The 16 th IASTED International Conference on Modelling and Simulation 2005
SIMPLE MODEL FOR TURBULENT BROWNIAN COAGULATION OF POLYDISPERSE AEROSOLS
by Ana Teresa Celada Murillo Alejandro Salcido González Instituto de Investigaciones Eléctricas, México
TOPICS •
INTRODUCTION
•
MEAN FIELD COAGULATION MODEL
•
RESULTS
•
CONCLUSIONS
INTRODUCTION AEROSOL Suspension of fine particles, solid or liquid, in a gas Nuclei mode
Environmental impacts: • Adverse healt effects
(0.001– 0.1 µm) Fine
• Weather changes
Accumulation mode
• Degradation of visibility
(0.1- 2.5 µm)
• Precursors of acid rain Coarse
( > 2.5 µm )
INTRODUCTION diffusion nucleation
coagulation
sedimentation condensation
COAGULATION Process by which some of the aerosol particles collide with each other and they join to form larger particles Brownian motion (~ 0.001 a 1 µm) Turbulent motion (~ 1 a 10 µm) Differential sedimentation ( > 10 µm )
Smoluchowsky (1917)
• Monodisperse size distribution • All the particles are spherical
dn k dt
=1 2
∞ ∑ β ij ni n j − ∑ i+ j = k i
β ik n i nk
• Only binary collisions • These collisions conserve mass and volume • All collisions produce coagulation
MEAN FIELD COAGULATION MODEL (MFC) - Only binary collisions, conserve mass and volume
- Polydisperse size distribution - Aerosol particles are spherical - All collisions
coagulation
200 150
βκ
βj
100
βi 50 0 0.001 0.01 0.02 0.03
0.04 0.08 0.16
0.32
0.64 1.28
Diameter intervals
2.56
5
10
=
βk
MEAN FIELD COAGULATION MODEL (MFC) • The probability that one collision takes place in the system. • The probability that such collision involves particles of particular intervals βi and βj
⎧⎪ Pij = K ( ri , Di , r j , D j ,...) ⎨ ⎪⎩
ni n j
if i = j
2n i n j
if i ≠ j
• The probability Qijk that such collision produces a particle in a given interval βk
MEAN FIELD COAGULATION MODEL (MFC) βj βi
dn k dt
= 1 2
M ∑ Pij Qij k i, j ≠ k
=
βk
M − ∑ P (1 − Q k ) ik ik i =1
MEAN FIELD COAGULATION MODEL (MFC)
K B = 4π ( ri + r j ) (Di + D j )
K = K B + KT
1/ 2
⎛ 8π ⎞ KT = ⎜ ⎟ ⎝ 3 ⎠
( ri + r j ) (w a 2 + w c 2 ) * ε c
RESULTS Simulation of brownian coagulation
Kim et al., 2003
Rooker and Davies, 1979
• NaCl aerosol
• CaCO3 aerosol
• Diameters: 0.050, 0.115 µm
• Diameter interval: 0.005 – 0.030 µm
• Duration: 1800 – 3000 s
• Duration: 1800 s
• Sample time: 300 – 350 s.
• Sample time: 300 - 400 s.
SIMULATION OF BROWNIAN COAGULATION Kim et al., 2003 0.050 µm
1 0.8
0.8
0.6
N/No
N/No
0.115 µm
1
0.6
0.4 0.4
0.2 0.2
0
0
0
1000
2000
3000
400
800
1200
TIME (s)
TIME (s)
Experimental data
MFC model - Brownian Kernel
1600
SIMULATION OF BROWNIAN COAGULATION Rooker and Davies, 1979 C90
1
1
0.9
0.8 N/No
N/No
C50
0.8
0.6
0.7
0.4
0.6
0.2 0
400
800 1200 TIME (s)
1600
2000
Experimental data
0
400
800 1200 TIME (s)
MFC model - Brownian Kernel
1600
2000
SIMULATION OF TURBULENT BROWNIAN COAGULATION Okuyama et al., 1977 • Tobacco smog aerosol • Constant temperature (25°C) and pressure. • Particle diameter: 0.700 µm • Stirr speed : 600 and 1800 rpm • Duration: 300 – 500 s
SIMULATION OF TURBULENT BROWNIAN COAGULATION 600 rpm ε = 30,000 cm2 s-3
1
1800 rpm
0.8
0.8
0.6
0.6
N/No
N/No
1
εc = 1.0 0.4
0.4
0.2
0.2
0
0
0
100
200
300
TIME (s)
Experimental data
400
500
ε = 810,000 cm2 s-3
εc = 3.5
0
100
200
300
TIME (s)
MFC model - Turbulent Kernel by Kruis and Kusters (1997)
CONCLUSIONS • The Mean Field Coagulation model (MFC) simulates, in a simple form, the coagulation of polydispersed aerosols. • The simulation experiments showed that the MFC model reproduces satisfactorily the experimental data of pure brownian and brownian turbulent coagulation. • The MFC model takes into account the polydisperse nature of the aerosol. It is simulated with a probability function, Qijk, that conserves the aerosol volume.
Thank you for your attention
REFERENCES • Kim D. S., Park S. H., Song Y. M., Kim D. H., Lee K. W. (2003).
Brownian coagulation of polydisperse aerosols in the transition regime. Journal of Aerosol Science, Vol. 34(7):859-868. • Kruis F. E., Kusters K. A. (1997). The collision rate of particles in turbulent flow. Chem. Eng. Comm., Vol. 158:201-230. • Okuyama K. Kousaka Y., Kida Yoshinori y Yoshida Tetsuo. (1977). Turbulent coagulation of aerosols in a stirred tank. Journal of Chemical Engineering of Japan, Vol. 10(2):142-147. • Rooker S. J., Davies C. N. (1979). Measurement of the
coagulation rate of a high Knudsen number aerosol with allowance for wall losses. Journal of Aerosol Science, Vol. 10:139-150.