Tugas 1 (analisis Real)

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tugas 1 (analisis Real) as PDF for free.

More details

  • Words: 1,743
  • Pages: 9
Analisis Real (Tugas 1) Nama : Syaiful Rohman ( 107017001306 ) Teguh Membara ( 107017000966 ) Qosim Nur Hidayat ( 107017000931 ) Pendidikan Matematika 5B

Lemma 1.2.1 Misalkan S ⊂ N dan S ≠ Ø, maka S memiliki unsur terkecil yaitu terdapat no Є S,sehingga no ≤ n, ∀nЄS. 1. Misal S = { 1, 2, 3, 4} no = 1

1≤ 2 1≤ 4 1≤ 3 1≤ 1

no ≤ n

2. Misal S = { 3, 5, 7, 9} no = 3

3≤ 5 3≤ 7 3≤ 9 3≤ 3

no ≤ n

3. Misal S = { 4, 7, 9, 12, 15 } no = 4

4 ≤ 7 4 ≤ 9 4 ≤ 12 4 ≤ 15 4 ≤ 4 no ≤ n

4. Misal S = { 2, 3, 6, 7, 9, 10 } no = 2

2 ≤ 3 2 ≤ 6 2 ≤ 7 2 ≤ 9 2 ≤ 10 2 ≤ 2 no ≤ n

5. Misal S = { 1, 3, 5, 9, 13, 16 } no = 1

1 ≤ 3 1 ≤ 5 1 ≤ 9 1 ≤ 13 1 ≤ 16 1 ≤ 1 no ≤ n

Lemma 1.2.2 Jika x, y Є Q dan x < y maka terdapat z Є Q, sehingga x < z < y. 1. Misal m1 = 1 m2 = 3 n1 = 2 n2 = 4

x= z=

m1 1 = n1 2

y=

m2 3 = n2 4

x + y m1 n2 + m2 n1 1.4 + 3.2 5 = = = 2 2n1 n2 2.2.4 8

x
1 5 3 < < 2 8 4

2. Misal m1 = 5 m2 = 7 n1 = 6 n2 = 8

x= z=

m1 5 = n1 6

y=

m2 7 = n2 8

x + y m1 n 2 + m2 n1 5.8 + 7.6 41 = = = 2 2n1 n 2 2.6.8 48

x
5 41 7 < < 6 48 8

3. Misal m1 = 9 m2 = 11 n1 = 10 n2 = 12

x= z=

m1 9 = n1 10

y=

m 2 11 = n 2 12

x
x + y m1 n 2 + m2 n1 9.12 + 10 .11 109 9 109 11 = = = < < sehingga x < z < y  2 2n1 n2 2.10 .12 120 10 120 12

4. Misal m1 = 13 m2 = 15 n1 = 14 n2 = 16

x= z=

m1 13 = n1 14

y=

m 2 15 = n 2 16

x
x + y m1 n2 + m2 n1 13.16 + 15.14 209 13 209 15 = = = < < sehingga x < z < y  2 2n1 n 2 2.14.16 224 14 224 16

5. Misal m1 = 5 m2 = 9 n1 = 7 n2 = 11

x= z=

m1 5 = n1 7

y=

m2 9 = n2 11

x
x + y m1 n 2 + m2 n1 5.11 + 9.7 59 5 59 9 = = = < < sehingga x < z < y  2 2n1 n 2 2.7.11 77 7 77 11

Lemma 1.2.3 (Sifat Archimedes) Jika x Є Q, maka terdapat n Є Z. sehingga x < n. 1. Misalkan

P=2 q=5  x=

p 2 = q 5

p.q> 0 2.5>0  10>0 1

1

q ≥ 1  5≥ 1  q ≤ 1 ⇒ 5 ≤ 1 p

2 Mengakibatkan q ≤ p  ≤ 2 5

n = p + 1  2+1 =3 x
2 ≤ 3 (terbukti) 5

2. Misalkan

P=1 q=5 

p.q> 0 1.5>0  5>0 1

1 Mengakibatkan q ≤ p  ≤1 5 p

n = p + 1  1+1 =2 x
1 ≤ 2 (terbukti) 5

3. Misalkan

P=3 q=4  x=

p 3 = q 4

p.q> 0 3.4>0  12>0 1

p

n = p + 1  3+1 =4 3 ≤ 3 (terbukti) 4

4. Misalkan

1

q ≥ 1  5≥ 1  q ≤ 1 ⇒ 5 ≤ 1

3 Mengakibatkan q ≤ p  ≤ 3 4

x
1

q ≥ 1  5≥ 1  q ≤ 1 ⇒ 5 ≤ 1

p 1 x= = q 5

P=5 q=2  x=

p.q> 0 5.2>0  10>0

p 5 = q 2

1

1

q ≥ 1  5≥ 1  q ≤ 1 ⇒ 5 ≤ 1 p

5 Mengakibatkan q ≤ p  ≤ 5 2

n = p + 1  5+1 =6 x
5 ≤ 6 (terbukti) 2

5. Misalkan

P=4 q=1  x=

p.q> 0 4.1>0  4>0

p 4 = q 1

1

1

q ≥ 1  5≥ 1  q ≤ 1 ⇒ 5 ≤ 1

4 Mengakibatkan q ≤ p  ≤ 4 1 p

n = p + 1  4+1 =5 x
4 ≤ 3 (terbukti) 1

Teorema 1.4.1 ( Sifat Archimedes) Untuk setiap x, y Є R dan x > 0, terdapat n Є N, sehingga nx > y. 1. misal x=2 y=2 n=2 maka nx > y  2.2 > 2  4 > 2 2. misal x=4 y=-2 n=3 maka nx > y  3.4> -2  12> -2 3. misal x=

1 y=2 n=6 2

maka nx > y  6 .

1 > 2  3> 2 2

4. misal x=

1 y=-5 n=4 4

maka nx > y  4 . 5. misal x=

1 > -5  1> -5 4

3 y=1 n=8 2

3 > 1  12> 1 2

maka nx > y  8.

Teorema 1.4.2 Untuk setiap x, y Є R dan x < y, terdapat p Є Q, sehingga x < p < y. 1.

misal x=

1 5 y= n=5 2 4

n (y-x) > 1 5(

5 1 15 − )>1  >1 4 2 4

…………………….…………..(1)

m1 = 4 m2 = 4 - m2 < nx < m1  -4 < 5.

1 5 < 4  -4 < < 4 ………………… (2) 2 2

M=3 m-1 ≤ nx ≤ m 3-1 ≤ 5. maka di peroleh

5.

1 5 ≤ 32≤ ≤ 3 ………………………(3) 2 2

nx < m ≤ nx + 1 < ny

1 1 5 < 3 ≤ 5. + 1 < 5. 2 2 4

P=

m m 1 3 5 x<
5 <3 ≤ 2

7 25 < 2 4

(terbukti)

2.

misal x=

3 9 y= n=5 2 4

n (y-x) > 1 5(

9 3 15 − )>1  >1 4 2 4

…………………….…………..(1)

m1 = 3 m2 = 3 - m2 < nx < m1  -3 < 5.

3 5 < 3  -3 < < 3 ………………… (2) 2 2

M=8 m-1 ≤ nx ≤ m 8-1 ≤ 5.

3 15 ≤ 87≤ ≤ 8 ………………………(3) 2 2

maka di peroleh nx < m ≤ nx + 1 < ny

5.

3 3 9 < 8≤ 5. + 1 < 5. 2 2 4 15 <8≤ 2

P=

17 45 < 2 4

m m 3 8 9 x<
(terbukti)

3.

.missal x=

3 9 y= n=3 4 4

n (y-x) > 1 2(

9 3 − )>1  3 >1 4 4

…………………….…………..(1)

m1 = 3 m2 = 3 - m2 < nx < m1  -3 < 3.

3 9 < 3  -3 < < 3 ………………… (2) 4 4

M=3 m-1 ≤ nx ≤ m 7-1 ≤ 3.

3 9 ≤ 82≤ ≤ 3………………………(3) 4 4

maka di peroleh nx < m ≤ nx + 1 < ny

2.

3 3 9 < 3≤ 2. + 1 < 2. 4 4 4 6 <3≤ 4

P=

4.

10 18 < 4 4

m m 3 3 9 x<
misal x=

1 5 y= n=3 2 4

(terbukti)

n (y-x) > 1 4(

5 1 12 − )>1  >1 4 2 4

…………………….…………..(1)

m1 = 4 m2 = 4 - m2 < nx < m1  -4 < 3.

1 1 < 4  -4 < 3. < 4 ………………… (2) 2 2

M=2 m-1 ≤ nx ≤ m 2-1 ≤ 3.

1 3 ≤ 21≤ ≤ 2 ………………………(3) 2 2

maka di peroleh nx < m ≤ nx + 1 < ny

3.

1 1 5 < 2 ≤ 3. + 1 < 3. 2 2 4 3 <2 ≤ 2

P=

5.

5 15 < 2 4

m m 1 3 5 x<
missal x=

(terbukti)

1 1 y= n=3 8 2

n (y-x) > 1 3(

1 1 9 − )>1  >1 2 8 8

…………………….…………..(1)

m1 = 5 m2 = 5 - m2 < nx < m1  -5 < 3. M=1

1 3 < 5  -5 < < 5………………… (2) 8 8

m-1 ≤ nx ≤ m 1-1 ≤ 3.

1 3 ≤ 20≤ ≤ 1………………………(3) 8 8

maka di peroleh nx < m ≤ nx + 1 < ny

3.

1 1 1 < 1 ≤ 3. + 1 < 3. 8 8 2 3 <1 ≤ 8

P=

11 3 < 8 2

m m 1 1 1 x<
(terbukti)

Teorema 1.4.3 Untuk Setiap a Є R, a > 0 dan n Є N, terdapat x Є R, sehingga xn = a. 1. Misal a = 4 dan n = 5 sehingga ∃ xЄR

Sehingga x5 = 4

 x = 5 4 = 1,319507911

xЄI

2. Misal a = 6 dan n = 7 sehingga ∃ xЄR

Sehingga x7 = 6

 x = 7 6 = 1,291708342

xЄI

3. Misal a = 8 dan n = 9 sehingga ∃ xЄR

Sehingga x9 = 8

 x = 9 8 = 1,259921050

xЄI

4. Misal a = 10 dan n = 11 sehingga ∃ xЄR

Sehingga x11 = 10  x = 11 10 = 1,23284673

xЄI

5. Misal a = 12 dan n = 13 sehingga ∃ xЄR

Sehingga x13 = 12  x = 13 12 = 1,23007551

xЄI

Related Documents