Utm Calculator

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Utm Calculator as PDF for free.

More details

  • Words: 2,802
  • Pages: 51
Transformasi Koordinat Geodetis ke Peta(X,Y)

FROM : prof,dr,azinar.sh,mm,m.hum,m.mas,m.m.mia.

Diketahui Elipsoid dengan parameter a= 1/f = e2 = e2 = e' 2 =

titik 1

6378137 298.26

1 6378594.68

2f -f2 0.01 0.01

A B C D E F

1.01 0.01 0 0 0 0

S

930980.82

φ λ

8 114

Zone

K0 = N1 =

50 MT

φ1

25 24

8.04 LS 18.01 BT 117˚ Δλ"

30308.04 411858.01 117 9341.99 "

[IV] [V] [B5] p

305788.26 115.43 0.06 0.93

[I] [II] [III] [A6]

930608.43 1085.26 1.05 0

[IV]p [V]p3 [B5]p5

285667.08 94.11 0.04

[I] [II]p2 [III]p4 [A6]p6

930608.43 947.14 0.8 0

T'

285761.24

U'

931556.37

X1

214238.76

Y1

9068443.63

421200 -9341.99

8.42 114.41

hum,m.mas,m.m.mia.

0 0

0.15 2

˚ zone

' der

" det

46 47

93 99

334800 356400

48 49 50 51 52 53 54 55 56 57 58 59 60

105 111 117 123 129 135 141 147 153 159 165 171 177

378000 399600 421200 442800 464400 486000 507600 529200 550800 572400 594000 615600 637200

U'2 = U'1 =

-889094.32 -844639.67

U' RATA-RATA =

-866866.99

T'2 = T'1 =

-162019.33 -236071.69

U2 = U1 =

DRAJAT a= 1/f =

6378137 298.26

e2 = e2 = e' 2 =

K0 =

1

SIN

2f -f2 0.00669438 0.00673950

φ=

T' RATA-RATA

DETIK DRAJAT -28092.21 -7.8

7.8 DRAJAT -7

-199045.51

106

DARI JAKARTA

12.21 DETIK 12.21

MT =

λ= BUJUR JAKARTA

48.2 MENIT 48

48

115.21

27.79

λ=

117

8.4

DERAJAT 106.81 DERAJAT 1.86 RADIAN

8.4 DRAJAT 8

23.94 MENIT 23

56.68 DETIK 56.68

0

9110905.68 9155360.33

MENIT

T2 = T1 =

337980.67 263928.31

DETIK 0

1

0 DERAJAT 0 RADIAN

DRAJAT

MENIT

DETIK LINTANG

0

0

-8.24 DERAJAT -0.14 RADIAN

1

0 DERAJAT 0 RADIAN BUJUR

BUJUR JAKARTA

106

48

7.33 DERAJAT 0.13 RADIAN

27.79

106.81 DERAJAT 1.86 RADIAN BUJUR AKTUAL

a= 1/f =

6378137 298.26

e2 = e2 = e' 2 =

114.13 DERAJAT 1.99 RADIAN

MERIDIAN TENGAH

117 DERAJAT 2.04 RADIAN

Δλ

2.87 DERAJAT 0.05 RADIAN

10318.9 DETIK

1

2f -f2 0.00669438 0.00673950

XII =

-1433.956141637

XIII =

-1.12 -0.14

C5 =

-0.00100264

p= p3 = p5 =

1.03189043 1.09875473 1.16995170

XIIp = XIIIp3 = C5p5 =

K0 =

JIKA TIDAK MENGGUN MAKA CUKUP MEN

0.96

-1479.68562563 -1.23309124 -0.00117304

KONVERGENSI GRID -1480.91988990

DETIK

0

1.98

JIKA TIDAK MENGGUNAKAN ARGUMEN BUJUR JAKARTA, MAKA CUKUP MENGGUNAKAN BUJUR YANG ADA.

6.67E+018

U'2 = U'1 = a= 1/f = e2 = e2 = e' 2 =

-889094.32 -844639.67

T'2 = T'1 =

6378137 298.26

-162019.33 -236071.69

K0 =

1

2f -f2 0.00669438 0.00673950 LINTANG

0.02 N= M=

-7.8 DERAJAT -0.14 RADIAN

1

0.99330562

###

###

6378530.59 6336612.28 1.01

XVIIII =

U2 = U1 =

0.01 6.88E-08

ΔU =

-44454.66

UNTUK SEBELAH SELATAN EQUATOR DIBALIK UNTUK SEBELAH UTARA EQUATOR TETAP

### (t-T)12 =

-23.99727879

44454.66

9110905.68 9155360.33

### ###

T2 = T1 =

44454.66

### (t-T)21 =

21.19507188

337980.67 263928.31

U'2 = U'1 =

-931556.37 -915856.22

a= 1/f =

6378137 298.26

e2 = e2 = e' 2 =

T'2 = T'1 =

-285761.54 -318166.22

K0 =

1

2f -f2 0.00669438 0.00673950 LINTANG

0.02 N= M=

-8.32 DERAJAT -0.15 RADIAN

1

0.99330562

###

###

6378583.53 6336770.05 1.01

XVIIII =

0.01

XIX =

0

q2 = q4 =

0.1 0.01

XVIIIIq2 = XIXq4 =

0 0

k=

1

D12 = D'12 =

36010 36040.72 1 100061 2 86425 3 125476 4 67870 5 36010 1

m m

U2 = U1 =

9068443.63 9084143.78

T2 = T1 =

214238.46 181833.78

PERHITUNGAN POLIGON NORMAL TITIK

SUDUT HORISONTAL UKURAN β ° ' ¨

KOREKSI ∆β '

°

TERKOREKSI β¨ ¨

°

P 1 271

9

0

271.15

0

0

12

0

271

294

54

0

294.9

0

0

12

0

294

254

0

0

254

0

0

12

0

254

345

59

0

345.98

0

0

12

0

345

93

57

0

93.95

0

0

12

0

93

2 3 4 5 1 2 n=

5 JUMLAH TITIK ∑ 1260 BESAR KOREKSI

1259.98 0

AZIMUTH TERKOREKSI β¨ '

¨

rad

α '

°

¨

0

0

0

9

12

271.15

4.73

30

12

20

30.21

0.53

54

12

294.9

5.15

121

21

32

121.36

2.12

0

12

254

4.43

236

15

44

236.26

4.12

59

12

345.99

6.04

310

15

56

310.27

5.42

57

12

93.95

1.64

116

15

8

116.25

2.03

30

12

20

30.21

0.53



1260



JARAK d (m)

ASAL

d sin α KOREKSI ∆X

TERKOREKSI

ASAL

d cos α KOREKSI ∆X

TERKOREKSI

100061

50341.06

-73.2

50267.86

86475.32

60.17

86535.49

86425

73800.42

-63.23

73737.19

-44975.32

51.97

-44923.35

125476

-104344.35

-91.8

-104436.15

-69688.47

75.45

-69613.03

67870

-51788.68

-49.65

-51838.33

43866.5

40.81

43907.31

36010

32295.77

-26.34

32269.43

-15928.07

21.65

-15906.42

415842 dx

304.22 0

-304.22

0 dy

-250.04 0

250.04

0

KOORDINAT X Y

Titik

214238.46

9068443.63

1

264506.32

9154979.12

2

338243.51

9110055.77

3

233807.37

9040442.74

4

181969.04

9084350.05

5

214238.46

9068443.63

1

PERHITUNGAN POLIGON NORMAL TITIK

SUDUT HORISONTAL UKURAN β ° ' ¨

KOREKSI ∆β '

°

TERKOREKSI β¨ ¨

°

P 1

271

9

0

271.15

0

0

12

0

271

2

294

54

0

294.9

0

0

12

0

294

3

254

0

0

254

0

0

12

0

254

4

345

59

0

345.98

0

0

12

0

345

5

93

57

0

93.95

0

0

12

0

93

1 2 n=

5 JUMLAH TITIK ∑

1259.98

1260 BESAR KOREKSI

0

1. PADA TITIK 1 θ1 = β1 - ψ15 + ψ12 Az 12 = P12 - ψ12 - Y P12 = Y1 = ψ15 = ψ12 = Az 12 = D12 =

30.21 1368.69 12.04 59.45 29.81 100122.11

DETIK DETIK DETIK DETIK

0.01 0.38 0 0.02

DERAJAT DERAJAT DERAJAT DERAJAT

-0.28

DERAJAT

DERAJAT m

2. PADA TITIK 2 θ2 = β2 - ψ21 + ψ23 Y2 = β2 =

-1011.48 294.9

DETIK DERAJAT

ψ21 = ψ23 =

-55.74 -24.2

D23 =

86449.75

DETIK DETIK

-0.02 -0.01

DERAJAT DERAJAT

-0.2

DERAJAT

0.01 -0.01

DERAJAT DERAJAT

-0.36

DERAJAT

0.01 0.01

DERAJAT DERAJAT

-0.41

DERAJAT

-0.01 0

DERAJAT DERAJAT

m

3. PADA TITIK 3 θ3 = β3 - ψ32 + ψ34 Y3 = β3 = ψ32 = ψ34 =

-731.29 254 21.38 -34.94

D34 =

125466.44

DETIK DERAJAT DETIK DETIK m

4. PADA TITIK 4 θ4 = β4 - ψ43 + ψ45 Y4 = β4 = ψ43 = ψ45 =

-1297.36 345.98 41.13 31.78

DETIK DERAJAT DETIK DETIK

D45 =

67902.37

m

5. PADA TITIK 5 θ5 = β5 - ψ54 + ψ51 Y5 = β5 = ψ54 = ψ51 =

-1479.96 93.95 -33.72 -12.48

DETIK DERAJAT DETIK DETIK

D51 =

36040.68

m

ITERASI TITIK

P

SUDUT HORISONTAL UKURAN β ° ' ¨

I

°

KOREKSI ∆ψ '

TERKOREKSI β¨ ¨

°

1

271

9

0

271.15

0

0

47.4

0.01

271

2

294

54

0

294.9

0

0

31.55

0.01

294

3

254

0

0

254

-1

59

3.68

-0.02

253

4

345

59

0

345.98

-1

59

50.65

0

345

5

93

57

0

93.95

0

0

21.24

0.01

93

1 2 n=

5 JUMLAH TITIK ∑

1259.98

1260

1. PADA TITIK 1 θ1 = β1 - ψ15 + ψ12 Az 12 = P12 - ψ12 - Y P12 = Y1 = ψ15 = ψ12 = Az 12 = D12 =

30.21 1368.69 11.89 59.75 29.81 100122.11

DETIK DETIK DETIK DETIK

0.01 0.38 0 0.02

DERAJAT DERAJAT DERAJAT DERAJAT

-0.28

DERAJAT

-0.02 -0.01

DERAJAT DERAJAT

-0.2

DERAJAT

0.01 -0.01

DERAJAT DERAJAT

DERAJAT m

2. PADA TITIK 2 θ2 = β2 - ψ21 + ψ23 Y2 = β2 = ψ21 = ψ23 =

-1013.51 294.9 -56.07 -24

DETIK DERAJAT DETIK DETIK

D23 =

86450.04

m

3. PADA TITIK 3 θ3 = β3 - ψ32 + ψ34 Y3 = β3 = ψ32 = ψ34 =

-731.78 254 21.19 -35.32

DETIK DERAJAT DETIK DETIK

D34 =

125466.57

m

4. PADA TITIK 4 θ4 = β4 - ψ43 + ψ45 Y4 = β4 = ψ43 = ψ45 =

-1296.21 345.98 41.54 31.52

DETIK DERAJAT DETIK DETIK

D45 =

67902.29

m

-0.36

DERAJAT

0.01 0.01

DERAJAT DERAJAT

-0.41

DERAJAT

-0.01 0

DERAJAT DERAJAT

5. PADA TITIK 5 θ5 = β5 - ψ54 + ψ51 Y5 = β5 = ψ54 = ψ51 =

-1480.92 93.95 -33.45 -12.32

DETIK DERAJAT DETIK DETIK

D51 =

36040.72

m

II

ITERASI TITIK

SUDUT HORISONTAL UKURAN β ° ' ¨

KOREKSI ∆ψ '

°

TERKOREKSI β¨ ¨

°

P 1

271

9

0

271.15

0

0

47.86

0.01

271

2

294

54

0

294.9

0

0

32.08

0.01

294

3

254

0

0

254

-1

59

3.49

-0.02

253

4

345

59

0

345.98

-1

59

49.98

0

345

5

93

57

0

93.95

0

0

21.13

0.01

93

1 2 n=

5 JUMLAH TITIK



1259.98

1260

1. PADA TITIK 1 θ1 = β1 - ψ15 + ψ12 Az 12 = P12 - ψ12 - Y P12 = Y1 = ψ15 = ψ12 = Az 12 = D12 =

30.21 1368.69 11.89 59.75 29.81 100122.11

DETIK DETIK DETIK DETIK

0.01 0.38 0 0.02

DERAJAT DERAJAT DERAJAT DERAJAT

-0.28

DERAJAT

-0.02 -0.01

DERAJAT DERAJAT

-0.2

DERAJAT

0.01 -0.01

DERAJAT DERAJAT

-0.36

DERAJAT

0.01 0.01

DERAJAT DERAJAT

DERAJAT m

2. PADA TITIK 2 θ2 = β2 - ψ21 + ψ23 Y2 = β2 = ψ21 = ψ23 =

-1013.51 294.9 -56.07 -24

DETIK DERAJAT DETIK DETIK

D23 =

86450.04

m

3. PADA TITIK 3 θ3 = β3 - ψ32 + ψ34 Y3 = β3 = ψ32 = ψ34 =

-731.78 254 21.2 -35.32

D34 =

125466.57

DETIK DERAJAT DETIK DETIK m

4. PADA TITIK 4 θ4 = β4 - ψ43 + ψ45 Y4 = β4 = ψ43 = ψ45 =

-1296.21 345.98 41.54 31.52

DETIK DERAJAT DETIK DETIK

D45 =

67902.29

m

5. PADA TITIK 5

θ5 = β5 - ψ54 + ψ51 Y5 = β5 = ψ54 = ψ51 =

-1480.92 93.95 -33.45 -12.32

DETIK DERAJAT DETIK DETIK

D51 =

36040.72

m

DERAJAT

-0.01 0

DERAJAT DERAJAT

II

ITERASI TITIK

-0.41

SUDUT HORISONTAL UKURAN β ° ' ¨

KOREKSI ∆ψ '

°

TERKOREKSI β¨ ¨

°

P 1

271

9

0

271.15

0

0

47.86

0.01

271

2

294

54

0

294.9

0

0

32.08

0.01

294

3

254

0

0

254

-1

59

3.49

-0.02

253

4

345

59

0

345.98

-1

59

49.98

0

345

5

93

57

0

93.95

0

0

21.13

0.01

93

1 2 n=

5 JUMLAH TITIK ∑ 1260

1259.98

AZIMUTH TERKOREKSI β¨ '

¨

rad

α '

°

¨

0

0

0

9

12

271.15

4.73

30

12

20

30.21

0.53

54

12

294.9

5.15

121

21

32

121.36

2.12

0

12

254

4.43

236

15

44

236.26

4.12

59

12

345.99

6.04

310

15

56

310.27

5.42

57

12

93.95

1.64

116

15

8

116.25

2.03

30

12

20

30.21

0.53



1260



TERKOREKSI β¨ '

¨

rad

°

KOREKSI ∆β '

TERKOREKSI β¨ ¨

°

9

47.4

271.16

4.73

0

0

5.1

0

271

54

31.55

294.91

5.15

0

0

5.1

0

294

59

3.68

253.98

4.43

0

0

5.1

0

253

58

50.65

345.98

6.04

0

0

5.1

0

345

57

21.24

93.96

1.64

0

0

5.1

0

93



1259.99

BESAR KOREKSI

0

∆Y ∆ψ ∆ψ

0 -0.15 0.3

∆D

0

∆Y

-2.03

∆ψ ∆ψ

-0.33 0.2

∆D

0.29

∆Y

-0.49

∆ψ ∆ψ

-0.18 -0.37

∆D

0.13

∆Y

1.16

∆ψ ∆ψ

0.41 -0.26

∆D

-0.09

∆Y

-0.96

∆ψ ∆ψ

0.27 0.16

∆D

0.04

TERKOREKSI β¨ '

¨

rad

KOREKSI ∆β '

°

TERKOREKSI β¨ ¨

°

9

47.86

271.16

4.73

0

0

5.1

0

271

54

32.08

294.91

5.15

0

0

5.1

0

294

59

3.49

253.98

4.43

0

0

5.1

0

253

58

49.98

345.98

6.04

0

0

5.1

0

345

57

21.13

93.96

1.64

0

0

5.1

0

93



1259.99

BESAR KOREKSI

0

∆Y ∆ψ ∆ψ

0 0 0

∆D

0

∆Y

0

∆ψ ∆ψ

0 0

∆D

0

∆Y

0

∆ψ ∆ψ

0 0

∆D

0

∆Y

0

∆ψ ∆ψ

0 0

∆D

0

∆Y

0

∆ψ ∆ψ

0 0

∆D

0

TERKOREKSI β¨ '

¨

rad

KOREKSI ∆β '

°

TERKOREKSI β¨ ¨

°

9

47.86

271.16

4.73

0

0

5.1

0

271

54

32.08

294.91

5.15

0

0

5.1

0

294

59

3.49

253.98

4.43

0

0

5.1

0

253

58

49.98

345.98

6.04

0

0

5.1

0

345

57

21.13

93.96

1.64

0

0

5.1

0

93

∑ BESAR KOREKSI

1259.99 0

JARAK d (m)

ASAL

d sin α KOREKSI TERKOREKSI ASAL ∆X

d cos α KOREKSI TERKOREKSI ∆X

100061 50341.06

-73.2 50267.86 86475.32

60.17 86535.49

86425 73800.42

-63.23 73737.19 -44975.32

51.97 -44923.35

125476

###

-91.8

### -69688.47

-49.65 -51838.33

43866.5

40.81 43907.31

36010 32295.77

-26.34 32269.43 -15928.07

21.65 -15906.42

304.22 0

-304.22

0 dy

-250.04 0

Titik

214238.46

###

1

264506.32

###

2

338243.51

###

3

233807.37

###

4

181969.04

###

5

214238.46

###

1

75.45 -69613.03

67870 -51788.68

415842 dx

KOORDINAT X Y

250.04

0

AZIMUTH TERKOREKSI β¨ '

¨

rad

KOREKSI ∆β

α '

°

0

¨

0

°

0

9

52.5

271.16

4.73

30

12

20

30.21

0.53

-1

54

36.64

294.91

5.15

121

22

12.5

121.37

2.12

0

59

8.78

253.99

4.43

236

16

49.14

236.28

4.12

0

58

55.75

345.98

6.04

310

15

57.92

310.27

5.42

0

57

26.34

93.96

1.64

116

14

53.66

116.25

2.03

0

30

12

20

30.21

0.53

-1



1260

AZIMUTH TERKOREKSI β¨ '

¨

rad

KOREKSI ∆β

α '

°

¨

°

0

0

0

9

52.96

271.16

4.73

30

12

20

30.21

0.53

-1

54

37.17

294.91

5.15

121

22

12.96

121.37

2.12

0

59

8.58

253.99

4.43

236

16

50.13

236.28

4.12

0

58

55.08

345.98

6.04

310

15

58.71

310.27

5.42

0

57

26.23

93.96

1.64

116

14

53.79

116.25

2.03

0

30

12

20.02

30.21

0.53

-1



1260

AZIMUTH TERKOREKSI β¨ '

¨

rad

KOREKSI ∆β

α '

°

¨

°

0

0

0

9

52.96

271.16

4.73

30

12

20

30.21

0.53

-1

54

37.17

294.91

5.15

121

22

12.96

121.37

2.12

0

59

8.58

253.99

4.43

236

16

50.13

236.28

4.12

0

58

55.08

345.98

6.04

310

15

58.71

310.27

5.42

0

57

26.23

93.96

1.64

116

14

53.79

116.25

2.03

0

30

12

20.02

30.21

0.53

-1



1260

KOREKSI ∆β '

¨

°

TERKOREKSI β¨ '

JARAK d (m) ¨

rad

36

11.87

-0.4

29

48

31.87

29.81

0.52

16

51.48

0.28

120

58

24.36

120.97

2.11

12

11.29

0.2

235

53

1.01

235.88

4.12

21

37.36

0.36

309

52

9.78

309.87

5.41

24

39.96

0.41

115

51

5.53

115.85

2.02

36

11.87

-0.4

29

48

31.87

29.81

0.52

100122.11 86449.75 125466.44 67902.37 36040.68



415981.36 dx

KOREKSI ∆β '

¨

°

TERKOREKSI β¨ '

JARAK d (m) ¨

rad

36

11.56

-0.4

29

48

31.56

29.81

0.52

16

53.51

0.28

120

58

24.52

120.97

2.11

12

11.78

0.2

235

53

1.69

235.88

4.12

21

36.21

0.36

309

52

10.27

309.87

5.41

24

40.92

0.41

115

51

5.35

115.85

2.02

36

11.56

-0.4

29

48

31.58

29.81

0.52

100122.11 86450.04 125466.57 67902.29 36040.72



415981.73 dx

KOREKSI ∆β '

¨

°

TERKOREKSI β¨ '

JARAK d (m) ¨

rad

36

11.56

-0.4

29

48

31.56

29.81

0.52

16

53.51

0.28

120

58

24.52

120.97

2.11

12

11.78

0.2

235

53

1.69

235.88

4.12

21

36.21

0.36

309

52

10.27

309.87

5.41

24

40.92

0.41

115

51

5.35

115.85

2.02

36

11.56

-0.4

29

48

31.58

29.81

0.52

100122.11 86450.04 125466.57 67902.29 36040.72



415981.73 dx

ASAL

d sin α KOREKSI ∆X

TERKOREKSI

ASAL

d cos α KOREKSI ∆X

TERKOREKSI

KOORDINAT X

214238.46 49771.5

-81.53

49689.97

86874.82

41.86

86916.68

74122.54

-70.4

74052.14

-44490.55

36.14

-44454.41

-103873.66

-102.17

-103975.83

-70371.09

52.45

-70318.64

-52115.6

-55.3

-52170.9

43528.11

28.39

43556.5

32433.98

-29.35

32404.63

-15715.2

15.07

-15700.14

263928.43 337980.57 234004.73 181833.83 214238.46

338.76 0

-338.76

0 dy

-173.91 0

173.91

0

ASAL

d sin α KOREKSI ∆X

TERKOREKSI

ASAL

d cos α KOREKSI ∆X

TERKOREKSI

KOORDINAT X

214238.46 49771.38

-81.53

49689.85

86874.89

41.81

86916.7 263928.31

74122.75

-70.39

74052.36

-44490.76

36.1

-44454.66

-103874

-102.16

-103976.17

-70370.82

52.39

-70318.43

-52115.43

-55.29

-52170.72

43528.18

28.35

43556.53

32434.02

-29.35

32404.68

-15715.19

15.05

-15700.14

337980.67 234004.5 181833.78 214238.46

338.72 0

-338.72

0 dy

-173.7 0

173.7

0

ASAL

d sin α KOREKSI ∆X

TERKOREKSI

ASAL

d cos α KOREKSI ∆X

TERKOREKSI

KOORDINAT X

214238.46 49771.38

-81.53

49689.85

86874.89

41.81

86916.7 263928.31

74122.75

-70.39

74052.36

-44490.76

36.1

-44454.66

-103874

-102.16

-103976.17

-70370.82

52.39

-70318.43

-52115.43

-55.29

-52170.72

43528.18

28.35

43556.53

32434.02

-29.35

32404.68

-15715.19

15.05

-15700.14

337980.67 234004.5 181833.78 214238.46

338.72 0

-338.72

0 dy

-173.7 0

173.7

0

KOORDINAT Y

Titik

9068443.63

1

9155360.31

2

9110905.91

3

9040587.27

4

9084143.77

5

9068443.63

1

KOORDINAT Y

Titik

9068443.63

1

9155360.33

2

9110905.68

3

9040587.24

4

9084143.78

5

9068443.63

1

KOORDINAT Y

Titik

9068443.63

1

9155360.33

2

9110905.68

3

9040587.24

4

9084143.78

5

9068443.63

1

Related Documents

Utm Calculator
October 2019 31
Calculator
August 2019 67
Utm 1
October 2019 29
Calculator
November 2019 57
Calculator
October 2019 49
Calculator
November 2019 60