Viki

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Viki as PDF for free.

More details

  • Words: 305
  • Pages: 6
Trigonometric Function sin( ) cos( ) tan( ) cot( ) sec( ) csc( ) 0

0 /6

1

1/2

/4

/2

/3

/2

/2

1

2

/3

/2

3

/4

/2

5

/6

1/2 0

0

/2

/3

/2

1

2

-

-1/2 /2

-

/2

/3

/3

0

-

-1 -

-1

2

0

-

/3 0

2

1

1/2

-

1

-

/3 -1 -

Reciprocal Properties:

Quotient Properties:

Pythagorean Properties:

Odd and Even Function Properties: sin(-x) = -sin x cos(-x) = cos x tan(-x) = -tan x cot(-x) = -cot x sec(-x) = sec x csc(-x) = -csc x

/3 1

-2

2

/3

-2

-

2

/3 -1

2 -

Double-Argument Properties: sin 2x = 2 sinx cosx cos 2x = cos2x - sin2x = 1 - 2 sin2x = 2 cos2x - 1 logb(1) = 0 logbb = 1 logb (x × y) = logb(x) + logb(y) logb(x/y) = logb(x) - logby logb(xn) = n logb(x)

Half-Argument Properties: Cofunction Properties for Circular Functions:

Sum and Product Properties: 2 cos A cos B = cos(A + B) + cos(A - B) 2 sin A sin B = -cos(A + B) + cos(A -B) 2 sin A cos B = sin(A + B) + sin(A -B) 2 cos A sin B = sin(A + B) - sin (A -B)

Average formulas

Composite Argument Property: cos (A - B) = cosA cosB + sinA sinB cos (A + B) = cosA cosB - sinA sinB sin (A - B) = sinA cosB - cosA sinB sin (A + B) = sinA cosB + cosA sinB

Where "s" is the position at any time "t"

Linearity

Product rule

Quotient rule

Chain rule

Derivatives of simple functions

Derivatives of exponential and logarithmic functions

Derivatives of trigonometric function

Derivatives of hyperbolic functions

Derivative of inverse function

Related Documents

Viki
December 2019 10
Viki
October 2019 15
Viki
May 2020 3
Viki-main
November 2019 7
Tarea De Viki
December 2019 11
Sol Viki Mar Mica2
June 2020 5