Ujian Statika 2 Polmed

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ujian Statika 2 Polmed as PDF for free.

More details

  • Words: 324
  • Pages: 4
Soal dan Penyelesaian UAS Sem B. TA 2008/2009 1. Gambarkan diagram momen (M), lintang (D) dan normal (N) struktur berikut ini:

Bobot nilai: (40%) 2. Hitunglah gaya batang di V1, D1, U2 dan O2 struktur berikut :

Bobot nilai: (30%)

3. Hitunglah reaksi di tumpuan A dan B struktur berikut : 1

Bobot nilai: (30%)

Penyelesaian no.1 : Tinjau bentang S-E :

ΣME = 0 Rs.4 + 4 – (2 x 2) = 0 Rs = 0 T ΣV = 0 Rs + RE = 4 sin 30° RE = 2 T (↑) ΣH = 0 Hs = 4 cos 30° = 3,46 (→)

Tinjau bentang A – B – S :

2

RA = (4 x 4 )/2 = 8 T (↑) RB = (4 x 4 )/2 = 8 T (↑) ΣH = 0 HA = 4 cos 30 =3,46 T (→) Diagram M, D, N :

Penyelesaian no.2 : RA = RB = 1 T (↑) Dengan cara Ritter, Cremona, titik buhul diperoleh hasil : V1 = 0 T O2 = -1,41 T (tekan) U2 = 1 T (tarik) D1 = 0

3

Penyelesaian no.3 : Bila arah RA (↑) ,maka diperoleh persamaan berikut : ΣMB = 0 RA.6 + (2 x 2) – (2 x 2) – (6 x 4 x 1) = 0 RA = 16 T (↑) Bila arah RB (↑) ,maka diperoleh persamaan berikut : ΣMA = 0 -RB.6 + (2 x 2) – (2 x 2) – (6 x 4 x 2) = 0 RB = 8 T (↑) Bila arah HA (→) ,maka diperoleh persamaan berikut : ΣMs kiri = 0 RA.2 – HA.4 – (2 x 2) – (6 x 2 x 1) = 0 HA = 4 T (→)

Bila arah HA (←) ,maka diperoleh persamaan berikut : ΣMs kanan = 0 -RB.4 + HB.4 + (2 x 2) + (6 x 2 x 1) = 0 HB = 4 T (←)

4

Related Documents