GIKPKC7 94107
Trigonometry
Page 1
Introduction 3/6/98
Trigonometric Ratios: Sine Cosine Tangent
O H A cos H O tan A
(90 )
sin
O = Opposite Hint: ‘O’ on top, ‘H’ below, ‘A’ where it fits.
H = Hypotenuse
A = Adjacent
Inverse Ratios: Cosecant Secant Cotangent
1 H sin O 1 H sec cos A 1 A cot tan O cos ec
Complementary Angles: A sin 90 H O cos 90 H A tan 90 O cos ec90
H A
H O A cot 90 O sec90
Results from Complementary Angles and Inverse Ratios: sin = cos (90 ) cos = sin (90 ) tan = cot (90 ) cosec = sec (90 ) cot = tan (90 ) sec = cosec (90 )
Luke Cole
Page 1
GIKPKC7 94107
Trigonometry
Page 2
Exact Ratios: Hint: 1
0
30
45
60
90
0
1 2
1
3 2 1 2
1
3
E
2 = 0.707 … 3 2 sin cos
1
tan
0
2 1
3 2 1
2 1
0
3
Angle of Depression & Elevation: 1
1 = Depression 2 = Elevation 1 = 2
2
Bearings: Compass
N A N 50 E B S 65 W
50 A W
E 25 B S N 50 A
W
E 25 B
Luke S Cole
Page 2
GIKPKC7 94107
Trigonometry
True North
Page 3
N 0
A 50 B 245
50 A 270
90 25 B 180
Angles of Any Magnitude: y 90 2nd Quadrant 1st Quadrant S A (sin +ve) (All +ve) x 180 0 T C (tan +ve) (cos +ve) 3rd Quadrant 4th Quadrant
Hint: All Stations Too Central
270 Proof: Construct a unit circle [r = 1, c(0, 0)]: 1st Quadrant y P(x, y)
x
x
y y 1 x cos x 1 y tan x All +ve sin
2nd Quadrant y P(x, y)
y y 1 x cos 180 x 1 y tan 180 x sin +ve sin 180
Luke Cole
Page 3
GIKPKC7 94107
Trigonometry
3rd Quadrant
4th Quadrant
x
Page 4
P(x, y)
x P(x, y)
y
y y sin 180 y 1 x cos 180 x 1 y y tan 180 x x tan +ve
y y 1 x cos 360 x 1 y tan 360 x cos +ve
sin 360
Trigonometric Identities
10/6/98
From the Unit Circle: ¼ of it:
1
y x
Equation:
tan
Proof: From unit circle: sin = y …(1) cos = x …(2) y tan …(3) x Sub (1) & (2) into (3): sin tan cos Equation: Proof: Using Pythagoras: x2 + y2 = 12
sin cos
sin2 + cos2 = 1
Luke Cole
Page 4
GIKPKC7 94107
Trigonometry
sin2 + cos2 = 1
Page 5
…[1]
Equation: cosec2 cot2 = 1 Proof: Divide [1] by sin2 : sin 2 cos 2 1 2 2 sin sin sin 2 cosec2 cot2 = 1 Equation: sec2 tan2 = 1 Proof: Divide [1] by cos2 : sin 2 cos 2 1 2 2 cos cos cos 2 sec2 tan2 = 1
Sine Rule: Equation: Proof:
sin A sin B a b
h c h = c.sin B h sin C b h = b.sin C So, (1) = (2): c.sin B = b.sin C sin B sin C b c Here, sin B
A
…(1) c
h
b
…(2) B
a
C
Cosine Rule: Equation:
a2 = b2 +c2 – 2.b.c.cosA
Proof:
Luke Cole
or
cos A
b2 c 2 a 2 2.b .c
Page 5
GIKPKC7 94107 In ACD, In BCD, In ACD, So,
Trigonometry
x2 + p2 = b2 (c – x)2 + p2 = a2 c2 – 2.c.x + b2 = a2 x cos A b x = b.cosA a2 = b2 + c2 – 2.b.c.cosA
Page 6
C b
A
x
p
a
D c x B c
Area of a Triangle Rule: Equation: A = ½.a.b.sinC Proof: Since, A = ½.b.h h And, sin C a h = a.sin C A = ½.b.a.sin C
B a
C
h
b
c
A
More Special Results: Equation: cos (x – y) = cos x.cos y + sin x.sin y Proof: From the unit circle: P
Q y
A x O x B At point Q(x, y): (1) cos = x (2) sin = y Q(cos , sin )
At point P( x, y): (1) cos(180 ) = x cos = x cos = x (2) sin (180 ) = y sin = y P(cos , sin )
Now, using the distance formula: PQ2 = (cos cos )2 + (sin sin )2 PQ2 = cos2 2.cos .cos + cos2 + sin2 2.sin .sin + sin2 Luke Cole
Page 6
GIKPKC7 94107
Trigonometry
Page 7
PQ2 = 2 – 2(cos .cos + sin .sin ) …(1) Using the cos Rule: PQ2 = 12 + 12 – 2.1.1.cos ( ) PQ2 = 2 – 2.cos ( ) …(2) So, (1) = (2): 2 – 2(cos .cos + sin .sin ) = 2 – 2.cos ( ) cos ( ) = cos .cos + sin .sin Now let = x & = y: cos (x – y) = cos x.cos y + sin x.sin y …[1] Equation: cos (x + y) = cos x.cos y sin x.sin y Proof: From [1] let y = y: cos [x – ( y)] = cos x.cos ( y) + sin x.sin ( y) cos (x + y) = cos x.cos y sin x.sin y
Equation: sin (x + y) = sin x.cos y + cos x.sin y Proof: From [1] let x = 90 – x: cos [(90 – x) – y] = cos (90 – x).cos y + sin (90 – x).sin y cos [90 – (x + y)] = sin x.cos y + cos x.sin y sin (x + y) = sin x.cos y + cos x.sin y …[2] Equation: sin (x – y) = sin x.cos y – cos x.sin y Proof: From [2] let y = y: sin [x + ( y)] = sin x.cos ( y) + cos x. sin ( y) sin (x – y) = sin x.cos y – cos x.sin y Equation:
tan x y
tan x tan y 1 tan x . tan y
Proof: Since:
sin x y cos x y sin x. cos y cos x . sin y = cos x .cos y sin x . sin y Divide by cos x. cos y: Luke Cole tan x y
Page 7
GIKPKC7 94107
Trigonometry
Page 8
sin x .cos y cos x. sin y cos x .cos y cos x .cos y sin x . sin y cos x .cos y tan x tan y tan x y 1 tan x. tan y tan x y
tan x y
Equation:
…[3]
tan x tan y 1 tan x . tan y
Proof: From [3] let y = y:
tan x tan y 1 tan x .tan y tan x tan y tan x y 1 tan x. tan y tanx y
Ratios of Double Angles: Equation: sin (2.x) = 2.sin x.cos x Proof: Since, sin (x + y) = sin x.cos y + cos x.sin y sin (x + x) = sin x.cos x + cos x.sin x = 2.sin x.cos x sin (2.x) = 2.sin x.cos x Equation:
cos (2.x) = cos2 x sin2 x = 2.cos2 x 1 = 1 – 2.sin2 x
Proof: Since, cos (x + y) = cos x.cos y sin x.sin y cos (x + x) = cos x.cos x sin x.sin x = cos2 x sin2 x cos (2.x) = cos2 x sin2 x Formula: Proof: Since, tan x y
tan 2.x
2. tan x 1 tan 2 x
tan x tan y 1 tan x. tan y Luke Cole
Page 8
GIKPKC7 94107
Trigonometry
Page 9
tan x tan x 1 tan x. tan x 2.tan x = 1 tan 2 x 2.tan x tan 2.x 1 tan 2 x tan x x
Ratios in Terms of “T Results”: Equation:
sin x
2.t 1 t
Proof: Since, sin (2.x) = 2.sin x.cos x x x sin x 2. sin .cos 2 2 t 1 . = 2. 2 2 t 1 t 1 2.t sin x 1 t2 Equation:
cos x
where, t tan
2
t2 1 x 2
1t2
t 1
where, t tan
2
1t Proof: Still working with the above triangle Since, cos (2.x) = cos2 x sin2 x x x cos x cos 2 sin 2 2 2
Luke Cole
x 2
x 2
Page 9
GIKPKC7 94107
Trigonometry 2
1 t cos x 2 2 t 1 t 1 =
1
t2 1 1 t2 cos x 1 t2
Equation:
2
Page 10
Note: T-results will always solve any trigonometry equations except when = 180 (Since, tan 90 = Err)
t2 t2 1
tan x
2.t 1 t2
where, t tan
x 2
Proof: 2.tan x 1 tan 2 x x 2.tan 2 tan x x 1 tan 2 2 2.t tan x 1 t2
Since, tan 2.x
General Solutions 31/7/98 Equation:
sin = sin is = 180 n + ( 1)n n = Integer
Proof by e.g.: Find all the solutions for sin
3 , here the domain is not restricted. 2
= 60, 120,…… + = 60, (180 – 60), (360 + 60), (540 – 60), … can also be negative = – (180 + 60), – (360 – 60), – [360 – (180 – 60)], … = (– 180 – 60), (– 360 + 60), (– 540 – 60), … The general solution for sin = sin 60 is: = 180 n + (– 1)n 60
Equation:
cos = cos is = 360 n n = Integer
Equation:
tan = tan is = 180 n + n = Integer Luke Cole
Page 10
GIKPKC7 94107
Trigonometry
Page 11
Note: These above equations are for +ve angles, change the equation to suite you need if the angle is –ve.
Trigonometry Graphs 16/9/98
y = sin x: 1
1 Period: Amplitude:
T = 2. rad yA = 1 unit
y = cos x:
Luke Cole
Page 11
GIKPKC7 94107
Trigonometry
Page 12
Luke Cole
Page 12
1
1 Period: Amplitude:
T = 2. rad yA = 1 unit
y = tan x: 1
1
Period: Asymptote:
T = rad x rad 2