Trigonometry

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trigonometry as PDF for free.

More details

  • Words: 2,097
  • Pages: 12
GIKPKC7 94107

Trigonometry

Page 1

Introduction 3/6/98

Trigonometric Ratios: Sine Cosine Tangent

O H A cos   H O tan   A

(90  )

sin  

O = Opposite Hint: ‘O’ on top, ‘H’ below, ‘A’ where it fits.

H = Hypotenuse

A = Adjacent



Inverse Ratios: Cosecant Secant Cotangent

1 H  sin  O 1 H sec    cos  A 1 A cot    tan  O cos ec 

Complementary Angles: A  sin 90    H O cos 90     H A tan 90    O cos ec90    

H A

H O A  cot 90    O sec90    

Results from Complementary Angles and Inverse Ratios: sin  = cos (90  ) cos  = sin (90  ) tan  = cot (90  ) cosec  = sec (90  ) cot  = tan (90  ) sec  = cosec (90  )

Luke Cole

Page 1

GIKPKC7 94107

Trigonometry

Page 2

Exact Ratios: Hint: 1

0

30

45

60

90

0

1 2

1

3 2 1 2

1

3

E

2 = 0.707 … 3 2 sin cos

1

tan

0

2 1

3 2 1

2 1

0

3

Angle of Depression & Elevation: 1

1 = Depression 2 = Elevation 1 = 2

2

Bearings: Compass

N A  N 50 E B  S 65 W

50 A W

E 25 B S N 50 A

W

E 25 B

Luke S Cole

Page 2

GIKPKC7 94107

Trigonometry

True North

Page 3

N 0

A  50 B  245

50 A 270

90 25 B 180

Angles of Any Magnitude: y 90 2nd Quadrant 1st Quadrant S A (sin +ve) (All +ve) x 180 0 T C (tan +ve) (cos +ve) 3rd Quadrant 4th Quadrant

Hint: All Stations Too Central

270 Proof: Construct a unit circle [r = 1, c(0, 0)]: 1st Quadrant y P(x, y)





x

x

y y 1 x cos    x 1 y tan   x  All +ve sin  

2nd Quadrant y P(x, y)

y y 1 x  cos 180      x 1 y tan 180     x  sin +ve sin 180     

Luke Cole

Page 3

GIKPKC7 94107

Trigonometry

3rd Quadrant

4th Quadrant



x

Page 4



P(x, y)

x P(x, y)

y

y y sin 180      y 1 x  cos 180     x 1 y y  tan 180      x x  tan +ve

y  y 1 x  cos 360      x 1 y  tan 360    x  cos +ve

sin 360   

Trigonometric Identities

10/6/98

From the Unit Circle: ¼ of it:

1

y x

Equation:

tan  

Proof: From unit circle: sin  = y …(1) cos  = x …(2) y tan   …(3) x Sub (1) & (2) into (3): sin  tan    cos  Equation: Proof: Using Pythagoras: x2 + y2 = 12

sin  cos 

sin2  + cos2  = 1

Luke Cole

Page 4

GIKPKC7 94107 

Trigonometry

sin2  + cos2  = 1

Page 5

…[1]

Equation: cosec2   cot2  = 1 Proof: Divide [1] by sin2 : sin 2  cos 2  1   2 2 sin  sin  sin 2   cosec2   cot2  = 1 Equation: sec2   tan2  = 1 Proof: Divide [1] by cos2 : sin 2  cos 2  1   2 2 cos  cos  cos 2   sec2   tan2  = 1

Sine Rule: Equation: Proof:

sin A sin B  a b

h c h = c.sin B h sin C  b h = b.sin C So, (1) = (2): c.sin B = b.sin C sin B sin C   b c Here, sin B 

A

…(1) c

h

b

…(2) B

a

C

Cosine Rule: Equation:

a2 = b2 +c2 – 2.b.c.cosA

Proof:

Luke Cole

or

cos A 

b2  c 2  a 2 2.b .c

Page 5

GIKPKC7 94107 In ACD, In BCD, In ACD, So,

Trigonometry

x2 + p2 = b2 (c – x)2 + p2 = a2 c2 – 2.c.x + b2 = a2 x cos A  b x = b.cosA a2 = b2 + c2 – 2.b.c.cosA

Page 6

C b

A

x

p

a

D c x B c

Area of a Triangle Rule: Equation: A = ½.a.b.sinC Proof: Since, A = ½.b.h h And, sin C  a h = a.sin C  A = ½.b.a.sin C

B a

C

h

b

c

A

More Special Results: Equation: cos (x – y) = cos x.cos y + sin x.sin y Proof: From the unit circle: P

Q y

  A x O x B At point Q(x, y): (1) cos  = x (2) sin  = y  Q(cos , sin )

At point P( x, y): (1) cos(180  ) =  x  cos  =  x cos  = x (2) sin (180  ) = y sin  = y  P(cos , sin )

Now, using the distance formula: PQ2 = (cos   cos )2 + (sin   sin )2 PQ2 = cos2   2.cos  .cos  + cos2  + sin2   2.sin  .sin  + sin2  Luke Cole

Page 6

GIKPKC7 94107

Trigonometry

Page 7

PQ2 = 2 – 2(cos  .cos  + sin  .sin ) …(1) Using the cos Rule: PQ2 = 12 + 12 – 2.1.1.cos (  ) PQ2 = 2 – 2.cos (  ) …(2) So, (1) = (2): 2 – 2(cos  .cos  + sin  .sin ) = 2 – 2.cos (  )  cos (  ) = cos  .cos  + sin  .sin  Now let  = x &  = y: cos (x – y) = cos x.cos y + sin x.sin y …[1] Equation: cos (x + y) = cos x.cos y  sin x.sin y Proof: From [1] let y =  y: cos [x – ( y)] = cos x.cos ( y) + sin x.sin ( y)  cos (x + y) = cos x.cos y  sin x.sin y

Equation: sin (x + y) = sin x.cos y + cos x.sin y Proof: From [1] let x = 90 – x: cos [(90 – x) – y] = cos (90 – x).cos y + sin (90 – x).sin y cos [90 – (x + y)] = sin x.cos y + cos x.sin y  sin (x + y) = sin x.cos y + cos x.sin y …[2] Equation: sin (x – y) = sin x.cos y – cos x.sin y Proof: From [2] let y =  y: sin [x + ( y)] = sin x.cos ( y) + cos x. sin ( y)  sin (x – y) = sin x.cos y – cos x.sin y Equation:

tan  x  y  

tan x  tan y 1  tan x . tan y

Proof: Since:

sin x  y  cos  x  y  sin x. cos y  cos x . sin y = cos x .cos y  sin x . sin y Divide by cos x. cos y: Luke Cole tan x  y  

Page 7

GIKPKC7 94107

Trigonometry

Page 8

sin x .cos y  cos x. sin y cos x .cos y cos x .cos y  sin x . sin y cos x .cos y tan x  tan y tan x  y   1  tan x. tan y tan x  y  



tan  x  y  

Equation:

…[3]

tan x  tan y 1  tan x . tan y

Proof: From [3] let y =  y:

tan x  tan y  1  tan x .tan  y  tan x  tan y tan x  y   1  tan x. tan y tanx   y  



Ratios of Double Angles: Equation: sin (2.x) = 2.sin x.cos x Proof: Since, sin (x + y) = sin x.cos y + cos x.sin y sin (x + x) = sin x.cos x + cos x.sin x = 2.sin x.cos x  sin (2.x) = 2.sin x.cos x Equation:

cos (2.x) = cos2 x  sin2 x = 2.cos2 x  1 = 1 – 2.sin2 x

Proof: Since, cos (x + y) = cos x.cos y  sin x.sin y cos (x + x) = cos x.cos x  sin x.sin x = cos2 x  sin2 x  cos (2.x) = cos2 x  sin2 x Formula: Proof: Since, tan x  y  

tan 2.x  

2. tan x 1  tan 2 x

tan x  tan y 1  tan x. tan y Luke Cole

Page 8

GIKPKC7 94107

Trigonometry

Page 9

tan x  tan x 1  tan x. tan x 2.tan x = 1  tan 2 x 2.tan x tan 2.x   1  tan 2 x tan x  x  



Ratios in Terms of “T Results”: Equation:

sin x 

2.t 1 t

Proof: Since, sin (2.x) = 2.sin x.cos x x x sin x  2. sin .cos 2 2 t 1 . = 2. 2 2 t 1 t 1 2.t sin x   1 t2 Equation:

cos x 

where, t  tan

2

t2  1 x 2

1t2

t 1

where, t  tan

2

1t Proof: Still working with the above triangle Since, cos (2.x) = cos2 x  sin2 x x x cos x  cos 2  sin 2 2 2

Luke Cole

x 2

x 2

Page 9

GIKPKC7 94107

Trigonometry 2

 1   t     cos x     2  2 t  1 t  1     =



1

t2 1 1 t2 cos x  1 t2

Equation:



2

Page 10

Note: T-results will always solve any trigonometry equations except when  = 180 (Since, tan 90 = Err)

t2 t2  1

tan x 

2.t 1 t2

where, t  tan

x 2

Proof: 2.tan x 1  tan 2 x x 2.tan 2 tan x  x 1  tan 2 2 2.t tan x  1 t2

Since, tan 2.x  



General Solutions 31/7/98 Equation:

sin  = sin  is  = 180  n + ( 1)n   n = Integer

Proof by e.g.: Find all the solutions for sin  



3 , here the domain is not restricted. 2

 = 60, 120,…… +  = 60, (180 – 60), (360 + 60), (540 – 60), …  can also be negative   = – (180 + 60), – (360 – 60), – [360 – (180 – 60)], … = (– 180 – 60), (– 360 + 60), (– 540 – 60), … The general solution for sin  = sin 60 is:  = 180  n + (– 1)n  60

Equation:

cos  = cos  is  = 360  n   n = Integer

Equation:

tan  = tan  is  = 180  n +  n = Integer Luke Cole

Page 10

GIKPKC7 94107

Trigonometry

Page 11

Note: These above equations are for +ve angles, change the equation to suite you need if the angle is –ve.

Trigonometry Graphs 16/9/98

y = sin x: 1 

1 Period: Amplitude:

T = 2. rad yA = 1 unit

y = cos x:

Luke Cole

Page 11

GIKPKC7 94107

Trigonometry

Page 12

Luke Cole

Page 12

1 

1 Period: Amplitude:

T = 2. rad yA = 1 unit

y = tan x: 1 

1

Period: Asymptote:

T =  rad  x  rad 2

Related Documents

Trigonometry
June 2020 9
Trigonometry
June 2020 13
Trigonometry
May 2020 28
Trigonometry
May 2020 23
Trigonometry
June 2020 2
Trigonometry
June 2020 2