16.
𝑥𝑦 ′′ − (𝑥 + 1)𝑦 ′ + 𝑦 = 0 ; 𝑦1 (𝑥) = 𝑒 𝑥 , 𝑦2 = 𝑥 + 1 𝑦1 (𝑥) = 𝑒 𝑥 = 𝑥𝑦 ′′ − (𝑥 + 1)𝑦 ′ + 𝑦 = 0 𝑥𝑒 𝑥 – (𝑥 + 1)𝑒 𝑥 + 𝑒 𝑥 = 0 0 = 0
( Terbukti ) 1
18.
4𝑥 2 𝑦 ′′ + 8𝑥𝑦 ′ + 𝑦 = 0 ; 𝑦(𝑥) = 𝑥 −2 ln(𝑥) 𝑦(𝑥) = 𝑥
1 2
−
ln(𝑥)
𝑦 ′ (𝑥) = 𝑈 ′ 𝑉 + 𝑈𝑉 ′ 3
1
1
= − 𝑥 −2 ln 𝑥 + 𝑥 −2 2
3
1
1
= − 𝑥 −2 ln 𝑥 + 𝑥 −2 . 2
3
1
1 𝑥
3
= − 𝑥 −2 ln 𝑥 + 3−2 2
𝑦 ′′ (𝑥) = = =
3 4 3 4
5
𝑥 −2 ln(𝑥) − ( 5
𝑥 −2 ln(𝑥) −
3 4
1 2
5
3
1
1
3
𝑥
2
5
𝑥 −2 ) . . (− 𝑥 −2 )
2
5
𝑥 −2 −
3 2
5
𝑥 −2
5
𝑥 −2 ln(𝑥) − 2𝑥 −2
4𝑥 2 𝑦 ′′ + 8𝑥𝑦 ′ + 𝑦 = 0 3
5
5
1
3
3
(4𝑥 2 . 4 𝑥 −2 ln − 2𝑥 −2 ) + 𝑑𝑥(− 2 𝑥 −2 ln (𝑥) + 𝑥 −2 )