[uks] Amaths 2007(mock) (e)

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View [uks] Amaths 2007(mock) (e) as PDF for free.

More details

  • Words: 1,221
  • Pages: 7
Final Examinations2006/2007 AdditionalMathematics

E 5EF SectionA (62 marks) I.

Eva l uatef_-I .r(2x+ 3),,o-. (3 rnarksi

2'

Let f(x) =

Irind f'(x) by thefirstprinciple.

*;.

(4 marks) 3.

( a ) I ti sg i ve ntl ta t2 }co s0 *2l sin0= r cos( 0+o) , Findthevalueof r andcrto thenearest 0.1u.

wher er >0ancloisanacut eangl e.

(\ -b/)l 2 [email protected] e ry:si n g tl re re su l ti n (a) ,findthefangeofthevaluesofy. (5 marks) 4.

Solvethe following equations:

( a ) l 2x -l l =i t; ,,) (b) lr l"r--5xl_tl=t,

5'

Show;by mathematicar induction,that,for

(5 marks) ail positiveintegersn,

e:;c).@#)+ ..'i&l : #1 I

(5 marks) 6'

(a) Expand(2x - r)6 compretery in descending orclerof powersof x. (b) If theconstant termin theexpansion of (2x -1161zx* is r7, find thevalue(s)of a. 31, X (5 marks)

7.

(a) Showthatsin(4x+ I )cos(4.r _ 3n . - I ' ' .1 ' 7 1:-cos 4 /-v e \

8x.

(b) Hencefind the generalsolution of the equation

sin(4x +-1)cos(4; -I 4

Fi nal E x am . 06/ A 7F .s A rl d i ti o n a l

4'

Ma th e ma ti c s

f= 1 4

(6 marks) 2/8

Final Examinations2A0612007 AdditionalMathematics

F.sEF

: y : -2x2+ 10x+ 10and regionABC is formedby L: 5x + y - 38 A' C1: In Figure1, theshaded (12,-22) of A'. B aud C are (4,18),(8,-38) and c,..y = x2 *16* + 26.The coordinates Findthe areaof the shadedregion' respectively.

8.

A(4,18

8,-38 Q:!=l x Tfi Qv +10 (5 rnarks)

Figure1

g.

In Figure 2, the coordinatesof I and B are (0, 4) and thatAC : CB : I : r, where r > 0'

(8, 0) respectively'c is a point on lB such

A(0,

Figure 2 (a) Expressthe coordinatesof C in terms of r' (b) Find the value(s)of r if r: :0; unitsfrom the straightline 2x +y - 8 (i) C is9 L

1?

(ii) theareaof LCPQ= +

units'whereP: (2' 4) and0: (5' 5)' square (6 rnarks)

=

1 0 . L e t A = (a ,-1 ),B = (l '!) and C 7-2,3)' -2 -> a, b, i andj. (a) Find AB and BC in termsof --> .-> + -> ll AB and AC BC I andbif O C a of values the (b) F'ind

Final Exam. 06/0? F. 5 Additional Mathematics

(6 marks) 3/8

Final Examinations200612007 AdditionalMathematics

N 5EF ll.

?^

y=tan-Jx. Let

(a) (i) Find $.

dx

(ii) Hence ,tto*'thut S

18(3seca3x -2s..2 3*1. T

(b) Find the slopeof the normalto thecurve y = tan23x at x = :

4

(6 marks)

12. Let a and B be therootsof theequation*

crB Express il + I

(a) (i)

'P c'

2 - ,r-t"- 1= 0 wherem is a realnurnber' ,

in tet'msof m.

(ii) Findtherangeof valuesof m suchthat I + I Bcx

(b) rf t * I Bct

< 3(a + B) .

< k(cr+ B) for all valuesof m, find therangeof valuesof k. (6 marks)

End of SectionA SectionB (48 marks) Answer any FOUR questionsonly from this section.

of with OA: OB :2 and/.AOB: 120o.D is themid-point 13. In Figure3, OACBis a paralleogram OA. CD rneetsAB at E. ->+ and OB :b, Le t OA :a (a)

Find

(a)

(i)

C

Find a . b.

(ii) l{encc, rind1OEl. \-4

marks)

(b) (i) Let BE : EA: ), : (1 - l,) *-> ExpressOE in termsof 1",a andb. ( ii ) L e tC E : E D : p : (1 - p) . ExpressOE in termsof p, a andb. ( i i i ) H e n ce ,sh o u ,th aOi: t

?"*!A. 33

Figure3 (5 marks)

(c)

Using the aboveresultsand dot productof vectors,find ZOEB.

(4 marks) !'inal Exam. 06/07 b-.5 Additional Mathematics

4/8

F.sEF

Final Examinations200612007 AdditionalMathematics

= familyof circlesF:x2+y2 + (7k- 4)x* 61,- Q3k+ 20) 0, u'hereftis real' 14. Consiclerthe Cr is thecircle,' * y'* 18x- 6y + 26 : 0, asshownin Figure4'

* t * )' t -l8 x -6 )' + 2 6 : 0

L: 4x+3y- 36:0 Figure4

(a)

Showthat Cr is a circle in F (1 mark)

(b)

= Cz is a circle centredat (4,75)andtouchesL: 4x a-3y - 36 0' (i) F'indthe equationof Cz. (ii) Show that Cz touchesCr.

(4 marks) (cj

The locus of the centresof the circles in F is a straightline Ir" Firrdthe equationof Lr-.

(2 marks) (d)

Cl is anothercircle in F. The line joining the centresof C: and C2 makesan angle 0 with Zp, wheretan 0 :

I{ . f in.f the possibleequation(s)of C3'

(5 rnarks)

Final Exam. 06/07 F. 5 Additional Mathematics

5/8

Final Examinations2AA6?0A7 AdditionalMathematics

5EF t<

Figure5 showsa tetrahedronOPQR with .ROperpendicularto the plane OPQ. IPRQ = 0, ZPOQ: $, /.RPO: a andIRQO = b . fi

/ o,+, q- -* ----l

\

a

Figure 5 Show that cos $ =

(a) (i)

(PR cosa)2 + (QR cosh)z- PQ2_ 2(PR)(QR)cosacos&

(ii) Henceor otherwise,show that cos O:

tot0

r - tana tanb. cos4 coso (5 marks)

(b) In Figure6 (a),ABCD is a rectangularplate.AB ll EF ll GH. AE - 3 cm,EG:4 cm, GD :5 cm and CD = h cm.The plate is folded along EG andG.Flsuchthat a triangular prism is formed as shown in Figure 6 (b),

a

E

n

3cm

G 4cm

D 5cm /

hcm //./

B

H

C

Figure 6 (a)

5 crn

/?

B cm

,4 cm

Figure6 (b) (i)

0.1o lf h = [2, using the result in (a) or otherwise,find IHAF correctto thenearest

(ii) If ZHA|-:

30o,lind the exactvalue of lz.

(7 marks)

FinalExam.06/07n 5 AdditionalMathematics

6t8

200612007 Final Examinations AdditionalMathematics

F. sEF

16. (a) (i) Evaluate irir,'"dt. (il) snow tnat

f .4

xdx: 1"- 1sin2x* Jsln 8432

1

sin4x+C. (5 marks)

(b)

Figure 7 (a) shows a region boundecl by the y-axis and the curve x : sin2/ * ko

.

where0
4r

by revolvingtheregionabout the y-axis. andfr> 0. Avesselis generated

J

The cross-sectionof the vesselis shown also in Figure 7 (a). The opening of the vesselis a circlewith radiusr units.

4 units Figure7 (b) Figure7 (a) Find the capacityof the vesselin terms of fr. (ii) Find the capacityof the vesselwhen r : 7.

(i)

(iii) The vesselis placedcompletelyinsidea tall rectangularbox as shownin Figure7 (b). 'fhe baseof the box is a squareof side 4 units. Find, if ftvaries, the capacityof the largestvesselthat can be placedinsidethe box. (Note:ignorethe thicknessof the vessel.) (7 marks)

Final Exam. 06/07 F. 5 Additional Mathematics

'il8

Final Examinations200612007 AdditionalMathematics

F. 5EF /

suchthatAB : 7^11cm,AP = 3 cm,BQ = 4 cm 17. In Figure8,AB. AP andBQ arelinesegments andIBAP: IABQ : 90".R is a variablepointonAB suchthatIARP: 0 and/BRQ = $.

3 cm

A

l<-

-t; /vJ cm

F'igure8 (a) lf R is moving towards B at a speedof I cm/s, by consideringRB in terms of Q,frnd the rate of changeof $ when R is rF cm from A.

(3 marks) (b) (i)

Showthat 3cot0+ 4cot$= 7.,r5,

(ii) Hencerrntl 99 in termsof o andg,

de

(3 marks)

(c) Let L=P R+QR. (i) ExpressL in terms of 0 and {. (ii) Using (c) (i) and (b) (ii). or otherwise,show that dI,

de

3 (co s$ -cos0) sin20

(iii) Find the positionof R so that L is mtntmum. ('l'estingfor minimum is not required.) (6 marks)

End of Paper

Final Exam. 06/07 R 5 Additional Mathematics

8/8

Related Documents

Lp Uks
August 2019 56
Sk Uks
November 2019 30