Tutorial 1+(pde)

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tutorial 1+(pde) as PDF for free.

More details

  • Words: 796
  • Pages: 6
EQT 203 : ENGINEERING MATHEMATICS III Chapter 1 : Partial Differential Equations Tutorial 1 1.

Write down all the first order and second order partial derivatives of the following functions :

( a ) z = 4 x 3 −5 xy 2 + 3 y 3 (b) z = cos( 2 x + 3 y ) ( c ) f = e( x 2 − y 2 ) ( d ) f = x 2 sin(2 x + 3 y ) ∂ 2V ∂ 2V + . ∂x 2 ∂y 2

2.

Let V = ln( x 2 + y 2 ) . Calculate

3.

Let z = sin(3x + 2 y ) . Determine 3

4.

x y Given e  2 x  3 y  e . Find

5.

2 2 If z = xy where x  r  s and y  4 rs , find

6.

If u  x 2  e 3 y and v  2 x  e 3 y , find

7.

Given y 

8.

Determine the stationary points and types of the stationary points for the following surfaces :

∂2 z ∂2z − 2 2 in the simplest form. ∂y 2 ∂x

dy . dx z z and . r s

x x y y , , , u v u v

r2 . Find the percentage of the change in y when r increases by 2%, st 3 s increases by 3% and t increases by 1%.

a)

z  y 2  xy  x 2  4 y  4 x  5

b)

z  y 2  xy  2 x  3 y  6

9.

Given z  x 2  xy  5 y 2  19 y . Find the Hessian of this function.

10.

Solve

u u  3 , given the boundary condition u(0, t )  2e 6t . t x

oooooooooooo

Solution : Question 1 a) ∂z =12 x 2 −5 y 2 ∂x ∂z = −10 xy +9 y 2 ∂y ∂2 z = 24 x ∂x 2 ∂2 z = −10 x +18 y ∂y 2 ∂2 z = −10 y ∂x∂y b)

∂z = −2 sin( 2 x + 3 y ) ∂x ∂z = −3sin( 2 x + 3 y ) ∂y ∂2 z = −4 cos(2 x + 3 y ) ∂x 2 ∂2 z = −9 cos( 2 x + 3 y ) ∂y 2 ∂2 z = −6 cos( 2 x + 3 y ) ∂x∂y

c)

∂f = 2ex ∂x ∂f = −2ey ∂y ∂2 f = 2e ∂x 2 ∂2 f = −2e ∂y 2 ∂2 f =0 ∂x∂y d)

∂f = 2 x[sin(2 x + 3 y ) + x cos(2 x + 3 y )] ∂x ∂f = 3x 2 cos(2 x + 3 y ) ∂y ∂2 f = 2[(1 − 2 x 2 ) sin(2 x + 3 y ) + 4 x cos(2 x + 3 y )] 2 ∂x ∂2 f = −9 x 2 sin(2 x + 3 y ) ∂y 2 ∂2 f = 6 x[cos(2 x + 3 y ) − x sin(2 x + 3 y )] ∂x∂y

Question 2 ∂v 2x = 2 ∂x x + y 2 2y ∂v = 2 ∂y x + y 2 ∂ 2 v 2( y 2 − x 2 ) = ∂x 2 ( x 2 + y 2 ) 2 ∂ 2 v 2( x 2 − y 2 ) = ∂y 2 ( x 2 + y 2 ) 2 Then ∂ 2V ∂ 2V + =0 ∂x 2 ∂y 2

Question 3

∂z = 3 cos(3x + 2 y ) ∂x ∂z = 2 cos(3x + 2 y ) ∂y ∂2z = − 9 sin(3x + 2 y ) ∂x 2 ∂2z = −4 sin(3 x + 2 y ) ∂y 2 Then

3

∂2 z ∂2z − 2 =6z ∂y 2 ∂x 2

Question 4 dy e x y  2   x y dx e 3 Question 5 z  12r 2 s 2  4 s 3 r z  8r 3s  12rs 2 s Question 6 J  6e 3 y ( xe6 y  1) Therefore, x e6 y  u 2  xe6 y  1 x 1  6y v 2( xe  1) y e3 y  u 3( xe6 y  1) y xe3 y  v 3( xe6 y  1)

Question 7 y decreases by 2 %

Question 8 a) (4,-4) is a minimum point. b) (1,-2) is a saddle point. Question 9 H = 19 Question 10 u( x, t )  2e 6t 2 x

Related Documents

Tutorial
May 2020 17
Tutorial
April 2020 17
Tutorial
May 2020 14
Tutorial
May 2020 27
Tutorial
November 2019 34
Tutorial
June 2020 19