Analisis Real (Tugas 1) Nama : Syaiful Rohman ( 107017001306 ) Teguh Membara ( 107017000966 ) Qosim Nur Hidayat ( 107017000931 ) Pendidikan Matematika 5B
Lemma 1.2.1 Misalkan S ⊂ N dan S ≠ Ø, maka S memiliki unsur terkecil yaitu terdapat no Є S,sehingga no ≤ n, ∀nЄS. 1. Misal S = { 1, 2, 3, 4} no = 1
1≤ 2 1≤ 4 1≤ 3 1≤ 1
no ≤ n
2. Misal S = { 3, 5, 7, 9} no = 3
3≤ 5 3≤ 7 3≤ 9 3≤ 3
no ≤ n
3. Misal S = { 4, 7, 9, 12, 15 } no = 4
4 ≤ 7 4 ≤ 9 4 ≤ 12 4 ≤ 15 4 ≤ 4 no ≤ n
4. Misal S = { 2, 3, 6, 7, 9, 10 } no = 2
2 ≤ 3 2 ≤ 6 2 ≤ 7 2 ≤ 9 2 ≤ 10 2 ≤ 2 no ≤ n
5. Misal S = { 1, 3, 5, 9, 13, 16 } no = 1
1 ≤ 3 1 ≤ 5 1 ≤ 9 1 ≤ 13 1 ≤ 16 1 ≤ 1 no ≤ n
Lemma 1.2.2 Jika x, y Є Q dan x < y maka terdapat z Є Q, sehingga x < z < y. 1. Misal m1 = 1 m2 = 3 n1 = 2 n2 = 4
x= z=
m1 1 = n1 2
y=
m2 3 = n2 4
x + y m1 n2 + m2 n1 1.4 + 3.2 5 = = = 2 2n1 n2 2.2.4 8
x
1 5 3 < < 2 8 4
2. Misal m1 = 5 m2 = 7 n1 = 6 n2 = 8
x= z=
m1 5 = n1 6
y=
m2 7 = n2 8
x + y m1 n 2 + m2 n1 5.8 + 7.6 41 = = = 2 2n1 n 2 2.6.8 48
x
5 41 7 < < 6 48 8
3. Misal m1 = 9 m2 = 11 n1 = 10 n2 = 12
x= z=
m1 9 = n1 10
y=
m 2 11 = n 2 12
x
x + y m1 n 2 + m2 n1 9.12 + 10 .11 109 9 109 11 = = = < < sehingga x < z < y 2 2n1 n2 2.10 .12 120 10 120 12
4. Misal m1 = 13 m2 = 15 n1 = 14 n2 = 16
x= z=
m1 13 = n1 14
y=
m 2 15 = n 2 16
x
x + y m1 n2 + m2 n1 13.16 + 15.14 209 13 209 15 = = = < < sehingga x < z < y 2 2n1 n 2 2.14.16 224 14 224 16
5. Misal m1 = 5 m2 = 9 n1 = 7 n2 = 11
x= z=
m1 5 = n1 7
y=
m2 9 = n2 11
x
x + y m1 n 2 + m2 n1 5.11 + 9.7 59 5 59 9 = = = < < sehingga x < z < y 2 2n1 n 2 2.7.11 77 7 77 11
Lemma 1.2.3 (Sifat Archimedes) Jika x Є Q, maka terdapat n Є Z. sehingga x < n. 1. Misalkan
P=2 q=5 x=
p 2 = q 5
p.q> 0 2.5>0 10>0 1
1
q ≥ 1 5≥ 1 q ≤ 1 ⇒ 5 ≤ 1 p
2 Mengakibatkan q ≤ p ≤ 2 5
n = p + 1 2+1 =3 x
2 ≤ 3 (terbukti) 5
2. Misalkan
P=1 q=5
p.q> 0 1.5>0 5>0 1
1 Mengakibatkan q ≤ p ≤1 5 p
n = p + 1 1+1 =2 x
1 ≤ 2 (terbukti) 5
3. Misalkan
P=3 q=4 x=
p 3 = q 4
p.q> 0 3.4>0 12>0 1
p
n = p + 1 3+1 =4 3 ≤ 3 (terbukti) 4
4. Misalkan
1
q ≥ 1 5≥ 1 q ≤ 1 ⇒ 5 ≤ 1
3 Mengakibatkan q ≤ p ≤ 3 4
x
1
q ≥ 1 5≥ 1 q ≤ 1 ⇒ 5 ≤ 1
p 1 x= = q 5
P=5 q=2 x=
p.q> 0 5.2>0 10>0
p 5 = q 2
1
1
q ≥ 1 5≥ 1 q ≤ 1 ⇒ 5 ≤ 1 p
5 Mengakibatkan q ≤ p ≤ 5 2
n = p + 1 5+1 =6 x
5 ≤ 6 (terbukti) 2
5. Misalkan
P=4 q=1 x=
p.q> 0 4.1>0 4>0
p 4 = q 1
1
1
q ≥ 1 5≥ 1 q ≤ 1 ⇒ 5 ≤ 1
4 Mengakibatkan q ≤ p ≤ 4 1 p
n = p + 1 4+1 =5 x
4 ≤ 3 (terbukti) 1
Teorema 1.4.1 ( Sifat Archimedes) Untuk setiap x, y Є R dan x > 0, terdapat n Є N, sehingga nx > y. 1. misal x=2 y=2 n=2 maka nx > y 2.2 > 2 4 > 2 2. misal x=4 y=-2 n=3 maka nx > y 3.4> -2 12> -2 3. misal x=
1 y=2 n=6 2
maka nx > y 6 .
1 > 2 3> 2 2
4. misal x=
1 y=-5 n=4 4
maka nx > y 4 . 5. misal x=
1 > -5 1> -5 4
3 y=1 n=8 2
3 > 1 12> 1 2
maka nx > y 8.
Teorema 1.4.2 Untuk setiap x, y Є R dan x < y, terdapat p Є Q, sehingga x < p < y. 1.
misal x=
1 5 y= n=5 2 4
n (y-x) > 1 5(
5 1 15 − )>1 >1 4 2 4
…………………….…………..(1)
m1 = 4 m2 = 4 - m2 < nx < m1 -4 < 5.
1 5 < 4 -4 < < 4 ………………… (2) 2 2
M=3 m-1 ≤ nx ≤ m 3-1 ≤ 5. maka di peroleh
5.
1 5 ≤ 32≤ ≤ 3 ………………………(3) 2 2
nx < m ≤ nx + 1 < ny
1 1 5 < 3 ≤ 5. + 1 < 5. 2 2 4
P=
m m 1 3 5 x<
5 <3 ≤ 2
7 25 < 2 4
(terbukti)
2.
misal x=
3 9 y= n=5 2 4
n (y-x) > 1 5(
9 3 15 − )>1 >1 4 2 4
…………………….…………..(1)
m1 = 3 m2 = 3 - m2 < nx < m1 -3 < 5.
3 5 < 3 -3 < < 3 ………………… (2) 2 2
M=8 m-1 ≤ nx ≤ m 8-1 ≤ 5.
3 15 ≤ 87≤ ≤ 8 ………………………(3) 2 2
maka di peroleh nx < m ≤ nx + 1 < ny
5.
3 3 9 < 8≤ 5. + 1 < 5. 2 2 4 15 <8≤ 2
P=
17 45 < 2 4
m m 3 8 9 x<
(terbukti)
3.
.missal x=
3 9 y= n=3 4 4
n (y-x) > 1 2(
9 3 − )>1 3 >1 4 4
…………………….…………..(1)
m1 = 3 m2 = 3 - m2 < nx < m1 -3 < 3.
3 9 < 3 -3 < < 3 ………………… (2) 4 4
M=3 m-1 ≤ nx ≤ m 7-1 ≤ 3.
3 9 ≤ 82≤ ≤ 3………………………(3) 4 4
maka di peroleh nx < m ≤ nx + 1 < ny
2.
3 3 9 < 3≤ 2. + 1 < 2. 4 4 4 6 <3≤ 4
P=
4.
10 18 < 4 4
m m 3 3 9 x<
misal x=
1 5 y= n=3 2 4
(terbukti)
n (y-x) > 1 4(
5 1 12 − )>1 >1 4 2 4
…………………….…………..(1)
m1 = 4 m2 = 4 - m2 < nx < m1 -4 < 3.
1 1 < 4 -4 < 3. < 4 ………………… (2) 2 2
M=2 m-1 ≤ nx ≤ m 2-1 ≤ 3.
1 3 ≤ 21≤ ≤ 2 ………………………(3) 2 2
maka di peroleh nx < m ≤ nx + 1 < ny
3.
1 1 5 < 2 ≤ 3. + 1 < 3. 2 2 4 3 <2 ≤ 2
P=
5.
5 15 < 2 4
m m 1 3 5 x<
missal x=
(terbukti)
1 1 y= n=3 8 2
n (y-x) > 1 3(
1 1 9 − )>1 >1 2 8 8
…………………….…………..(1)
m1 = 5 m2 = 5 - m2 < nx < m1 -5 < 3. M=1
1 3 < 5 -5 < < 5………………… (2) 8 8
m-1 ≤ nx ≤ m 1-1 ≤ 3.
1 3 ≤ 20≤ ≤ 1………………………(3) 8 8
maka di peroleh nx < m ≤ nx + 1 < ny
3.
1 1 1 < 1 ≤ 3. + 1 < 3. 8 8 2 3 <1 ≤ 8
P=
11 3 < 8 2
m m 1 1 1 x<
(terbukti)
Teorema 1.4.3 Untuk Setiap a Є R, a > 0 dan n Є N, terdapat x Є R, sehingga xn = a. 1. Misal a = 4 dan n = 5 sehingga ∃ xЄR
Sehingga x5 = 4
x = 5 4 = 1,319507911
xЄI
2. Misal a = 6 dan n = 7 sehingga ∃ xЄR
Sehingga x7 = 6
x = 7 6 = 1,291708342
xЄI
3. Misal a = 8 dan n = 9 sehingga ∃ xЄR
Sehingga x9 = 8
x = 9 8 = 1,259921050
xЄI
4. Misal a = 10 dan n = 11 sehingga ∃ xЄR
Sehingga x11 = 10 x = 11 10 = 1,23284673
xЄI
5. Misal a = 12 dan n = 13 sehingga ∃ xЄR
Sehingga x13 = 12 x = 13 12 = 1,23007551
xЄI