Mata Kuliah
: Persamaan Diferensial
Tugas Halaman 190
13. y + px = 0 Penyelesaian : y + px = 0 y = - px . . . (1)
Didifferensir terhadap x 𝑑𝑦 𝑑𝑥
𝑑𝑝
= -x 𝑑𝑥 - p 𝑑𝑝
p = -x 𝑑𝑥 - p 𝑑𝑝
2p = -x 𝑑𝑥 1
𝑑𝑝
2
𝑑𝑥
p=- x 𝑑𝑥 𝑥
1 𝑑𝑝
=-2
𝑝 1
ln 𝑥 = - 2 ln 𝑝 + ln 𝑐 1
ln 𝑥 = - ln 𝑝2 + ln 𝑐 x=
𝑐 1
𝑝2 𝑐
√𝑝 = 𝑥 𝑐2
p = 𝑥2
. . . (2)
Substitusikan (2) ke (1) y = - px 𝑐2
y = - ( 𝑥2 ) x y=-
𝑐2 𝑥
xy = - 𝑐 2 → Jawab Umum
xy = c
Jawab Singular: x=0 y=0
7.
𝑥 2 𝑝2 + 3xyp + 2𝑦 2 = 0 Penyelesaian : 𝑥 2 𝑝2 + 2xyp + xyp + 2𝑦 2 = 0 xp (xp + 2y) + y (xp + 2y) = 0 (xp + y)(xp + 2y) = 0 (xp + y) = 0
. . . (2)
(xp + 2y) = 0
. . . (3)
𝑑𝑦
Misal p = 𝑑𝑥
# Substitusikan p ke (2) xp + y = 0 𝑑𝑦
x ( 𝑑𝑥 ) + y = 0 𝑑𝑦
x 𝑑𝑥 = - y 𝑑𝑦 𝑦
=-
𝑑𝑥 𝑥
∫
𝑑𝑦 𝑦
=-∫
𝑑𝑥 𝑥
ln y = - ln x + ln c 𝑐
y=
𝑥 𝑐
y-
=0
𝑥
# Substitusikan p ke (3) xp + 2y = 0 𝑑𝑦
x ( 𝑑𝑥 ) + 2y = 0 𝑑𝑦
x 𝑑𝑥 = - 2y 𝑑𝑦
=-2
𝑦
∫
𝑑𝑦 𝑦
𝑑𝑥 𝑥
=-2∫
𝑑𝑥 𝑥
ln y = - 2 ln x + ln c y= y-
𝑐 𝑥2 𝑐 𝑥2
=0
Jadi, Jawab Umumnya yaitu : (y -
𝑐 𝑥
) (y -
𝑐 𝑥2
)=0
(xy – c) (𝑥 2 y – c ) = 0