Tugas 2 Kinetika Reaksi.docx

  • Uploaded by: FarhahAyu
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tugas 2 Kinetika Reaksi.docx as PDF for free.

More details

  • Words: 653
  • Pages: 9
TUGAS 2 KINETIKA REAKSI Program Studi Magister Teknik Kimia

Dosen Pengampu: MUHAMMAD MUFTI AZIS, S.T., M.Sc., Ph.D.

Dikerjakan oleh: HASAN RAHMAN MUHARRAM (17/422468/PTK/12047) MUHAMMAD ABDUL GHONY (17/422471/PTK/12050) MUKMIN SAPTO PAMUNGKAS (17/422472/PTK/12051)

DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS GADJAH MADA YOGYAKARTA 2018

SOAL:

CAi = PAin / HA =

101,325 Pa = 28.95 mol / m3 3 3,500 Pa.m / mol

CB >> CA, so we can assume CB ≅ constant

√DA x k x CB √DA x k x CB MH = = kAla kAl a =

2 3 √1.4 x 10−9 m x 0.433 m x 300 mol 3 s mol.s m

0.025 s−1 m2 120 3 m

= 2.0469

DB x CBout x HA Ei = 1 + b x DA x PAi 300

= 1+

mol x 3,500 Pa .m3 / mol 3 m

1 x 101,325 Pa

Ei > 5 MH, so E = MH = 2.0469

= 11.3627

−ra′′′ =

1 1 HA HA + + kAga kAla x E k x CB x fl

PA

Using fig. 23.4:

Reaction zone approaches interface, then we assume PA = PAi, 1 so the resistance in gas film is negligible: kAga = 0

101,325 Pa 3,500 Pa . m3 / mol 3,500 Pa . m3 / mol 0 + + 0.025 s−1 x 2.0469 m3 mol 0.433 x 300 3 x 0.08 mol. s m -ra’’’ = 1.4764 mol/m3.s −ra′′′ =

Using equation from Plug Flow G/ Mixed Flow L – Mass Transfer + Reaction in Bubble. YAin

Vr = Fg

∫ YAout

dYA (−rA′′)a

YAin

Vr = vo x Cgo

dYA ∫ (−rA′′)a

YAout 3

m mol 0.6041 m = 0.0363 x 28.95 3 s m 3

1

dYA ∫ mol 1.4764 x1 YAout m3 . s YAout = 0.1513

Fraction of entering CO2 absorbed = dYA dYA = YA in - YA out = 0.8487

1 3 2

Step 1. Express the material balance and find CB2 in the exit stream PA1 = 0.0236 % x 1 atm = 2.36 x 10-4 atm PA2 = 2.36 % x 1 atm = 0.0236 atm CB1 = 10 % x 2,736 mol/m3 = 273.6 mol/m3 Using equation from Plug Flow G/ Plug Flow L – Mass Transfer + Reaction in a Countercurrent Tower, dilute systems (solution containing a relatively small quantity of solute as compared with the amount of solvent). (PA3 − PA1) =

Fl (Acs) π Fg (Acs) b x CT

(CB1 − CB3)

mol 2 x 1 atm s. m −4 (PA3 − 2.36 x 10 atm) = (273.6 mol/m3 − CB3) mol mol 100 x 2 x 2736 3 s. m2 m 250

PA3 = 0.125236 – 4.5687 x 10-4 CB3 At the bottom of the tower, PA3 = PA2, so 1

CB2 = 4.5687 x 10−4 (0.125236 – 0.00236) = 268.9517 mol/m3

Step 2. Find which of the many forms of rate equation should be used. At top, mol mol −4 x 2.36 x 10 atm = 0.0314 hr. m3 . atm hr. m3 mol mol −1 kla x CB = 45 hr x 273.6 3 = 12,312 m hr. m3 kAga x PA = 133

At bottom, mol mol kAga x PA = 133 x 0.0236 atm = 3.1388 hr. m3 . atm hr. m3 mol mol −1 kla x CB = 45 hr x 268.9517 3 = 12,102.8265 m hr. m3 At both ends of the tower kAgPA < klaCB; therefore, gas-phase resistance controls and we have a pseudo first-order reaction as given by Eq. 16 of Chapter 23 -ra’’’ = kAga x PA = 133 PA

Step 3. Determine the tower height. Fg PA2 dPA Vr = ∫ π PA1 (−rA′′)a Fg PA2 dPA h x Acs = ∫ π PA1 133 PA x 1 Fg 1 PA2 x ln Acs x π 133 PA1 100 1 0.0236 h = x ln 1 133 2.36 x 10−4 h = 3.46 m h =

Related Documents


More Documents from "Abdul Kahar"