Tugas Matematika

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tugas Matematika as PDF for free.

More details

  • Words: 748
  • Pages: 4
BENTUK AKAR Suatu akar di yang hasilnya ditulis dalam berulang) 1. Contoh 2.

bilangan rasional (dapat berupa bilangan bulat, bilangan pecahan) merupakan bilangan irasional (suatu bilangan yang tidak dapat bentuk , di mana a, b  B, dan b  B atau bilangan desimal tak :

= =

Contoh

:

= =

Contoh

:

= =

Contoh

:

Contoh

:

3. 4. 5.

= = dengan a > b Contoh :

6.

7. Contoh :

LOGARITMA Ialah invers dari pemangkatan, yaitu mencari pangkat dari suatu bilangan pokok sehingga hasilnya sesuai dengan yang telah diketahui. Kaidah

:

Bila

gb = a

gLog

aLog x = n, maka x = an Ket : g = Bilangan pokok b = Bilangan eksponen a = Bilangan hasil

a = b Ket : g b a

= = =

Bilangan basis Bilangan hasil Bilangan numenus

Sifat-sifat Logaritma : 1.

gLog gn Contoh

= n : 2Log 4 = 2Log 22 = 2

2.

3.

gLog g Contoh

= 1 :

gLog 1 Contoh

= 0 :

= 1

= =

8Log 8

5Log 1 5Log 5o 0

4.

gLog (a . b) = gLog a + gLog b Contoh : 5Log 4 + 5Log 6 = 5Log 22 + 5Log 23

5.

gLog Contoh

: = = =

6.

gLog b = Log b Contoh : = = = = = = =

7.

gLog an = 0 Contoh :

8.

gnLog am = Contoh :

9.

10.

gLog a = Contoh :

3Log 3Log 9 3Log 32 2

2Log 25 - 3Log 5 + Log 20 Log 252 - Log 53 + Log 20 Log Log (54.3 x 20) Log (5 . 20) Log 100 10Log 102 2

gLog a 25Log 5 = 25Log = 25Log 251/2 = = Log

= = =

gLog a 71/2Log 72 Log 7 4 . 1 4

= =

= 2Log 16 2Log 24 4

gLog a = Contoh :

2Log 9 =

11. 12.

gLog a x nLog b = Contoh : 10Log 3 = Log 3 gLog am = gLog a Contoh : 4Log 27 = 22Log 33

=

.

2Log 3

13.

gnLog an = Contoh :

gLog a 8Log 27 = Log 33 = . 2Log 3 = 2Log 3

14.

gnLog a = Contoh :

gLog a 27Log 2 = Log 2 = . 3Log 2

15.

= a Contoh

: =

9Log 100 100

SIFAT EKSPONEN 1. 2. = =

a0 = 1 Contoh :

an . am = an+m Contoh : 5 4+2 56

3. = 4.

a b n

5o = 1

= = =

Bilangan pokok Bilangan eksponen Indeks

54 . 52

= an+m Contoh : 33 (an)m = an . m Contoh : (62)3 = 62 . 3 = 66

5. Contoh : 6.

a-n = Contoh

7.

an/m = Contoh :

:

e 4-2

44/2

=

=

=

=

8. Contoh

:

Contoh

:

=

9. PERSAMAAN KUADRAT Menyelesaikan persamaan kuadrat artinya mencari akar persamaan tersebut.

Cara : 1. Cara memfaktorkan ax2 + bx + c = 0  a (x – x1) (x – x2) = 0 Contoh : x2 – 6x + 8 = 0 (x – 4) (x – 2) = 0 x = 4 x = 2 2.

Cara melengkapi kuadrat sempurna ax2 + bx + c = 0  (x + p)2 + q = 0 Contoh : x2 - 6x + 8 = 0 x2 - 6x = -8 (x – 3)2 = -8 - 32 (x – 3)2 = -8 - 9 (x – 3)2 = -17 x – 3 = x1 = 3 + x2 = 3 3.

Rumus kuadrat ax2 + bx + c = 0 x1,2 = D = disebut diskriminan Contoh :

=

HASIL JUMLAH DAN HASIL KALI Persamaan kuadrat ax2 + bx + c = 0 dengan a  0 dan a,b da c  R mempunyai dua akar. 1. x1 = 2. x2 = Penjabaran rumus : x1 + x2 = dan x1 . x2 = Bentuk yang 1. x12 + 2. x13 + 3. x12 4. 5. 6.

dikaitkan x22 = (x1 x23 = (x1 x22 = (x1

dan x1 - x2 =

atau |x1 - x2| =

dengan rumus di atas : + x2)2 – 2x1x2 + x2)3 – 2x1x2 (x1 + x2) + x2) (x1 - x2)

Contoh : 1. x1 + x2 = 2. x1 . x2 = 3. 4. = = (3)2 – 2 . 2½

=

Related Documents