Viga Ritter.docx

  • Uploaded by: ExequielRamos
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Viga Ritter.docx as PDF for free.

More details

  • Words: 1,018
  • Pages: 7
VIGA CONTINUA - V.2019-V.214-V.211-V.208-V.205-V.202 - DE HΒ° AΒ° Predimencionamiento Viga mΓ‘s solicitada: Viga voladizo m=8 h=

π‘™π‘œ.2,4 8

=

1,33π‘š .2,4 22

h=42cm d=45m r=3cm

= 0,399m => Adopto h=0,43m

do= h+r = 0,43m+0,03m = 0,45m bo= 0,20m

ο‚·

AnΓ‘lisis de carga

P= RAV.220 = 2,21t Q= Rb L.201,L.202 + P.propio viga continua + Muro de 20cm de ladrillo comΓΊn hueco, cemento y arena P.propio Viga continua = 0,45m . 0,20m . 2,4t/m3 = 0,216t/m Rb L.201,L.202= 3,22 t/m Muro de 20cm de ladrillo comΓΊn hueco, cemento y arena = 0,28t/m 2 . 2,55m = 0,714t/m Q= 0,216t/m + 3,22t/m + 0,714T/m => Q = 4,15t/m

ο‚·

Calculo momentos de voladizo Apoyo V.219 y V.214 por izq. 2,21t q=4,15t/m

X= -

q.l2 2

+P.l =-(

4,15t/m.(1,33m)2 2

+2,12t . 1,33m) =-6,61tm

Apoyo V.219 y V.214 por derecha. q=4,15t/m

X= -

ο‚·

q.l2 2

= -(

4,15t/m.(1,05m)2 2

) =-2,288tm

Calculo de tΓ©rminos de carga

V.214 Estado 1 q=4,15t/m

L=R= -

q.l2 4

=

4,15t/m.(2,9m)2 4

=8,73tm

Estado 2 -6,61tm

L= 2 . Xizq = 2 . -6,61tm = -13,22tm R=Xizq = -6,61tm

TΓ©rminos de carga total Ltotal= 8,73tm -13,22tm = -4,49tm

Rtotal= 8,73tm -6,61tm = 2,21tm

V.211=V.208 Estado 1 q=4,15t/m

L=R= -

q.l2 4

=

4,15t/m.(2,9m)2 4

=8,73tm

TΓ©rminos de carga total Ltotal= 8,73tm

Rtotal= 8,73tm

V.205 Estado 1 q=4,15t/m

L=R= -

q.l2 4

=

4,15t/m.(2,9m)2 4

=8,73tm

Estado 2 -2,288tm

L= Xder. = -2,288tm R=2. Xder. = -4,576tm

TΓ©rminos de carga total Ltotal= 8,73tm -2,288tm = 6,442tm

ο‚·

X1= X2= X3=

Rtotal= 8,73tm -4,576tm = 4,154tm

Calculo de momento de apoyo

βˆ’15.(2,21tm+8,73tm)+4.(8,73tm+8,73tm)βˆ’(8,73tm+6,442) 56 4.(2,21tm+8,73tm)βˆ’16.(8,73tm+8,73tm)+4.(8,73tm+6,442) 56 βˆ’(2,21tm+8,73tm)+4.(8,73tm+8,73tm)βˆ’15.(8,73tm+6,442) 56

= -1,954tm = -3,123tm = -3,012tm

ο‚·

Calculo de reacciones de carga β€œRQ”

Reacciones Voladizo V.219 2,21t q=4,15t/m

RQ= RA=RB= q.l +P = 4,15t/m . 1,33m +2,21t =7,7295t

Reacciones Voladizo V.202

q=4,15t/m

RQ=RA=RB= q.l = 4,15t/m . 1,05m =4,3575t

V.214=V.211=V.208=V.205 q=4,15t/m

ο‚·

RQ=RA=RB=

q.l 2

=

4,15t/m.2,9m 2

=6,0175t

Calculo reacciones de momento β€œRM”

V.214 Momento resultante=-6,61tm – (-1,954tm) =-4,656tm RM=4,656tm/2,9m=1,606t V.211 Momento resultante=-1,954tm – (-3,123tm) =1,169tm RM=1,169tm/2,9m=0,4031t V.208 Momento resultante=-3,012tm – (-3,123tm) =0,111tm RM=0,111tm/2,9m=0,0383t V.205 Momento resultante=-3,012tm – (-2,288tm) =-0,724tm RM=0,724tm/2,9m=0,2497t

ο‚·

Calculo de solicitaciones totales y momentos de tramos β€œMmΓ‘x.”

202 -6,61tm

-1,954tm

6,0175t

7,7295t

ο‚·

-3,123tm

6,0175t

6,0175t

+1,606t

-1,606t

-0,4031t

7,6235t

4,4115t

5,6144t

6,0175t +0,4031t 6,4206t

-3,012tm 6,0175t

6,0175t

6,0175t

+0,0383t

-0,0383t

+0,2497t

-0,2497t

6,0558t

5,9792t

6,2672t

5,7678t

Xm2izq.= Xm3izq.= Xm4izq.=

RM 4,3575t

RT

1,3529m | 1,5471m

1,4592m | 1,4408m

1,5102m | 1,3898m

Xm

0,3921tm|0,3907tm

1,8438tm|1,8438tm

1,2954tm|1,2953m

1,7203tm|1,7201tm

MmΓ‘x.

𝑅𝐴𝑉.214 q 𝑅𝐴𝑉.211 q 𝑅𝐴𝑉.208 q 𝑅𝐴𝑉.205 q

X0 RQ

1,8398m | 1,0602m

Calculo distancia β€œXm”

Xm1izq.=

-2,288tm

6,0175t

= = = =

7,635𝑑

=1,8398m

4,15tm

5,6144𝑑 4,15tm 6,0558𝑑 4,15tm 6,2672𝑑 4,15tm

Xm1der.= 2,9m - 1,8398m=1,0602m

=1,3529m

Xm2der.= 2,9m – 1,3529m=1,5471m

=1,4592m

Xm3der.= 2,9m - 1,4592m=1,4408m

=1,5102m

Xm4der.= 2,9m - 1,5102m=1,3898m

Momento mΓ‘ximo V.214 Mmax.izq =7,6235t . 1,8398m - 4,15t/m. Mmax.der = 4,4115 . 1,0602m - 4,15t/m.

(1,8398π‘š)2 2 (1,0602π‘š)2 2

- 6,61tm =0,3921tm - 1,954= 0,3907tm

Momento mΓ‘ximo V.211 Mmax.izq =5,6144t . 1,3529m - 4,15t/m. Mmax.der = 6,4206t . 1,5471m- 4,15t/m.

(1,3529π‘š)2 2

- 1,954tm =1,8438tm

(1,5471π‘š)2

- 3,123tm= 1,8438tm

2

Momento mΓ‘ximo V.208 Mmax.izq =6,0558t . 1,4592m - 4,15t/m. Mmax.der = 5,9792 . 1,4408m - 4,15t/m.

(1,4592π‘š)2 2 (1,4408π‘š)2 2

- 3,123tm =1,2954tm - 3,012= 1,2953tm

Momento mΓ‘ximo V.205 Mmax.izq =6,2672t . 1,5102m - 4,15t/m. Mmax.der = 5,7678t . 1,3898m - 4,15t/m.

(1,5102π‘š)2 2

- 3,012tm =1,7203tm

(1,3898π‘š)2 2

- 2,288= 1,7201tm

ο‚·

Diagrama de corte y momento flector

202

ο‚·

Dimensionamiento- H-17

V.214 KH=

β„Ž(π‘π‘š) √

AS=

π‘š(π‘‘π‘š) 𝑏

42 π‘π‘š

= √

π‘˜π‘ .π‘š(π‘‘π‘š) β„Ž(π‘š)

0,3921π‘‘π‘š 0,20π‘š

= 29,996 => Adopto por tabla 7,252

0,4876 .0,3921π‘‘π‘š

=

0,30π‘š

KS= 0,4876

= 0,64 cm2 Adopto 2 α΄“ 12 (2,26cm2) se levanta 1 α΄“ 12 (1,13cm2)

V.211 KH=

AS=

β„Ž(π‘π‘š) π‘š(π‘‘π‘š) √ 𝑏

=

π‘˜π‘ .π‘š(π‘‘π‘š) β„Ž(π‘š)

42π‘π‘š 1,8438π‘‘π‘š √ 0,20π‘š

= 13,834 => Adopto por tabla KH= 7,252

0,4876.1,8438 π‘‘π‘š

=

0,42π‘š

KS= 0,4876

= 2,141 cm2 Adopto 2 α΄“ 12 (2,26cm2) se levanta 1 α΄“ 12 (1,13cm2)

V.208 KH=

β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š)

√

𝑏

AS=

42 π‘π‘š

=

π‘˜π‘ .π‘š(π‘‘π‘š) β„Ž(π‘š)

1,2954π‘‘π‘š 0,20π‘š

= 16,503 => Adopto por tabla KH= 7,252

0,4876 . 1,2954π‘‘π‘š

=

0,42π‘š

KS= 0,4876

= 1,504 cm2 Adopto 2 α΄“ 12 (2,26cm2) se levanta 1 α΄“ 12 (1,13cm2)

V.205 KH=

β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š)

√

𝑏

AS=

42 π‘π‘š

=

π‘˜π‘ .π‘š(π‘‘π‘š) β„Ž(π‘š)

1,7206π‘‘π‘š 0,20π‘š

= 14,32 => Adopto por tabla KH= 7,252

0,4876.1,7206π‘‘π‘š

=

0,42π‘š

KS= 0,4876

= 1,998 cm2 Adopto 2 α΄“ 12 (2,26cm2) se levanta 1 α΄“ 12 (1,13cm2)

V.219 KH=

AS=

β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š) 𝑏

=

42 π‘π‘š √

π‘˜π‘ .π‘š(π‘‘π‘š) β„Ž(π‘š)

6,61π‘‘π‘š 0,20π‘š

= 7,306 => Adopto por tabla 7,252

0,4876 .6,61π‘‘π‘š

=

0,42π‘š

KS= 0,4876

= 7,674cm2 => AS necesaria: 7,674cm2 ; As disponible : 1,13cm2

AS necesaria real:6,544cm2 => Adopto 6 α΄“ 12 (6,78cm2)

V.202 KH=

β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š) 𝑏

AS=

π‘˜π‘ .π‘š(π‘‘π‘š) β„Ž(π‘š)

42 π‘π‘š

=

√

=

2,288π‘‘π‘š 0,20π‘š

= 12,418 => Adopto por tabla KH= 7,252

0,4876 . 2,288π‘‘π‘š 0,42π‘š

KS= 0,4876

= 2,63 cm2 => AS necesaria: 2,63cm2 ; As disponible : 1,13cm2

AS necesaria real: 1,5cm2 => Adopto 2 α΄“ 12 (2,26cm2)

h=42cm d=45m r=3cm

ο‚· KH=

VerificaciΓ³n de apoyo X1 β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š)

42 π‘π‘š

=

√

𝑏

1,954π‘‘π‘š 0,20π‘š

= 13,437 => Adopto por tabla KH= 7,252

KS= 0,4876

Armadura principal: AS=

ο‚· KH=

π‘˜π‘ .π‘‹π‘Žπ‘π‘œπ‘¦π‘œ(π‘‘π‘š) β„Ž(π‘š)

=

0.4876 . 1,954π‘‘π‘š 0,42π‘š

= 2,269cm2 => AS necesaria: 2,269cm2 ; As disponible : 2,26cm2 *Diferencia < 2% Verifica

VerificaciΓ³n de apoyo X2 β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š)

42 π‘π‘š

=

√

𝑏

3,123π‘‘π‘š 0,20π‘š

= 10,629 => Adopto por tabla KH= 7,252

KS= 0,4876

Armadura principal: AS=

π‘˜π‘ .π‘‹π‘Žπ‘π‘œπ‘¦π‘œ(π‘‘π‘š) β„Ž(π‘š)

=

0.4876 . 3,123π‘‘π‘š 0,42π‘š

= 3,626cm2 => AS necesaria: 3,626cm2 ; As disponible : 2,26cm2

AS necesaria real: 1,366cm2 => Adopto 2 α΄“ 12 (2,26cm2) ο‚·

KH=

VerificaciΓ³n de apoyo X3

β„Ž(π‘π‘š) βˆšπ‘š(π‘‘π‘š) 𝑏

42 π‘π‘š

=

√

3,012π‘‘π‘š 0,20π‘š

= 10,823 => Adopto por tabla KH= 7,252

KS= 0,4876

Armadura principal: AS=

π‘˜π‘ .π‘‹π‘Žπ‘π‘œπ‘¦π‘œ(π‘‘π‘š) β„Ž(π‘š)

=

0.4876 . 3,012π‘‘π‘š 0,42π‘š

= 3,497cm2 => AS necesaria: 3,497cm2 ; As disponible : 2,26cm2

AS necesaria real: 1,237cm2 => Adopto 2 α΄“ 12 (2,26cm2)

ο‚·

Esquema de armado

(FALTAN ESQUEMAS DE ARMADO SECCION DE VIGAS)

Related Documents

Viga Cajon
July 2020 7
Viga Analisis.docx
April 2020 12
Viga Chata.docx
December 2019 17
Viga Final
May 2020 9
Viga T.pdf
June 2020 2
Viga Ritter.docx
July 2020 4

More Documents from "ExequielRamos"

July 2020 0
Viga Ritter.docx
July 2020 4