Tugas Besar.docx

  • Uploaded by: Algail Grezelda Gumintang
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tugas Besar.docx as PDF for free.

More details

  • Words: 1,940
  • Pages: 14
TUGAS POLIGON DAN WATERPAS ILMU UKUR TANAH

OLEH : ALGAIL GREZELDA GUMINTANG 1541320027 / 03 1 MRK 3

JURUSAN TEKNIK SIPIL POLITEKNIK NEGERI MALANG 2016

BAB I SOAL 1. Data hasil pembacaan rambu pada pengukuran waterpas jalur tertutup sebagai berikut : RAMBU BELAKANG

RAMBU MUKA DAN

(cm)

PROFIL (cm)

NO TITIK

BA

BT

BB

BA

BT

BB

P

153

148

143

A

232.5

225.7

219

A

122.4

116.4

110.5

B

109.3

106

102.5

B

57.3

48.1

38.8

C

101.9

95.8

89.5

C

88.9

82.5

76.1

D

25.5

16.2

7.3

D

124.4

118.9

113.3

E

82.9

76.7

70.4

E

140

136.8

132.9

P

132.2

128.3

124.4

Hitung Elevasi (H) titik A,B,C,D,E sesuai prosedur, pada jaringan tersebut, jika Hp = 100,325 meter. (Hp + No. urut absen = 100,325 + 3= 103,325 m)

2. Data hasil pengukuran “sudut dalam” dan jarak mendatar suatu polion

A

A

B

C

D

E

A

TINGGI

PEMBACAAN ARAH HORIZONTAL

(meter)

TARGET

T.PSWT

tertutup sbb :

1.500

ALAT

1.450

1.420

1.474

1.410

1.502

1.602

JARAK (meter) ͦ



"

U

0

0

0

B

179

53

0

E

50

30

45

B

179

53

0

A

216

15

0

C

306

17

40

B

287

56

30

D

18

28

20

C

56

39

20

E

148

22

15

D

321

58

45

A

100

20

30

E

50

34

20

B

179

1

15

Jika diketahui koordinat titik a : XA = -50,000 meter ; YA=15,000 meter A. Gambarlah (sket) poligon tersebut sesuai data B. Hitunglah koordinat poligon sesuai prosedur catatan : koordinat awal (XA,YA) + no. urut absen (meter) (XA = -47,000 meter ; YA = 18,000 meter)

42.550

37.020

56.350

19.730

23.130

BAB II PENYELESAIAN

SOAL 1 Menghitung Jarak

D = 100 x (BA − BB) 

DAP = 100 x ((BAP + BAA ) − (BBP + BBA )) DAP = 100 x ((153,0 + 232,5) − (143,0 + 219,0)) DAP = 2350 cm



DAB = 100 x ((BAA + BAB ) − (BBA + BBB )) DAB = 100 x ((122,4 + 109,3) − (110,5 + 102,5)) DAB = 1.870 cm



DBC = 100 x ((BAB + BAC ) − (BBB + BBC )) DBC = 100 x (( `157,3 + 101,9) − (38,3 + 89,5)) DBC = 3.090 cm



DCD = 100 x ((BAC + BAD ) − (BBC + BBD )) DCD = 100 x ((88,9 + 25,5) − (76,1 + 7,3)) DCD = 3.100 cm



DDE = 100 x ((BAD + BAE ) − (BBD + BBE )) DDE = 100 x ((124,4 + 82,9) − (133,3 + 70,4)) DDE = 2.360 cm



DEF = 100 x ((BAE + BAF ) − (BBE + BBF )) DEF = 100 x ((140,0 + 132,2) − (132,9 + 124,4))

DEF = 1.490 cm

∑ D = DAB + DBC + DCD + DDE + DEF ∑ D = 1.870 + 3.090 + 3.100 + 2.360 + 1.490 = 14.260 cm

Menghitung Beda Tinggi ∆h = BTblk − BTmk 

∆hPA = BTP − BTA ∆hPA = 148 − 225,7 = −77,7 cm ≈ −0,777 m



∆hAB = BTA − BTB ∆hAB = 116,4 − 10,6 = 10,4 cm ≈ 0,104 m



∆hBC = BTB − BTC ∆hBC = 48,1 − 95,8 = −47,7 cm ≈ −0,477 m



∆hCD = BTC − BTD ∆hCD = 82,5 − 16,2 = 66,3 cm ≈ 0,633 m



∆hDE = BTD − BTE ∆hDE = 118,9 − 76,7 = 42,2 cm ≈ 0,422 m



∆hEP = BTE − BTP ∆hEP = 136,8 − 128,3 = 8,5 cm ≈ 0,085 𝑚

∑ ∆h = ∆hPA + ∆hAB + ∆hBC + ∆hCD + ∆hDE + ∆hEP ∑ ∆h = −77,7 + 10,4 + −47,7 + 66,3 + 42,2 + 8,5 = 2 cm ≈ 0,002 m

Menghitung Koreksi Beda Tinggi δh = 

δhPA =

dPA ∑d

d x(−fh) ∑d

x(−fh)

2.350

δhPA = 14.260 x(−2) = −0,3296 cm ≈ -0,0033 m 

δhAB =

dAB ∑d

x(−fh)

1.870

δhAB = 14.260 x(−2) = −0,2623 cm ≈ -0,0026 m 

δhBC =

dBC ∑d

x(−fh)

3.090

δhBC = 14.260 x(−2) = −0,4334 cm ≈ -0,0043 m

 δhCD = δhCD = 



dCD ∑d

x(−fh)

3.100 14.260

δhDE =

dDE

δhDE =

2.360

δhEP =

∑d

x(−fh)

14.260 dEP ∑d

1.490

x(−2) = -0,4348 cm ≈ -0,0043 m

x(−2) = -0,3310 cm ≈ -0,0033 m

x(−fh)

δhEP = 14.260 x(−2) = −0,2090 cm ≈ −0,0021m

Menghitung Elevasi Titik

H(titik) = Hawal + ∆h + δh 

HA = HP + ∆hAP + δhAP HA = 103,325 + (−0,77) + (−0,0033) = 102,545 m



HB = HA + ∆hAB + δhAB HB = 102,545 + 0,104 + (−0,0026) = 102,646 m



HC = HB + ∆hCB + δhCB HC = 102,646 + (−0,477) + (−0,0043) = 102,165 m



HD = HC + ∆hCD + δhCD HD = 102,165 + 0,663 + (−0,0043) = 102,823 m



HE = HD + ∆hDE + δhDE HE = 102,823 + 0,422 + (−0,0033) = 103,242 m



HP = HE + ∆hEP + δhEP HP = 103,242 + 0,0085 + (−0,0021) = 103,325 m (sebagai kontrol hitungan)

SOAL 2 A.(dibaliknya) B. MENGHITUNG BACAAN SUDUT HORIZONTAL (β) 

βA = JAB − JAE βA = 179°53′ 0′′ − 50°30′ 45′′ = 129°22′15′′



βB = JBC − JBA βB = 306°17′ 40′′ − 216°15′ 0′′ = 90°2′40′′



βC = JCD − JCB βC = 18°28′ 20′′ − 287°56′ 30′′ = −270°31′ 50′′ + 360° = 90°31′50′′



βD = JDE − JDC βD = 148°22′ 15′′ − 56°39′ 20′′ = 91°42′55′′



βE = JEA − JED βE = 100°20′ 30′′ − 321°58′ 45′′ = −222°21′ 45′′ + 360° = 138°21′45′′

MENGHITUNG KESALAHAN TOTAL SUDUT UKURAN ATAU CLOSSING ERROR POLYGON (fβ) fβ={(∑ β)-n.180°}={(∑ β)-(N-2).180°} (memakai sudut dalam) fβ={(βA +βB +βC +βD +βE )-(5-2).180°} fβ={(129°22'15''+90°2'40''+90°31'50''+91°42'55''+138°21'45'')-(5-2).180°} fβ={(540°1'25'')-540°} fβ=0°1'25''

Menghitung nilai koreksi sudut dan nilai sudut terkoreksi. 

Nilai koreksi total = -fβ = -0°1′25′′



Besarnya koreksi setiap sudut ukuran (Δβ) Δβ = -fβ / N Δβ = -0°1′25′′ / 5 = -0°0′17′′



Nilai sudut terkoreksi : β = βu + ∆β o βA = βA u + ∆β βA = 129°22′ 15′′ + (−0°0′ 17′′ ) = 129°21′58′′ o βB = βB u + ∆β βB = 90°2′40′′ + (−0°0′ 17′′ ) = 90°2′23′′ o βC = βC u + ∆β βC = 90°31′50′′ + (−0°0′ 17′′ ) = 90°31′33′′ o βD = βD u + ∆β βD = 91°42′55′′ + (−0°0′ 17′′ ) = 91°42′38′′ o βE = βE u + ∆β βE = 138°21′45′′ + (−0°0′ 17′′ ) = 138°21′28′′

MENGHITUNG AZIMUTH/SUDUT JURUSAN (lihat sket) 

αAE = JAE − JAU αAE = 50°50′ 45′′ − 0°0′ 0′′ = 50°50′ 45′′



αEA = αAE + 180° αEA = 50°50′ 4 5′′ + 180° = 230°50′45′′



αAB = JAB − JAU αAB = 179°53′ 0′′ − 0°0′ 0′′ = 179°53′ 0′′



αBC = αAB + βB − 180° αBC = 179°53′ 0′′ + 90°2′ 23′ − 180° = 89°55′40′′



αCD = αBC + βC − 180° αCD = 89°55′ 40′′ + 90°31′ 33′′ − 180° = 0°27′30′′



αDE = αDC + βD αDE = (αCD + 180°) + βD αDE = (0°27′ 30′′ + 180°) + 91°42′ 38′′ = 272°10′25′′

MENGHITUNG KESALAHAN TOTAL JARAK UKURAN DALAM ARAH X : (fx) dan ARAH Y : (fy)

1. Menghitung kesalahan total jarak ukuran arah Absis (fx) : fx = {∑(d . sin α)} 

fx = {dAB . sin αAB + dBc . sin αBC + dCD . sin αCD + dDE . sin αDE + dEA . sin αEA }



fx = {42,550 . sin 179°53′ 0′′ + 37,020 . sin 89°55′40′′ + 56,350 . sin 0°27′ 30′′ + 19,730 . sin 272°10′25′′ + 23,130 . sin 230°50′45′′}



fx ={42,550 . 0,0020 + 37,020 . 0,9999 + 56,350 . 0,0080 + 19,730 . (-0,9993) + 23,130 . (-0,7718)}



fx = 0,0293

2. Menghitung kesalahan total jarak ukuran arah Ordinat (fy) : fy = {∑(d . cos α)}  fy = {dAB . cos αAB + dBc . cos αBC + dCD . cos αCD + dDE . cos αDE + dEA . cos αEA }  fy = {42,550 . cos 179°53′ 0′′ + 37,020 . cos 89°55′40′′ + 56,350 . cos 0°27′ 30′′ + 19,730 . cos 272°10′25′′ + 23,130 . cos 230°50′45′′}  fy ={42,550 . (-0,9999) + 37,020 . 0,0013 + 56,350 . 0,9999 + 19,730 . 0,0379 + 23,130 .0,6360}  fy = -0,0157

MENGHITUNG NILAI KOREKSI SETIAP JARAK UKURAN

Besarnya koreksi setiap jarak ukuran dalam arah X : δx = (d / ∑d) . (-fx) ∑d = dAB + dBc + dCD + dDE + dEA ∑d = 42,550 + 37,020 + 56,350 + 19,730 + 23,130 = 178,78 m dAB

δx1 = (

) . (−fx)

∑d

42,550

δx1 = (

) . (−0,0293) = -0,0070 m

178,78

dBC

δx2 = (

∑d

) . (−fx)

37,020

δx2 = (

) . (−0,0293) = -0,0061 m

178,78

dCD

δx3 = (

∑d

) . (−fx)

56,350

δx3 = (

) . (−0,0293) = -0,0092 m

178,78

dDE

δx4 = ( δx4 = (

∑d

) . (−fx)

19,730

) . (−0,0293) = -0,0032 m

178,78

dEA

δx5 = (

∑d

23,130

) . (−fx)

δx5 = (178,78) . (−0,0293) = -0,0038 m

Besarnya koreksi setiap jarak ukuran dalam arah Y : δy = (d / ∑d) . (-fy) dAB

δy1 = (

) . (−fy)

∑d

42,550

δy1 = (

) . (0,0157) = 0,2647 m

178,78

dBC

δy2 = (

∑d

) . (−fy)

37,020

δy2 = (

) . (0,0157) = 0,2303 m

178,78

dCD

δy3 = (

∑d

) . (−fy)

56,350

δy3 = (

) . (0,0157) = 0,3506 m

178,78

dDE

δy4 = ( δy4 = (

∑d

) . (−fy)

19,730

) . (0,0157) = 0,1228 m

178,78

d

δy5 = ( EA) . (−fy) ∑d 23,130

δy5 = (

) . (0,0157) = 0,1439 m

178,78

MENGHITUNG KOORDINAT POLIGON Xx = Xp + dPX sin αPX + δx Yx = Yp + dPX cos αPX + δy

XB = XA + dAB . sin αAB + δx1 = (-47,000) + 42,550 . sin 179°53′ 0′′ + (-0,0070) = -46,922 m XC = XB + dBC . sin αBC + δx2 = (-46,922) + 37,020 . sin 89°55′40′′ + (-0,0061) = -9,867 m XD = XC + dCD . sin αCD + δx3 = (-9,867) + 56,350 . sin 0°27′ 30′′ + (-0,0092) = -9,425 m XE = XD + dDE . sin αDE + δx4 = (-9,425) + 19,730 . sin 272°10′25′′ + (-0,0032) = -29,145 m XA = XE + dEA . sin αEA + δx5 = (-29,145) + 23,130 . sin 230°50′45′′ + (-0,0038) = -47,000 m (sebagai kontrol hitungan)

YB = YA + dAB . cos αAB + δy1 = (-47,000) + 42,550 . cos 179°53′ 0′′ + 0,2647 = -25,281 m YC = YB + dBC . cos αBC + δy2 = (-46,922) + 37,020 . cos 89°55′40′′ + 0,2303 = -25,003 m YD = YC + dCD . cos αCD + δy3 = (-9,867) + 56,350 . cos 0°27′ 30′′ + 0,3506 = 31,696 m YE = YD + dDE . cos αDE + δy4 = (-9,425) + 19,730 . cos 272°10′25′′ + 0,1228 = 32,567 m YA = YE + dEA . cos αEA + δy5 = (-29,145) + 23,130 . cos 230°50′45′′ + 0,1439 = 18,000 m (sebagai kontrol hitungan)

Related Documents

Tugas
October 2019 88
Tugas
October 2019 74
Tugas
June 2020 46
Tugas
May 2020 48
Tugas
June 2020 45
Tugas
August 2019 86

More Documents from "Luci xyy"