Tutesheet 1 Phool Singh

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tutesheet 1 Phool Singh as PDF for free.

More details

  • Words: 441
  • Pages: 2
Form No. ITM‐FRM‐66(REV.00)  Institute of Technology and  

Management Department: Applied Sciences and Humanites

Tutorial Sheet No. 01

Subject Name : Mathematics I Subject Code : ASL 101 Unit/Title: Infinite Series

Issue Date:

Pages : 02

Faculty :

Semester:I

Phool Singh

1. 2. 3.

1 2 3 + ………………∞ (divergent ) + + √1+√2 √2 + √3 √3 + √4 1 + 1 + 1 + ……………. ∞ (Convergent a, b≠0) a.12+b a.22+b a.32+b 1 ∑ (Convergent if α>1 and divergent if α ≤1)

n 4. 5



α +β n

(√n3 + 1 - √n3 )

Ans. Convergent

Check the convergence of the following series: 1 ⎛1⎞ tan ⎜ ⎟ (Convergent) ∑ ⎝n⎠ n n =1 1 + 1 + 1 +………..∞ (Convergent) , a ≠ 0 2 2 2 (x-a) (x –2a) (x-3a) ∑ 1 x>0 (Convergent for all values of x except 1) xn + x-n x +2x2 + 3x3 + 4x4 + ………∞ ,x>0 Ans. : Cgt for x < 1 and dgt for x ≥ 1 ∑ n2 (Convergent) n ∑ n2 + a (Convergent) n 2 +a ∑ xn for x>0 (Convergent for x ≤ 1, divergent for x >1) 2n(2n-1) 1 + a + a(a+1) + a (a+1) (a+2) + …….∞ (convergent for a ≤ 0; divergent if a >0) 1.2 1.2 .3 2 2 x + 2.4 x + 2.4.6 x3 +..…… ∞ (x>0) (Cgt for x<3/2 ; Dgt for x≥3/2) 5 5.8 5.8.11 3 x + 1 x + 1.3 x5 + 1.3.5 x7 +……..…∞ x>0 (x>1 Divergt. x ≤ 1 Conv) 1 2 3 2.4 5 2.4.6 7 ∞

6. 7. 8. 9. 10. 11. 12. 13. 14.

15.

a + x + (a+2x)2 + (a + 3x)3 +….. ∞ 1! 2! 3! (Convergent for x<1/e and divergent for x ≥ 1/e)

Form No. ITM‐FRM‐66(REV.00)   

16.

Test the convergence of the series (2004) 1 1 1 Convergent + + + ...... (a) 1.2.3 2.3.4 3.4.5 n 2 (n + 1) 2 Convergent (b) ∑ n! 2 2 x 2 33 x 3 4 4 x 4 x < 1/e Convergent x ≥ 1/e Divergent + + + ..... (c) x + 2! 3! 4! 17. (a) Test the convergence or divergence of the series ∞

∑ ⎡⎢⎣ 1

(n 2 + 1) − n⎤ ⎥⎦

divergent

(b) Test the following series for convergence 1 x2 1 3 5 x4 1 3 5 7 9 x2 + . . . + . . . . . + ---------1+ . 2 4 2 4 6 8 2 4 6 8 10 12

(2006)

Convergent for x 2 ≤ 1, divergent for x 2 >1  

Related Documents

Mehakate Phool
November 2019 17
Baasi Phool
June 2020 9
Singh
October 2019 43
Jpt 8-1 Singh
July 2020 6
Harpreet Singh([1]
November 2019 4