Tugas No 7 Bab 8.docx

  • Uploaded by: Nurhumairah Yusuf
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tugas No 7 Bab 8.docx as PDF for free.

More details

  • Words: 1,185
  • Pages: 8
8. Jawabannya: a. Prosedur semua regresi yang mungkin untuk menghasilkan sebuah model terbaik NO.

X1

X2

X3

FEV1

1.

24

175

78.0

4.7

2.

36

172

67.6

4.3

3.

25

166

65.5

4.0

4.

22

176

65.5

4.7

5.

27

185

85.5

4.3

6.

27

171

76.3

4.7

7.

36

185

79.0

5.2

8.

24

182

88.2

4.2

9.

26

180

70.5

3.5

10.

29

163

75.0

3.2

11.

31

180

65.0

2.0

12.

30

180

70.4

4.0

13.

22

168

63.0

3.9

14.

27

168

91.2

3.0

15.

46

178

67.0

4.5

16.

36

173

62.0

2.4

Hasil analisis computer. a. Peubah X1 Model Summary

Model 1

R

R Square

.036a

a. Predictors: (Constant), X1

.001

Adjusted R

Std. Error of the

Square

Estimate

-.070

.9143

Coefficientsa Standardized Unstandardized Coefficients Model 1

B

Coefficients

Std. Error

Beta

(Constant)

4.055

1.094

X1

-.005

.037

t

Sig.

3.707

.002

-.133

.896

-.036

a. Dependent Variable: FEV1

b. Peubah X2 Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square

.257a

1

Adjusted R

.066

.000

.8840

a. Predictors: (Constant), X2 Coefficientsa Standardized Unstandardized Coefficients Model 1

B (Constant) X2

Coefficients

Std. Error

Beta

-1.980

5.916

.034

.034

t

.257

Sig. -.335

.743

.997

.336

a. Dependent Variable: FEV1

c. Peubah X3 Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square

.214a

1

Adjusted R

.046

-.022

.8936

a. Predictors: (Constant), X3 Coefficientsa Standardized Unstandardized Coefficients Model 1

B (Constant) X3

a. Dependent Variable: FEV1

Std. Error 2.408

1.847

.021

.025

Coefficients Beta

t

.214

Sig.

1.304

.213

.820

.426

d. Peubah X1, X2 Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square

.272a

1

Adjusted R

.074

-.068

.9135

a. Predictors: (Constant), X2, X1 Coefficientsa Standardized Unstandardized Coefficients Model 1

B (Constant)

Coefficients

Std. Error

Beta

-2.031

6.115

X1

-.012

.037

X2

.036

.036

t

Sig. -.332

.745

-.091

-.332

.745

.275

1.012

.330

a. Dependent Variable: FEV1

e. Peubah X1, X3 Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square

.215a

1

Adjusted R

.046

-.101

.9273

a. Predictors: (Constant), X3, X1 Coefficientsa Standardized Unstandardized Coefficients Model 1

B (Constant)

Std. Error 2.331

2.470

X1

.002

.038

X3

.021

.027

a. Dependent Variable: FEV1

Coefficients Beta

t

Sig. .943

.363

.014

.050

.961

.217

.781

.449

f. Peubah X2, X3 Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square

.303a

1

Adjusted R

.092

-.048

.9047

a. Predictors: (Constant), X3, X2 Coefficientsa Standardized Unstandardized Coefficients Model 1

B (Constant)

Coefficients

Std. Error

Beta

-2.283

6.075

X2

.029

.035

X3

.016

.026

t

Sig. -.376

.713

.220

.812

.432

.164

.606

.555

a. Dependent Variable: FEV1

g. Peubah X1, X2, X3 Model Summary

Model

R

Std. Error of the

Square

Estimate

R Square

.306a

1

Adjusted R

.094

-.133

.9406

a. Predictors: (Constant), X3, X2, X1 Coefficientsa Standardized Unstandardized Coefficients Model 1

B (Constant)

Coefficients

Std. Error -2.284

6.316

X1

-.007

.040

X2

.030

X3

.014

Beta

t

Sig. -.362

.724

-.048

-.163

.873

.038

.233

.796

.442

.028

.151

.512

.618

a. Dependent Variable: FEV1

Berdasarkan hasil analisis computer, diketahui bahwa: 1. Himpunan satu peubah (X2,), 𝑅12 = 0.066 2. Himpunan dua peubah (X2) dan (X3), 𝑅22 = 0.066

3. Himpunan tiga peubah (X1), (X2) dan (X3), 𝑅32 = 0.066 Jadi, pilihan persamaan regresi terbaik berdasarkan pada prosedur semua regresi yang mungkin dengan 𝑅𝑝2 , maka : Y = -2.283 + 0.029 X2 + 0.016 X3

Berdasarkan hasil analisis computer, maka dapat dikatakan bahwa dapat simpulkan bahwa Y=3.913. Hasil tersebut menunjukkan bahwa dengan tidak adanya modifikasi peubah bebas maka tidak menghasilkan model terbaik. b. Model dengan memusatkan umur, berat, tinggi dan kuadratnya masing-masing sebagai peubah bebas. NO.

FEV1

X1

X2

X3

X4

X5

X6

1.

4.7

24

175

78.0

576

6084.0

30625.0

2.

4.3

36

172

67.6

1296

4569.8

29584.0

3.

4.0

25

166

65.5

625

4303.4

27556.0

4.

4.7

22

176

65.5

484

4303.4

30976.0

5.

4.3

27

185

85.5

729

7310.3

34225.0

6.

4.7

27

171

76.3

729

5821.7

29241.0

7.

5.2

36

185

79.0

1296

6241.0

34225.0

8.

4.2

24

182

88.2

576

7779.2

33124.0

9.

3.5

26

180

70.5

676

4970.2

32400.0

10.

3.2

29

163

75.0

841

5625.0

26569.0

11.

2.0

31

180

65.0

961

4225.0

32400.0

12.

4.0

30

180

70.4

900

4956.1

32400.0

13.

3.9

22

168

63.0

484

3969.0

28224.0

14.

3.0

27

168

91.2

729

8317.4

28224.0

15.

4.5

46

178

67.0

2116

4489.0

31684.0

16.

2.4

36

173

62.0

1296

3844.0

29929.0

Berdasarkan hasil analisis, diketahui bahwa setelah melakukan analisis pada semua model dengan memusatkan umur, berat, tinggi dan kuadratnya masing-masing sebagai peubah bebas tidak dapat disarankan untuk strategi seleksi maju. c. Prosedur semua regresi yang mungkin untuk model yang diperluas untuk memilih sebuah model terbaik. Tabel 1. Forced Expiratory volume in 1 second, Umur, Tinggi dan Berat NO.

FEV1

X1

X2

X3

X4

X5

X6

X7

1.

4.7

24

175

78.0

576

6084.0

4200.0

1872.0

2.

4.3

36

172

67.6

1296

4569.8

6192.0

2433.6

3.

4.0

25

166

65.5

625

4303.4

4150.0

1637.5

4.

4.7

22

176

65.5

484

4303.4

3872.0

1441.0

5.

4.3

27

185

85.5

729

7310.3

4995.0

2308.5

6.

4.7

27

171

76.3

729

5821.7

4617.0

2060.1

7.

5.2

36

185

79.0

1296

6241.0

6660.0

2844.0

8.

4.2

24

182

88.2

576

7779.2

4368.0

2116.8

9.

3.5

26

180

70.5

676

4970.2

4680.0

1833.0

10.

3.2

29

163

75.0

841

5625.0

4727.0

2175.0

11.

2.0

31

180

65.0

961

4225.0

5580.0

2015.0

12.

4.0

30

180

70.4

900

4956.1

5400.0

2112.0

13.

3.9

22

168

63.0

484

3969.0

3696.0

1386.0

14.

3.0

27

168

91.2

729

8317.4

4536.0

2462.4

15.

4.5

46

178

67.0

2116

4489.0

8188.0

3082.0

16.

2.4

36

173

62.0

1296

3844.0

6228.0

2232.0

Hasil analisis computer. Coefficientsa

Unstandardized Coefficients Model 1

2

3

B (Constant)

Std. Error

-31.136

43.415

X1

-.316

1.467

X2

.226

X3

Standardized Coefficients Beta

t

Sig. -.717

.494

-2.307

-.215

.835

.333

1.728

.679

.516

.454

.567

4.722

.799

.447

X4

.012

.005

5.677

2.567

.033

X5

-.005

.003

-7.961

-1.819

.106

X6

-.007

.012

-10.009

-.632

.545

X7

.012

.009

6.388

1.339

.217

-39.841

14.979

-2.660

.026

X2

.294

.103

2.246

2.840

.019

X3

.405

.492

4.214

.823

.432

X4

.012

.004

5.857

3.024

.014

X5

-.005

.003

-7.798

-1.913

.088

X6

-.010

.004

-13.240

-2.771

.022

X7

.014

.007

7.010

1.954

.082

-29.683

8.350

-3.555

.005

X2

.342

.084

2.617

4.095

.002

X4

.013

.004

6.043

3.194

.010

X5

-.003

.001

-4.665

-3.250

.009

X6

-.011

.003

-15.415

-3.937

.003

X7

.017

.005

8.979

3.413

.007

(Constant)

(Constant)

Berdasarkan hasil analisis computer, maka ditemukan persamaan regresi terbaik berdasarkan pada prosedur semua regresi yang mungkin yaitu: Y= -29.683 + 0.342 X2 + 0.013 X4 – 0.003 X5 – 0.011 X6 + 0.017 X7

d. Model yang paling wajar setelah membandingkan model (a), (b) dan (c) adalah model (a) yang dihasilkan pada bagian a. hal tersebut disebabkan karena model tersebut sudah mencakup setiap kriteria. Dalam artian bahwa setiap kriteria seleksi dapat dioptimalkan secara numeric untuk sampel khusus dalam studi.

Related Documents

Tugas No 7 Bab 8.docx
June 2020 27
No 7
October 2019 12
Bab 7
December 2019 45
Bab 7
June 2020 40
Bab 7
May 2020 52
Bab 7
May 2020 51

More Documents from "lilysuhany"