COMPLEX FUNCTIONS AND TRIGONOMETRIC IDENTITIES Revision E By Tom Irvine Email:
[email protected] September 14, 2006
Trigonometric Functions of Angle α
r y α x
sin (α ) =
y r
cos(α ) =
x r
tan (α ) =
y x
cot (α ) =
x y
sec(α ) =
r x
csc(α ) =
r y
(1) Trigonometric Expansion sin x = x −
cos x = 1 −
x3 x5 + −L 3! 5!
(2)
x2 x4 + −L 2! 4!
(3)
1
x3 x5 sinh x = x + + +L 3! 5!
(4)
x2 x4 cosh x = 1 + + +L 2! 4!
(5)
Exponential Expansion exp(x ) = 1 + x +
x 2 x3 + +L 2! 3!
(6)
Trigonometric Identities
cos 2 (α ) =
1 1 + cos(2α ) 2 2
(7)
sin 2 (α ) =
1 1 − cos(2α ) 2 2
(8)
cos(α )cos(β ) =
1 1 cos(α + β) + cos(α − β) 2 2
(9)
1 1 sin (α )sin (β) = − cos(α + β) + cos(α − β) 2 2
(10)
cos(α )sin (β) =
1 1 sin (α + β ) − sin (α − β ) 2 2
sin (α )cos(β) =
(11)
1 1 sin (α + β ) + sin (α − β) 2 2
(12)
sin 2 (α ) + cos 2 (α ) = 1
(13)
sec2 (α ) − tan 2 (α ) = 1
(14)
csc2 (α ) − cot 2 (α ) = 1
(15)
sin (2α ) = 2 sin (α )cos(α )
(16)
2
cos(2α ) = cos 2 (α ) − sin 2 (α )
(17)
sin (α ± β) = sin (α )cos(β) ± cos(α )sin (β)
(18)
cos(α ± β ) = cos(α )cos(β) m sin (α )sin (β )
(19)
tan (α ) ± tan (β) 1 m tan (α ) tan (β )
(20)
tan (α ± β ) =
A sin (αt ) + B cos(αt ) = A 2 + B2 [ sin (αt + θ) ]
where
⎛ B⎞ θ = arctan⎜ ⎟ ⎝A⎠ (21)
Euler's Equation exp(± jα ) = cos(α ) ± j sin (α )
(22)
sin (α ) =
exp( jα ) − exp(− jα ) 2j
(23)
cos(α ) =
exp( jα ) + exp(− jα ) 2
(24)
Hyperbolic Functions sinh (α ) =
exp(α ) − exp(− α ) 2
(25a)
cosh (α ) =
exp(α ) + exp(− α ) 2
(25b)
3
cosh 2 (α ) − sinh 2 (α ) = 1
(26)
Derivatives d (sin u ) = cos u du dx dx
(27)
d (cos u ) = − sin u du dx dx
(28)
d (tan u ) = sec2 u du dx dx
(29)
d (cot u ) = − csc u du dx dx
(30)
d (sec u ) = tan u sec u du dx dx
(31)
d (csc u ) = − csc u cot u du dx dx
(32)
d (sinh u ) = cosh u du dx dx
(33)
d (cosh u ) = sinh u du dx dx
(34)
d (tanh u ) = 1 2 du dx cosh u dx
(35)
Natural Logarithm of a Complex Number ⎛b⎞ ⎡ ⎤ ln (a + j b ) = ln ⎢ a 2 + b 2 exp( jθ)⎥ , θ = arctan⎜ ⎟ ⎣ ⎦ ⎝a⎠
4
(36)
⎡ ⎤ ln (a + j b ) = ln ⎢ a 2 + b 2 ⎥ + ln[ exp( jθ)] ⎣ ⎦
⎡ ⎤ ln(a + j b ) = ln ⎢ a 2 + b 2 ⎥ + jθ ⎣ ⎦
(37)
(38)
⎛b⎞ ⎡ ⎤ ln(a + j b ) = ln ⎢ a 2 + b 2 ⎥ + j arctan⎜ ⎟ ⎣ ⎦ ⎝a⎠
(39)
APPENDIX A The Square Root of a Complex Number. Consider x2 = a + jb
(A-1)
Thus x = ± a + jb
(A-2)
where a and b are real coefficients. Solve for x.
Let
x1 = (c + j d )
(A-3a)
x 2 = −(c + j d )
(A-3b)
where c and d are real coefficients. Substitute equation (A-3a) into (A-1).
(c + j d )2 = (a + j b )
(A-4)
5
(c + j d )(c + j d ) = (a + j b )
(A-5)
c 2 − d 2 + j (2cd ) = a + j b
(A-6)
Equation (A-6) implies two equations. The first is c2 − d 2 = a
(A-7)
The second implied equation is 2cd = b
(A-8)
Solve for d using equation (A-8). d=
b 2c
(A-9)
Substitute equation (A-9) into (A-8). 2 ⎛ b⎞ 2 c −⎜ ⎟ = a
(A-10)
2 ⎛ b⎞ 2 c −a −⎜ ⎟ = 0
(A-11)
⎝ 2c ⎠
⎝ 2c ⎠
Multiply through by 4c 2 .
4c 4 − 4ac2 − b 2 = 0
(A-12)
Apply the quadratic formula. c2 =
4a ± 16a 2 + 16b 2 8
(A-13)
c2 =
4a ± 4 a 2 + b 2 8
(A-14)
6
c2 =
c=
a ± a 2 + b2 2
(A-15)
a ± a 2 + b2 2
(A-16)
Require c to be real.
c=
a + a 2 + b2 2
(A-17)
Substitute equation (A-17) into (A-9). ⎧ ⎪ ⎪ ⎪ b d=⎨ ⎪ ⎡ a + a 2 + b2 ⎪2 ⎢ 2 ⎪ ⎢ ⎩ ⎣⎢
⎫ ⎪ ⎪ ⎪ ⎬ ⎤⎪ ⎥⎪ ⎥⎪ ⎦⎥ ⎭ (A-18)
⎧ ⎪ ⎪ ⎪ d=⎨ ⎪ ⎪ ⎪ ⎩
⎫ ⎪ ⎪ b ⎪ ⎬ ⎛ ⎞⎪ 2 2 4⎜ a + a + b ⎟ ⎝ ⎠⎪ ⎪ 2 ⎭ (A-19)
7
⎧ ⎪ ⎪ d=⎨ ⎪ ⎪⎩
⎫ ⎪ b ⎪ ⎬ ⎛ ⎞⎪ 2 2 2⎜ a + a + b ⎟ ⎝ ⎠ ⎪⎭
(A-20)
Substitute equations (A-20) and (A-17) into (A-3a). ⎧ 2 2 ⎪ a+ a +b x1 = ⎨ 2 ⎪ ⎩
⎫ ⎪ ⎬+ ⎪ ⎭
⎧ ⎪ ⎪ j⎨ ⎪ ⎪⎩
⎫ ⎪ b ⎪ ⎬ ⎞⎪ ⎛ 2 2 2⎜ a + a + b ⎟ ⎠ ⎪⎭ ⎝
(A-21a)
Substitute equations (A-20) and (A-17) into (A-3b). ⎧ 2 2 ⎪ a+ a +b x 2 = −⎨ 2 ⎪ ⎩
⎧ ⎫ ⎪ ⎪ ⎪ ⎬ − j⎨ ⎪ ⎪ ⎭ ⎪ ⎩
⎫ ⎪ b ⎪ ⎬ ⎛ ⎞⎪ 2 2 2⎜ a + a + b ⎟ ⎝ ⎠ ⎪⎭
(A-21b)
Note that equations (A-21a) and (A-21b) cannot be used for the special case: a < 0 and b = 0. For this special case, the roots are x =±j a
(A-21c)
Example x2 = 2 + j 7
(A-22)
x = ± 2+ j7
(A-23)
8
Solve for x. Use equation (A-21a). a=2
(A-24)
b=7
(A-25)
x 1 = 2.154 + j 1.625
(A-26)
x 2 = −2.154 − j 1.625
(A-27)
APPENDIX B Arbitrary Root of a Complex Number Let x n = [a + j b]
(B-1a)
x = [a + j b]1 / n
(B-1b)
The coefficients a and b are real numbers. The denominator of the exponent n is also real. Take the natural logarithm.
{
ln x = ln [a + j b]1 / n
}
(B-2)
ln x =
1 ln [a + j b] n
(B-3)
ln x =
1 ⎡ 2 b ⎞⎤ ⎛ ln ⎢ a + b 2 exp⎜ j arctan ⎟⎥ n ⎣ a ⎠⎦ ⎝
(B-4)
ln x =
1 ⎡ 2 b ⎞⎤ ⎤ 1 ⎡ ⎛ ln ⎢ a + b 2 ⎥ + ln ⎢exp⎜ j arctan ⎟⎥ n ⎣ a ⎠⎦ ⎦ n ⎣ ⎝
9
(B-5)
1 ⎤ ⎡ 1 b 2 2 ⎢ 2 ln x = ln a + b n ⎥ + j arctan ⎢ ⎥ n a ⎢⎣ ⎥⎦
)
(
(B-6)
1 ⎤ ⎫ ⎧ ⎡ b 1 ⎪ ⎪ ⎢ 2 2 exp{ln x} = exp⎨ln a + b 2n ⎥ + j arctan ⎬ ⎢ ⎥ a⎪ n ⎪ ⎣⎢ ⎦⎥ ⎭ ⎩
)
(
(B-7)
1 ⎤⎫ ⎧ ⎡ b⎫ ⎪ ⎪ ⎢ 2 ⎧ 1 2 x = exp⎨ln a + b 2n ⎥ ⎬ exp⎨ j arctan ⎬ ⎥⎪ a⎭ ⎩ n ⎪ ⎢⎣⎢ ⎦⎥ ⎭ ⎩
)
(
)
(
(B-8)
1 b⎫ ⎧ 1 2 2 x = a + b 2n exp⎨ j arctan ⎬
(
)
(B-9)
a⎭
⎩ n
1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 2 2 x = a + b 2n ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬
⎩
⎝n
a⎠
⎝n
a ⎠⎭
(B-10)
Note that equation (B-10) could be used for the special case of a square root.
APPENDIX C Cube Root of a Complex Number Consider x3 = a + j b
(C-1)
x = [a + j b]1 / 3
(C-2)
Equation (C-1) has three roots. The method in Appendix B yields the following formula for one of the cube roots.
10
1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 x 1= a 2 + b 2 6 ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬
)
(
⎩
a⎠
⎝3
⎝3
a ⎠⎭
(C-3)
Rearrange equation (C-1). x3 − a − j b = 0
(C-4)
Devise an equation for finding the other two roots.
x 3 − a − j b = (x − x1 )(x − x 2 )(x − x 3 )
(C-5)
Expand the right-hand-side.
[
]
x 3 − a − j b = x 2 − (x1 + x 2 )x + x1x 2 (x − x 3 )
[ ] [ ] x 3 − a − j b = [x 3 − (x1 + x 2 )x 2 + x1x 2 x ]− [x 3x 2 − x 3 (x1 + x 2 )x + x1x 2 x 3 ] x 3 − a − j b = [x 3 − (x1 + x 2 )x 2 + x1x 2 x ]+ [− x 3x 2 + x 3 (x1 + x 2 )x − x1x 2 x 3 ] x 3 − a − j b = [x 3 − (x1 + x 2 + x 3 )x 2 + (x1x 2 + x1x 3 + x 2 x 3 )x − x1x 2 x 3 ] x 3 − a − j b = x 2 − (x1 + x 2 )x + x1x 2 (x ) + x 2 − (x1 + x 2 )x + x1x 2 (− x 3 )
(C-6) (C-7) (C-8) (C-9) (C-10)
Equation (C-10) implies three separate equations.
(x1 + x 2 + x3 ) = 0
(C-11)
(x1x 2 + x1x3 + x 2x3 ) = 0
(C-12)
− x1x 2 x 3 = −a − j b
(C-13)
Continue with equation (C-11). x 2 = − x1 − x 3
(C-14)
11
Substitute equation (C-14) into (C-12).
(x1(− x1 − x 3 ) + x1x3 + (− x1 − x3 )x3 ) = 0
(C-15)
− x12 − x1x 3 + x1x 3 − x1x 3 − x 32 = 0
(C-16)
− x12 − x1x 3 − x 32 = 0
(C-17)
x 32 + x1x 3 + x12 = 0
(C-18)
Use the quadratic formula. − x1 ± x12 − 4x12 x3 = 2 x3 =
(C-19)
− x1 ± − 3x12 2
(C-20)
− x1 ± x1 − 3 2
(C-21)
x3 =
⎡−1± j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-22)
⎡−1− j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-23)
Choose
Recall equation (C-14). x 2 = − x1 − x 3
(C-24)
⎡−1− j 3 ⎤ x 2 = − x1 − x1 ⎢ ⎥ 2 ⎣ ⎦
(C-25)
12
⎧⎪ ⎡ − 1 − j 3 ⎤ ⎫⎪ x 2 = x1⎨−1 − ⎢ ⎥⎬ 2 ⎪⎩ ⎣ ⎦ ⎪⎭
(C-26)
⎧⎪ ⎡1 + j 3 ⎤ ⎫⎪ x 2 = x1⎨−1 + ⎢ ⎥⎬ ⎪⎩ ⎣ 2 ⎦ ⎪⎭
(C-27)
⎧ 2 1+ j 3 ⎫ x 2 = x1 ⎨− + ⎬ 2 ⎭ ⎩ 2
(C-28)
⎡−1+ j 3 ⎤ x 2 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-29)
The roots x2 and x3 thus form a complex conjugate pair. Summarize the roots. 1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 2 2 x 1= a + b 6 ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬
(
)
⎩
⎝3
⎝3
a⎠
a ⎠⎭
(C-30)
⎡−1+ j 3 ⎤ x 2 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-31)
⎡−1− j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-32)
Example Solve for x. x3 = 2 + j 7
(C-33)
x = [2 + j 7]1 / 3
(C-34)
a=2
(C-35)
13
b=7
(C-36)
n=3
(C-37)
There are three roots. The first root is 1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 2 2 x 1= a + b 6 ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬
(
)
⎩
⎝3
⎝3
a⎠
a ⎠⎭
(C-38)
x1 = 1.938 [ 0.909 + j 418]
(C-39)
x1 = 1.761 + j 0.809
(C-40)
The second root is a coordinate transformation of the first root. ⎡−1+ j 3 ⎤ x 2 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-41)
⎡−1+ j 3 ⎤ x 2 = [1.762 + j 0.809] ⎢ ⎥ 2 ⎣ ⎦
(C-42)
x 2 = − 1.581 + j1.120
(C-43)
⎡−1− j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦
(C-44)
⎡−1− j 3 ⎤ x 3 = [1.761 + j 0.809]⎢ ⎥ 2 ⎣ ⎦
(C-45)
x 3 = −0.180 − j1.930
(C-46)
14
In summary, the cube roots of (2 + j 7) are x1 = 1.761 + j 0.809
(C-47)
x 2 = − 1.581 + j1.120
(C-48)
x 3 = −0.180 − j1.930
(C-49)
APPENDIX D Derivation of the Quadratic Formula
ax 2 + bx + c = 0
(D-1)
x 2 + (b / a )x + (c / a ) = 0
(D-2)
b ⎞2 b2 c ⎛ x + + =0 ⎜ ⎟ − 2 2a ⎠ a ⎝ 4a
(D-3)
b ⎞2 b2 c ⎛ x + = − ⎜ ⎟ 2 2a ⎠ a ⎝ 4a
(D-4)
b ⎞ 2 b 2 − 4ac ⎛ ⎜x + ⎟ = 2a ⎠ ⎝ 4a 2
(D-5)
b ⎞ b 2 − 4ac ⎛ ⎜x + ⎟ = ± 2a ⎠ ⎝ 4a 2
(D-6)
15
b ⎞ ± b 2 − 4ac ⎛ ⎜x + ⎟ = 2a ⎠ 2a ⎝
(D-7)
b 2 − 4ac 2a
(D-8)
− b ± b 2 − 4ac 2a
(D-9)
b x= − ± 2a
x=
16