Unit Ii.pptx

  • Uploaded by: Gokul Kannan
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Unit Ii.pptx as PDF for free.

More details

  • Words: 541
  • Pages: 45
UNIT II Areas and volumes

Area

COMPUTATION OF AREAS OF IRREGULAR FIGURES

If the boundaries are irregular and curved, the area is determined by ordinates method. This method is suitable for long narrow strip, such as railway, roadway, drainage. Etc.,

From the lengths and their common interval the area may be computed by the following rules

1. The end ordinate rule 2. The mid ordinate rule 3. The average ordinate rule or mean ordinate rule 4. The trapezoidal rule 5. Simpsonโ€™s rule

1. End ordinate rule

A = d (O1 + O2 + O3 + O4 + O5 + O6)

2. Mid ordinate rule

A = d (M1 + M2 + M3 + M4+ M5)

3. Average ordinate rule (or) Mean ordinate rule

๐€=(๐‘บ๐’–๐’Ž ๐’๐’‡ ๐’‚๐’๐’ ๐’๐’“๐’…๐’Š๐’๐’‚๐’•๐’†๐’” / ๐‘ต๐’ ๐’๐’‡ ๐’๐’“๐’…๐’Š๐’๐’‚๐’•๐’†๐’” ) x ๐‘ป๐’๐’•๐’‚๐’ ๐’๐’†๐’๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’ƒ๐’‚๐’”๐’† ๐’๐’Š๐’๐’† ๐€=(๐Ž๐Ÿ+๐Ž๐Ÿ+๐Ž๐Ÿ‘+๐Ž๐Ÿ’+๐Ž5)๐Ÿ“ x ๐‘ซ Where, O1, O2, O3โ€ฆ.. = The ordinates of each division D = Total distance of base line

4. Trapezoidal rule

๐€๐ซ๐ž๐š,๐€= ๐’…/๐Ÿ ( (๐‘ถ๐Ÿ+๐‘ถ๐Ÿ• )+ ๐Ÿ(๐‘ถ๐Ÿ+๐‘ถ๐Ÿ‘+๐‘ถ๐Ÿ’+๐‘ถ๐Ÿ“+๐‘ถ๐Ÿ”))

5 SIMPSONโ€™S RULE

๐€= ๐’…/ ๐Ÿ‘ ( ๐‘ถ๐Ÿ+๐‘ถ๐Ÿ•)+๐Ÿ (๐‘ถ๐Ÿ‘+๐‘ถ๐Ÿ“ )+ ๐Ÿ’ (๐‘ถ๐Ÿ+๐‘ถ๐Ÿ’+๐‘ถ๐Ÿ”)

Computation of volumes of irregular solids 1. End area rule 2. Mid area rule 3. Average area or Mean area rule 4. Trapezoidal rule 5. Simpsonโ€™s or Prismoidal rule.

1. End area rule End area rule โ€ข This is one of the approximate methods. Volume V = (Sum of all areas of cross section except last one) x Common interval V = d (A1 + A2 + A3 + โ€ฆโ€ฆโ€ฆ.. A n-1)

2. Mid area rule Volume V = Common interval X (Sum of all mid sectional area) V = d (Am1 + Am2 + Am3 + โ€ฆโ€ฆโ€ฆ.. A m-1)

3. Average area or Mean area rule Volume V = mean cross sectional area x Total base length V =(๐‘จ๐Ÿ+๐‘จ๐Ÿ+๐‘จ๐Ÿ‘+โ‹ฏโ€ฆ๐‘จ๐’)/ ๐ง ๐‘ฟ ๐‘ณ n = number of cross sections L = Total length

4. Trapezoidal rule โ€ข The trapezoidal rule gives correct volume of a solid. It gives fairly good result. Volume ๐•๐จ๐ฅ๐ฎ๐ฆ๐ž ๐•= ๐’„๐’๐’Ž๐’Ž๐’๐’ ๐’Š๐’๐’•๐’†๐’“๐’—๐’‚๐’ / ๐Ÿ ( ๐‘บ๐’–๐’Ž ๐’๐’‡ ๐’‚๐’“๐’†๐’‚๐’” ๐’Š๐’ ๐’‡๐’Š๐’“๐’”๐’• ๐’‚๐’๐’… ๐’๐’‚๐’”๐’• ๐’”๐’†๐’„๐’•๐’Š๐’๐’ + ๐Ÿ ๐‘บ๐’–๐’Ž ๐’๐’‡ ๐’‚๐’“๐’†๐’‚๐’” ๐’๐’‡ ๐’‚๐’๐’ ๐’๐’•๐’‰๐’†๐’“ ๐’”๐’†๐’„๐’•๐’Š๐’๐’๐’” ๐•= ๐’…/๐Ÿ ((๐‘จ๐Ÿ+๐‘จ๐’)+ ๐Ÿ ๐‘จ๐Ÿ+๐‘จ๐Ÿ‘+๐‘จ๐Ÿ’โ€ฆโ€ฆ..๐‘จ๐’โˆ’๐Ÿ )

5. Prismoidal rule ๐•= ๐’„๐’๐’Ž๐’Ž๐’๐’ ๐’Š๐’๐’•๐’†๐’“๐’—๐’‚๐’/๐Ÿ‘ ( ๐‘บ๐’–๐’Ž ๐’๐’‡ ๐’‡๐’Š๐’“๐’”๐’• ๐’‚๐’๐’… ๐’๐’‚๐’”๐’• ๐’”๐’†๐’„๐’•๐’Š๐’๐’ ๐’‚๐’“๐’†๐’‚ + ๐Ÿ (๐‘บ๐’–๐’Ž ๐’๐’‡ ๐’‚๐’๐’ ๐’๐’…๐’… ๐’‚๐’“๐’†๐’‚) + ๐Ÿ’ (๐‘บ๐’–๐’Ž ๐’๐’‡ ๐’‚๐’๐’ ๐’†๐’—๐’†๐’ ๐’‚๐’“๐’†๐’‚ ) ) ๐•= ๐’…/๐Ÿ‘ ((๐‘จ๐Ÿ+๐‘จ๐’)+ ๐Ÿ( ๐‘จ๐Ÿ‘+๐‘จ๐Ÿ“+ โ€ฆโ€ฆ. )+ ๐Ÿ’ ( ๐‘จ๐Ÿ+๐‘จ๐Ÿ’+๐‘จ๐Ÿ”+โ‹ฏ))

EMBANKMENTS AND CUTTINGS The method of the computation of the cross sectional area will depend upon the type of cross section. The following types of cross sections are generally in use 1. Level section 2. Two level section 3. Sidehill two-level section 4. Three level section 5. Multi-level section

1. Level section

Area of cross section = ๐‘‡๐‘œ๐‘ ๐‘ค๐‘–๐‘‘๐‘กโ„Ž+๐ต๐‘œ๐‘ก๐‘ก๐‘œ๐‘š ๐‘ค๐‘–๐‘‘๐‘กโ„Ž /2 ๐‘ฅ โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก Area of cross section A = (2๐‘Š+๐‘)2 X h = ๐‘+2๐‘†โ„Ž+๐‘2 X h A = 2(๐‘+๐‘†โ„Ž)2 X h A = (b + Sh) h

2. Two level section

3. Side hill two level section

Sectional area of cutting portion = ๐Ÿ ๐Ÿ ๐’“โˆ’๐’”๐Ÿ ๐’ƒ ๐Ÿ+๐’“๐’‰ 2 Sectional area of filling portion = ๐Ÿ ๐Ÿ ๐’“โˆ’๐’”๐Ÿ ๐’ƒ ๐Ÿโˆ’๐’“๐’‰ 2

4. Three level section

A = h/2 (W1 + W2 + b) + b/4 (w1/ r1 + w2/ r2)

Related Documents

Youth Unit
October 2019 14
Unit Iii
October 2019 25
Unit-iii
June 2020 10
Unit 4
June 2020 7
Unit 1
June 2020 9
Unit 4
December 2019 16

More Documents from "rathneshkumar"