Variable Compleja

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Variable Compleja as PDF for free.

More details

  • Words: 203
  • Pages: 2
Dada la función de variable compleja f(z) comprobar si es analítica. En caso afirmativo determine su derivada

z=x + iy f(z) = cos(3z) w = cos(3(x + iy)) w = cos(3x + 3iy)) cos z = e^(zi)+e^(-zi)/2 COS Z = ½(e^(3x +3iy)i +e^-(3x +3iy)i) W = ½(e^(-3y) e^(-3xi) + e^(3y) e^(3xi) ) e^(iθ) = cos θ + sen iθ w = ½ { e^(-3y) { cos (3x) + isen(3x)} + e^(3y){ cos(-3x) + isen(-3x)} w = cos (3x)/2 (e^(3y) + e^(-3y) ) + sen (3x)/2 (e^(3y) e^(-3y) ) u = cos (3x)/2 (e^(3y) + e^(-3y) ) v = sen (3x)/2 (e^(-3y) - e^(3y) ) du/dx ( 1) dv/dy ( 2)

=

{ =

-1/2

sen3x

(e^(3y)

+

(-3sen(3x)/2)*(e^(3y)

e^(-3y) +

)



3}

e^(-3y)

)

du/dy = (cos 3x/2) * (e^(3y) + e^(-3y) ) du/dy =3/2 cos 3x (e^(3y) + e^(-3y) ) du/dx = (cos 3x(3)/2)* (e^(3y) + e^(-3y) ) du/dy =-( dv/dy) 3/2 cos 3x (e^(3y) - e^(-3y) ) = -3/2 cos 3x (e^(3y) - e^(3y) )

3/2 cos 3x (e^(3y) - e^(-3y) ) =3/2 cos 3x (e^(3y) - e^(3y) ) f(z) es analítica df (cos 3z)=- 3/2 sen 3x (e^(3y) + e^(-3y) ) + i3/2 sen 3x (e^(-3y) - e^(3y) )

Related Documents