Ts 10toan 06-07 Da

  • Uploaded by: son
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ts 10toan 06-07 Da as PDF for free.

More details

  • Words: 725
  • Pages: 2
Së GD&§T Thanh Ho¸ §Ò thi chÝnh thøc §Ò a

Kú thi tuyÓn sinh líp 10 THPT n¨m häc 2006-2007 M«n thi: To¸n

h−íng dÉn chÊm thi B¶n h−íng dÉn nµy gåm 2 trang C©u C©u1 a) b)

Thang ®iÓm 1,5 0,5

§¸p ¸n a ≥ 0 a ≠ 25

A cã nghÜa ⇔ 

(

)

)(

)

(

)

0,5

 a a +1   a a −5  A = 3 + .3 −  a +1   a −5   A = 3+ a .3− a

(

A=9-a C©u 2 §iÒu kiÖn: x ≠ ±3 Ph−¬ng tr×nh ® cho t−¬ng ®−¬ng víi ph−¬ng tr×nh 6

(x − 3)(x + 3)

= 1+

1 x −3

6 = x2 − 9 + x + 3 ⇔ x 2 + x − 12 = 0

Gi¶i ra cã x1= - 4; x2 = 3 KÕt hîp víi ®iÒu kiÖn suy ra ph−¬ng tr×nh cã nghiÖm x = - 4 C©u 3

0,25 0,25 1,5 0,25 0,25 0,25 0,25 0,25 0,25 1,5

HÖ ph−¬ng tr×nh ® cho t−¬ng ®−¬ng víi : 15 x + 5 y = 3 y + 4  3 − x = 8 x + 4 y + 2

0,25 0,25

15 x + 2 y = 4 ⇔ 9 x + 4 y = 1 30 x + 4 y = 8 ⇔ 9 x + 4 y = 1 21x = 7 ⇔ 9 x + 4 y = 1

0,25 0,25 1 3

1 2

Gi¶i ra cã nghiÖm cña hÖ lµ (x;y) = ( ;− ) C©u 4 ∆’ = m 2 − m m − 2 + NÕu m ≥ 0 th× ∆’ = m 2 − m 2 − 2 = −2 < 0 ph−¬ng tr×nh v« nghiÖm + NÕu m < 0 th× ∆’ = m 2 + m 2 − 2 = 2m 2 − 2 = 2(m 2 − 1) §Ó ph−¬ng tr×nh v« nghiÖm th× ∆’ < 0 ⇔ m < 1 KÕt hîp víi m < 0 ta ®−îc – 1 < m < 0 KÕt luËn: Víi m > - 1 th× ph−¬ng tr×nh v« nghiÖm

0,5 1,0 0,25 0,25 0,25 0,25

C©u 5 Gäi V, r, h lÇn l−ît lµ thÓ tÝch, b¸n kÝnh ®¸y vµ chiÒu cao h×nh trô khi ®ã r = 3 cm, h = AB = 2 cm Ta cã V = π r2h = π 32.2 = 18 π (cm3) C©u 6 NÕu häc sinh kh«ng vÏ h×nh hoÆc vÏ sai c¬ b¶n th× kh«ng cho A ®iÓm toµn bµi

1,0 0,5 0,5 2,5

M

B

C

H

N

a) Tam gi¸c AHC vu«ng, trung tuyÕn HM nªn AM = MH = MC ⇒ ∆ MHC c©n b) Tõ c©u a) suy ra ∠MHC = ∠MCH ; Mµ ∠MHC = ∠BHN ( ®èi ®Ønh) ⇒∠BHN = ∠MCH ∆ BNH cã ∠ABC = ∠BNH +∠BHN ⇒∠ABC = ∠BNH + ∠MCH Theo gi¶ thiÕt ∠ABC = 2∠MCH suy ra ∠BNH = ∠MCH Do C vµ N cïng n»m trong nöa mÆt ph¼ng bê lµ BM ⇒ Tø gi¸c NBMC néi tiÕp c) Tam gi¸c ABC ®ång d¹ng víi tam gi¸c AMN v× cã ∠ACB = ∠ANM, gãc A chung. AB AC = ⇒ AB. AN = AM . AC AM AN

AB( AB + BH) = MH. 2MH 2MH2 = AB2 + AB.BH

0, 5 0,5

0,5 0,25 0,25 0,25 0,25 1,0

C©u 7 V× a>0 nªn bÊt ®¼ng thøc t−¬ng ®−¬ng víi: 2a 2 + 5(a 2 + 1) 2 ≥ 11a (a 2 + 1) ⇔ 5a 4 − 11a 3 + 12a 2 − 11a + 5 ≥ 0 ⇔ (a − 1) 2 (5a 2 − a + 5) ≥ 0

0,5

Ta cã: (a − 1) 2 ≥ 0 vµ 5a 2 − a + 5 = 5(a 2 − a + 1) = 5(a −

0,5

1 5



1 2 99  ) + >0 10 100 

Suy ra §PCM L−u ý: HS cã thÓ gi¶i theo c¸c c¸ch kh¸c nhau, ch¼ng h¹n b»ng c¸ch ®Æt Èn phô hay dïng b®t. VÝ dô: §Æt t = 1 5

a 2 +1 . Do a>0 nªn t ≥ 2. a

B§T cÇn c/m  5(t − 2)(t − ) ≥ 0 ®iÒu nµy ®óng.

Related Documents


More Documents from "son"