 250 400 400 400 400 400 200 150 150 150 150 150 150 300 400 400 400 400 125
117 97.6 122 117 93.7 96 107 100 95.7 106 91.6 102 95.6 91.4 102
255
84.9 174
173
86.6
78 78 83.8 138 113 108 51.9 51.9 84.1 84.1
86.6 86.6 93.1 115 126 120 86.5 86.5 84.1 84.1
74.3 74.3 79.8 135 111 106 50.3 50.3 82.1 82.1
82.5 82.5 88.7 113 123 117 83.8 83.8 82.1 82.1
255
84.9
253
84.2
256
85.4
193 163
96.7 81.4
193 163
96.5 81.3
214 181
107 90.5
203
81
86.9 179
344 386
102 111 106
49.1 49.1 49.1 74 74 79.5 131 107 102 50.9 50.9 82.9 82.9
89.3
86.1
320 395
80.1 98.9
391
97.7
167 126
83.4 83.7
167 126
83.3 83.9
169 127
84.7 84.5
131 133 124
87.1 88.7 82.4
124
82.3
122
81
326 326
81.4 81.4
96.4
132 134 120
87.7 89.3 80.1
326
81.6
*convergent load flow solution was not found
6.10
As it has been said above, in some substations there is not enough transformer capacity to supply demand from transmission network, since the load of these elements do not depend on generation pattern and level of system interchange, but only on load level in these substations, particularly in this case. This is problem of local supply. It should be pointed out that load patterns (in all reference and sensitivity cases) have the greatest influence to identified problems.
6.2.2 Overview on possible solutions for system relief Security aspects of network performance in analyzed scenarios are presented in this subchapter. It has to be said, that new generation facilities in UNMIK area, are too large to be investigated as they were. Over 3000 MW of new production were connected to only one substation, Kosovo B. It is almost certain, that installing such large capacities demands different and more detailed solution, as well as large changes in internal network of UNMIK area, in order to supply this energy to consumers. Also, large changes in internal network of Serbia are necessary too, since installing of these 3000 MW causes great changes in energy flows in region, and therefore different supply routes in internal network. That is why, more detailed analysis is necessary in order to draw conclusions that will give right indices about eventual congestions and necessary network reinforcements. One of possible solutions is building of 400 kV ring (Kosovo B – Pristina 4 – Kosovo C) that will connect new production facilities with existing substations Kosovo B and new substation 400 kV Pristina 4. The other is to connect the all new plants to existing 400 kV substation Kosovo B radial through new 400 kV lines (as it was analyzed in this study). This solution is better from network point of view, but from generation point of view is less reliable and secure. More thorough analyses is needed and only adequate feasibility studies can give the proper answer to the question about the level and type of network reinforcements, especially in the case of the new generation facilities proposed. Concerning internal network reinforcements, same conclusions can be made as in previous chapter. Additional conclusions concerning year 2010 are: - level of power losses for import/export scenario are significantly lower as consequence of better utilization of the transmission network. It should be pointed out that this scenario is more close to recorded system behavior, since Greece is one of the major regional importers - level of load of high loaded and overloaded elements is greater, especially in case of high load scenario; - building of the 400 kV corridor Nis-Leskovac-Vranje-Skoplje before 2010 resolves has much greater significance. Additional conclusions concerning year 2015 are: - expected network topology in year 2015 is not sufficient in case of high load scenario; - operational methods in network of Romania can relieve some of identified problems, but in case of high load scenario network reinforcement should be analyzed also; - new production units in UNMIK area require detailed analysis related to connection of these units to power system network. 6.11
6.3 List of priorities Based on main conclusions above lists of priorities are given in Table 6.3.1 and Table 6.3.2. It should be pointed out that these elements are not ranked according to some criteria, but presented according commissioning date and approved development plans from each responsible power company in the region. Realization of all of these projects is necessary for secure and reliable operation of regional transmission network (as described in previous subchapters). Table 6.3.1: List of priorities until year 2010 Interconnection line Ugljevik - S. Mitrovica Kashar - Podgorica C. Mogila - Stip Florina - Bitola Maritsa Istok - Filipi Ernestinovo - Pecs (double) (Filipi) - Kehros - Babaeski Bekescaba - Nadab (Oradea)
Interconnected countries
Year of commissioning
BA - SER AL - MN BG - MK GR - MK BG - GR HR - HU GR - TR HU - RO
2005/06 2006/07 2006/07 2006/07 2007/08 2007/08 2007/08 2008
Table 6.3.2: List of priorities between 2010 and 2015 Interconnection line Zemlak - Bitola Kashar (V. Dejes) - Kosovo B (Nis) – (Leskovac) – Vranje - Skopje
Interconnected countries
Year of commissioning
AL - MK AL – CS CS – MK
2010/15 2010/15 2010/15
It also should be pointed out that local networks also need to be reinforced to satisfy security and reliability criteria, but this is not problem of transmission network then local supply problem. In case of new production units, especially in UNMIK area, detailed analysis related to connection of these units to power system network is required. In Table 6.3.3 and Table 6.3.4 are presented some recommendations that would make operation of regional transmission network more reliable and secure. Table 6.3.3 – Recommendation for new transformers in new substations Length Country Line Voltage (km) Romania Arad-Timisoara 400 kV 55 Obrenovac-Belgrade ?-Pancevo 400 kV 80 Serbia Drmno-Vrsac 400 kV 50 TPP Kosovo NEW-Pristina 400 kV 20 UNMIK TPP Kosovo NEW-Kosovo B 400 kV 20 Interconnection Timisoara (ROM)-Vrsac (SCG) 400 kV 80
6.12
Table 6.3.4 – Recommendation for new transformers in new substations Country Romania Serbia UNMIK
Name of substation Timisoara Vrsac Beograd ? Pristina
Voltage levels kV/kV 400/110 400/110 400/110 400/110
New transformers MVA 2x300 2x300 2x300 2x300
It should be pointed out that these recommendations are not according to the long term development plans of power utilities in the region, but just ideas of authors that can resolve some of the identified problems in regional network. They should be taken into consideration in future studies and analyses. Without detailed analyses it is not possible to rank these recommendations.
6.13
7. LITERATURE [1] Study, Development of the interconnection of the electric power systems of SECI member countries for better integration with European systems: Project of regional transmission network planning, Construction of the regional model, 2002, EKC, [2] Study, Development of the interconnection of the electric power systems of SECI member countries for better integration with European systems: Project of regional transmission network planning, effects of the construction of new proposed interconnection lines in SECI countries, 2002, EKC, EIHP, NEK, ZEKC [3] Project group on development of interconnection of electric power systems of Black sea region, Regional Transmission Planning Project Regional model construction for 2010. year, EKC [4] Study, Audit of overcurrent protection relay settings on north-south transmission corridor, HTSO-Hellenic Transmission System Operator, EKC, 2004 [5] Report of UCTE Executive Team "North-South Re-Synchronization", Loadflow analyses, Technical committee UCTE, EKC, MVM, ZEKC, 2004 [6] Report of UCTE Executive Team "North-South Re-Synchronization", Loadflow analyses, Technical committee UCTE, EKC, MVM, ZEKC, 2004 [7] SECI project group on development of interconnection of electric power systems of SECI countries for better integration to the European system, Regional Transmission Planning Project, Regional model construction for 2005. year(updating and expanding existing Regional Transmission Network Model for the year 2005 ) and 2010. year, USAID, SECI [8] Study, Technical and economical aspects of connection electric power systems between Serbia and Macedonia with new transmission line 400 kV Niš(Leskovac-Vranje)-Skopje, Feasibility study, EPS-Serbia, EKC, 2003 [9] Study for new 400 kV interconnection lines between FYROM-Serbia and Albania-Montenegro, Transient Security Assessment, Total Transmission Capacities (TTC’s), European Commission, TREN Energy Directorate General, EKC, HTSO,EPS,ESM,KESH,EPCG, 2003 [10] The study of long-term development of 400 kV, 220 kV and 110 kV transmission networks in the area of the Republic of Serbia for the period until 2020, 1997, EINT [11] Analysis of technical possibilities for the reconnection of the south-eastern with the western part of UCPTE Interconnection, Institute Nikola Tesla, Beograd, 1996 [12] Stability of the Synchronously Interconnected Operation of the Electricity Networks of UCTE/CENTREL, Bulgaria and Romania, Final Report 2000 [13] Research Project, Evaluation Of Transfer Capabilities In Balkan Interconnected Network, Technical Report, Joint Greek-Yugoslav Research,
General Secretariat for Research and Technology, Greece, EKC, HTSOGREECE, NTUA-GREECE, 2004 [14] Study for new 400 kV interconnection lines between FYROM-Serbia and Albania-Montenegro Energy Directorate General, HSSO, EKC 2003 [15] Report of UCTE Executive Team "North-South Re-Synchronization": Loadflow analyses, Technical committee UCTE, MVM, ZEKC 2003 [16] Bosnia and Herzegovina and Republic of Macedonia Study on Gas and Electricity Interconnection in the Trans European Networks, 1997 [17] Feasibility Study, 400 kV Transmission line Elbasan-Podgorica, FICHTNER, July 2001 [18] Study, Upgrading of Transmission Lines 220 kV, ALSTOM 2001 [19] Feasibility Study, Rehabilitation of transmission network, DECON,BEA, EINT 2002 [20] Reconnection of the UCPTE Network and Parallel operation of the Bulgarian and Romanian networks with UCPTE - SUDEL ad hoc Group 1996 [21] Technical feasibility study of interconnection of the electric power systems of Bulgaria (NEK) and Romania (RENEL) with the interconnected power system of Greece (PPC), power systems under EKC coordination and Albania (KESH), for parallel and synchronous operation in compliance with UCPTE regulations and standards - PPC - RENEL - NEK - EKC - Nikola Tesla Institute 1995 [22] Technical feasibility study of upgrading at 400 kV of the existing 150 kV line Bitola - Amyndaio, PPC, NEK, EKC, 1998 [23] Technical feasibility study of a new interconnection tie-line at 400 kV between Greece and Bulgaria, PPC, NEK, EKC, 1998 [24] Technical feasibility study of Interconnection of the Balkan Countries (Albania, Bulgaria and Romania) to UCPTE - PHARE A 1994 and PHARE B 1996 [25] Project of the construction of 400 kV OHL Niš-Skopje, Elektroistok 2001 [26] 400 kV Interconnection Macedonia – Bulgaria, 400 kV Overhead Transmission Line and 400/110 kV Stip Substation, Environmental Impact Assessment (EIA) [27] 400 kV Interconnection Macedonia – Bulgaria, 400 kV Overhead Transmission Line and 400/110 kV Stip Substation, Techno-Economical Aspects [28] Elaboration “Perspectives of one part of 220 kV network, Phase I, EINT Beograd, 2003. [29] Annual report of EKC for 1999, 2000, 2001, 2002 and 2003 [30] Annual report of the Electric Power Utility of Serbia, 2000, 2001, 2002, 2003 [31] Annual report of the Electric Power Utility of FYR of Macedonia, 2001, 2002, 2003, [32] Annual report of the Transelectrica, 2001, 2002, 2003, [33] Annual report of the NEK-Bulgaria, 2001, 2002, 2003,