Vaishnav_37_b2.docx

  • Uploaded by: nischay
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Vaishnav_37_b2.docx as PDF for free.

More details

  • Words: 490
  • Pages: 12
TUTORIAL 10 DONE BY VAISHNAV SHANKAR ROLL NO – 37 REG NO – 150906260

1] CODE A=[-2 -1 -3; 0 -2 1; -7 -8 -9] B=[2;1;2]; C=[ 4 6 8]; Q=obsv(A,C) d=det(Q) r=rank(Q) if(size(Q)==r) disp('Observable s/m') else disp('not observable') end t=ctrb(A,B) D=det(t) R=rank(t) if(size(t)==R) disp('CONTROLABLE s/m') else disp('not CONTROLLABLE') end

OUTPUTA= -2 -1 -3 0 -2

1

-7 -8 -9

Q= 4

6

8

-64 -80 -78 674 848 814 d= -1.5760e+03 r=

3

Observable s/m t= 2 -11 142 1

0 -40

2 -40 437

D= -3.1930e+03 R= 3 CONTROLABLE s/m

2] CODE num=20*[1 5] den=poly([0 -1 -4]) sys=tf(num,den) [a b c d] = tf2ss(num,den) ap=fliplr(flipud(a)) bp=flipud(b); cp=fliplr(c) dp=d pos=9.5;

ts=0.74; z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2)) wn =4/(z*ts) [num,den]=ord2(wn,z) r=roots(den) p1=[r(1) r(2) -5] k=acker(ap,bp,p1) anew=ap-bp*k; tss=ss(anew,bp,cp,dp) figure,step(feedback(sys,1)) figure,step(tss)

OUTPUTnum = 20 100 den = 1

5

4

0

sys = 20 s + 100 ----------------s^3 + 5 s^2 + 4 s

Continuous-time transfer function. a= -5 -4

0

1

0

0

0

1

0

b= 1 0 0

c= 0 20 100

d=

0

ap = 0

1

0

0

0

1

0 -4 -5 cp = 100 20

dp =

0

0

z= 0.5996

wn = 9.0147

num = 1

den = 1.0000 10.8108 81.2645 r= -5.4054 + 7.2143i -5.4054 - 7.2143i

p1 =

-5.4054 + 7.2143i -5.4054 - 7.2143i -5.0000 + 0.0000i

k= 406.3226 131.3186 10.8108

tss = A= x1

x2

x3

x1

0

1

0

x2

0

0

1

x3 -406.3 -135.3 -15.81

B= u1 x1 0 x2 0 x3 1

C= x1 x2 x3 y1 100 20 0

D= u1 y1 0

Continuous-time state-space model.

3] CODE clc;clear; num = 407*[1 .916]; den= poly([-1.27 -2.69]); sys= tf(num,den); [a b c d]=tf2ss(num,den); ap= fliplr(flipud(a)); bp= flipud(b); cp= fliplr(c); dp=d; z= 0.7; wn= 100; [num,den]= ord2(wn,z); r= roots(den); p1= [r(1) r(2)]; l= acker(ap',cp',p1)'

OUTPUTl= -38.6236 35.7135

4] CODE A=[0 -83.33; 500 -10]; B=[166.67;0]; C=[0 1]; D=0; [n d]=ss2tf(A,B,C,D) %state feedback controller AP=fliplr(flipud(A)); BP=flipud(B) CP=fliplr(C); DP=D; pos=20; Ts=0.5;

z=(-log(pos/100))/(sqrt(pi^2+log(pos/100)^2)) wn=4/(z*Ts); [num,den]=ord2(wn,z); r=roots(den); P1=[r(1) r(2)]; K=acker(AP,BP,P1) Anew=AP-BP*K; Tss=ss(Anew,BP,CP,DP) [num den]=ss2tf(Anew,BP,CP,DP); figure(1) step(num,den) title('With Controller') figure(2) step(n,d) title('Given System') %observer L=acker(AP',CP',P1)' Z=[0 0;0 0]; BPP=[BP;0;0]; CPP=[CP 0 0]; Anew1=[AP-BP*K BP*K;Z AP-L*CP] Oss=ss(Anew1,BPP,CPP,DP) [num1 den1]=ss2tf(Anew1,BPP,CPP,DP); figure(3) step(num1,den1) title('With Controller and Observed’)

OUTPUTn=

0

0

83335

d= 1.0e+04 * 0.0001 0.0010 4.1665

BP =

0 166.6700 z= 0.4559 K= -0.4970 0.0360

Tss = A= x1 x1

x2

-10

x2 -0.4957

B= u1 x1

0

x2 166.7

C= x1 x2 y1 1 0

D= u1 y1 0

500 -6

Continuous-time state-space model. L= 6.0000 -82.7143 Anew1 = -10.0000 500.0000

0

0

-0.4957 -6.0000 -82.8343 6.0000 0

0 -16.0000 500.0000

0

0 -0.6157

0

Oss = A= x1 x1

-10

x2

x3

500

x2 -0.4957

x4 0

-6 -82.83

x3

0

0

x4

0

0 -0.6157

B= u1 x1

0

x2 166.7 x3

0

x4

0

0

C= x1 x2 x3 x4 y1 1 0 0 0

-16

6

500 0

D= u1 y1 0

Continuous-time state-space model.

More Documents from "nischay"