Trigonometry

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trigonometry as PDF for free.

More details

  • Words: 2,498
  • Pages: 16
COMPLEX FUNCTIONS AND TRIGONOMETRIC IDENTITIES Revision E By Tom Irvine Email: [email protected] September 14, 2006

Trigonometric Functions of Angle α

r y α x

sin (α ) =

y r

cos(α ) =

x r

tan (α ) =

y x

cot (α ) =

x y

sec(α ) =

r x

csc(α ) =

r y

(1) Trigonometric Expansion sin x = x −

cos x = 1 −

x3 x5 + −L 3! 5!

(2)

x2 x4 + −L 2! 4!

(3)

1

x3 x5 sinh x = x + + +L 3! 5!

(4)

x2 x4 cosh x = 1 + + +L 2! 4!

(5)

Exponential Expansion exp(x ) = 1 + x +

x 2 x3 + +L 2! 3!

(6)

Trigonometric Identities

cos 2 (α ) =

1 1 + cos(2α ) 2 2

(7)

sin 2 (α ) =

1 1 − cos(2α ) 2 2

(8)

cos(α )cos(β ) =

1 1 cos(α + β) + cos(α − β) 2 2

(9)

1 1 sin (α )sin (β) = − cos(α + β) + cos(α − β) 2 2

(10)

cos(α )sin (β) =

1 1 sin (α + β ) − sin (α − β ) 2 2

sin (α )cos(β) =

(11)

1 1 sin (α + β ) + sin (α − β) 2 2

(12)

sin 2 (α ) + cos 2 (α ) = 1

(13)

sec2 (α ) − tan 2 (α ) = 1

(14)

csc2 (α ) − cot 2 (α ) = 1

(15)

sin (2α ) = 2 sin (α )cos(α )

(16)

2

cos(2α ) = cos 2 (α ) − sin 2 (α )

(17)

sin (α ± β) = sin (α )cos(β) ± cos(α )sin (β)

(18)

cos(α ± β ) = cos(α )cos(β) m sin (α )sin (β )

(19)

tan (α ) ± tan (β) 1 m tan (α ) tan (β )

(20)

tan (α ± β ) =

A sin (αt ) + B cos(αt ) = A 2 + B2 [ sin (αt + θ) ]

where

⎛ B⎞ θ = arctan⎜ ⎟ ⎝A⎠ (21)

Euler's Equation exp(± jα ) = cos(α ) ± j sin (α )

(22)

sin (α ) =

exp( jα ) − exp(− jα ) 2j

(23)

cos(α ) =

exp( jα ) + exp(− jα ) 2

(24)

Hyperbolic Functions sinh (α ) =

exp(α ) − exp(− α ) 2

(25a)

cosh (α ) =

exp(α ) + exp(− α ) 2

(25b)

3

cosh 2 (α ) − sinh 2 (α ) = 1

(26)

Derivatives d (sin u ) = cos u du dx dx

(27)

d (cos u ) = − sin u du dx dx

(28)

d (tan u ) = sec2 u du dx dx

(29)

d (cot u ) = − csc u du dx dx

(30)

d (sec u ) = tan u sec u du dx dx

(31)

d (csc u ) = − csc u cot u du dx dx

(32)

d (sinh u ) = cosh u du dx dx

(33)

d (cosh u ) = sinh u du dx dx

(34)

d (tanh u ) = 1 2 du dx cosh u dx

(35)

Natural Logarithm of a Complex Number ⎛b⎞ ⎡ ⎤ ln (a + j b ) = ln ⎢ a 2 + b 2 exp( jθ)⎥ , θ = arctan⎜ ⎟ ⎣ ⎦ ⎝a⎠

4

(36)

⎡ ⎤ ln (a + j b ) = ln ⎢ a 2 + b 2 ⎥ + ln[ exp( jθ)] ⎣ ⎦

⎡ ⎤ ln(a + j b ) = ln ⎢ a 2 + b 2 ⎥ + jθ ⎣ ⎦

(37)

(38)

⎛b⎞ ⎡ ⎤ ln(a + j b ) = ln ⎢ a 2 + b 2 ⎥ + j arctan⎜ ⎟ ⎣ ⎦ ⎝a⎠

(39)

APPENDIX A The Square Root of a Complex Number. Consider x2 = a + jb

(A-1)

Thus x = ± a + jb

(A-2)

where a and b are real coefficients. Solve for x.

Let

x1 = (c + j d )

(A-3a)

x 2 = −(c + j d )

(A-3b)

where c and d are real coefficients. Substitute equation (A-3a) into (A-1).

(c + j d )2 = (a + j b )

(A-4)

5

(c + j d )(c + j d ) = (a + j b )

(A-5)

c 2 − d 2 + j (2cd ) = a + j b

(A-6)

Equation (A-6) implies two equations. The first is c2 − d 2 = a

(A-7)

The second implied equation is 2cd = b

(A-8)

Solve for d using equation (A-8). d=

b 2c

(A-9)

Substitute equation (A-9) into (A-8). 2 ⎛ b⎞ 2 c −⎜ ⎟ = a

(A-10)

2 ⎛ b⎞ 2 c −a −⎜ ⎟ = 0

(A-11)

⎝ 2c ⎠

⎝ 2c ⎠

Multiply through by 4c 2 .

4c 4 − 4ac2 − b 2 = 0

(A-12)

Apply the quadratic formula. c2 =

4a ± 16a 2 + 16b 2 8

(A-13)

c2 =

4a ± 4 a 2 + b 2 8

(A-14)

6

c2 =

c=

a ± a 2 + b2 2

(A-15)

a ± a 2 + b2 2

(A-16)

Require c to be real.

c=

a + a 2 + b2 2

(A-17)

Substitute equation (A-17) into (A-9). ⎧ ⎪ ⎪ ⎪ b d=⎨ ⎪ ⎡ a + a 2 + b2 ⎪2 ⎢ 2 ⎪ ⎢ ⎩ ⎣⎢

⎫ ⎪ ⎪ ⎪ ⎬ ⎤⎪ ⎥⎪ ⎥⎪ ⎦⎥ ⎭ (A-18)

⎧ ⎪ ⎪ ⎪ d=⎨ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ b ⎪ ⎬ ⎛ ⎞⎪ 2 2 4⎜ a + a + b ⎟ ⎝ ⎠⎪ ⎪ 2 ⎭ (A-19)

7

⎧ ⎪ ⎪ d=⎨ ⎪ ⎪⎩

⎫ ⎪ b ⎪ ⎬ ⎛ ⎞⎪ 2 2 2⎜ a + a + b ⎟ ⎝ ⎠ ⎪⎭

(A-20)

Substitute equations (A-20) and (A-17) into (A-3a). ⎧ 2 2 ⎪ a+ a +b x1 = ⎨ 2 ⎪ ⎩

⎫ ⎪ ⎬+ ⎪ ⎭

⎧ ⎪ ⎪ j⎨ ⎪ ⎪⎩

⎫ ⎪ b ⎪ ⎬ ⎞⎪ ⎛ 2 2 2⎜ a + a + b ⎟ ⎠ ⎪⎭ ⎝

(A-21a)

Substitute equations (A-20) and (A-17) into (A-3b). ⎧ 2 2 ⎪ a+ a +b x 2 = −⎨ 2 ⎪ ⎩

⎧ ⎫ ⎪ ⎪ ⎪ ⎬ − j⎨ ⎪ ⎪ ⎭ ⎪ ⎩

⎫ ⎪ b ⎪ ⎬ ⎛ ⎞⎪ 2 2 2⎜ a + a + b ⎟ ⎝ ⎠ ⎪⎭

(A-21b)

Note that equations (A-21a) and (A-21b) cannot be used for the special case: a < 0 and b = 0. For this special case, the roots are x =±j a

(A-21c)

Example x2 = 2 + j 7

(A-22)

x = ± 2+ j7

(A-23)

8

Solve for x. Use equation (A-21a). a=2

(A-24)

b=7

(A-25)

x 1 = 2.154 + j 1.625

(A-26)

x 2 = −2.154 − j 1.625

(A-27)

APPENDIX B Arbitrary Root of a Complex Number Let x n = [a + j b]

(B-1a)

x = [a + j b]1 / n

(B-1b)

The coefficients a and b are real numbers. The denominator of the exponent n is also real. Take the natural logarithm.

{

ln x = ln [a + j b]1 / n

}

(B-2)

ln x =

1 ln [a + j b] n

(B-3)

ln x =

1 ⎡ 2 b ⎞⎤ ⎛ ln ⎢ a + b 2 exp⎜ j arctan ⎟⎥ n ⎣ a ⎠⎦ ⎝

(B-4)

ln x =

1 ⎡ 2 b ⎞⎤ ⎤ 1 ⎡ ⎛ ln ⎢ a + b 2 ⎥ + ln ⎢exp⎜ j arctan ⎟⎥ n ⎣ a ⎠⎦ ⎦ n ⎣ ⎝

9

(B-5)

1 ⎤ ⎡ 1 b 2 2 ⎢ 2 ln x = ln a + b n ⎥ + j arctan ⎢ ⎥ n a ⎢⎣ ⎥⎦

)

(

(B-6)

1 ⎤ ⎫ ⎧ ⎡ b 1 ⎪ ⎪ ⎢ 2 2 exp{ln x} = exp⎨ln a + b 2n ⎥ + j arctan ⎬ ⎢ ⎥ a⎪ n ⎪ ⎣⎢ ⎦⎥ ⎭ ⎩

)

(

(B-7)

1 ⎤⎫ ⎧ ⎡ b⎫ ⎪ ⎪ ⎢ 2 ⎧ 1 2 x = exp⎨ln a + b 2n ⎥ ⎬ exp⎨ j arctan ⎬ ⎥⎪ a⎭ ⎩ n ⎪ ⎢⎣⎢ ⎦⎥ ⎭ ⎩

)

(

)

(

(B-8)

1 b⎫ ⎧ 1 2 2 x = a + b 2n exp⎨ j arctan ⎬

(

)

(B-9)

a⎭

⎩ n

1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 2 2 x = a + b 2n ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬



⎝n

a⎠

⎝n

a ⎠⎭

(B-10)

Note that equation (B-10) could be used for the special case of a square root.

APPENDIX C Cube Root of a Complex Number Consider x3 = a + j b

(C-1)

x = [a + j b]1 / 3

(C-2)

Equation (C-1) has three roots. The method in Appendix B yields the following formula for one of the cube roots.

10

1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 x 1= a 2 + b 2 6 ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬

)

(



a⎠

⎝3

⎝3

a ⎠⎭

(C-3)

Rearrange equation (C-1). x3 − a − j b = 0

(C-4)

Devise an equation for finding the other two roots.

x 3 − a − j b = (x − x1 )(x − x 2 )(x − x 3 )

(C-5)

Expand the right-hand-side.

[

]

x 3 − a − j b = x 2 − (x1 + x 2 )x + x1x 2 (x − x 3 )

[ ] [ ] x 3 − a − j b = [x 3 − (x1 + x 2 )x 2 + x1x 2 x ]− [x 3x 2 − x 3 (x1 + x 2 )x + x1x 2 x 3 ] x 3 − a − j b = [x 3 − (x1 + x 2 )x 2 + x1x 2 x ]+ [− x 3x 2 + x 3 (x1 + x 2 )x − x1x 2 x 3 ] x 3 − a − j b = [x 3 − (x1 + x 2 + x 3 )x 2 + (x1x 2 + x1x 3 + x 2 x 3 )x − x1x 2 x 3 ] x 3 − a − j b = x 2 − (x1 + x 2 )x + x1x 2 (x ) + x 2 − (x1 + x 2 )x + x1x 2 (− x 3 )

(C-6) (C-7) (C-8) (C-9) (C-10)

Equation (C-10) implies three separate equations.

(x1 + x 2 + x3 ) = 0

(C-11)

(x1x 2 + x1x3 + x 2x3 ) = 0

(C-12)

− x1x 2 x 3 = −a − j b

(C-13)

Continue with equation (C-11). x 2 = − x1 − x 3

(C-14)

11

Substitute equation (C-14) into (C-12).

(x1(− x1 − x 3 ) + x1x3 + (− x1 − x3 )x3 ) = 0

(C-15)

− x12 − x1x 3 + x1x 3 − x1x 3 − x 32 = 0

(C-16)

− x12 − x1x 3 − x 32 = 0

(C-17)

x 32 + x1x 3 + x12 = 0

(C-18)

Use the quadratic formula. − x1 ± x12 − 4x12 x3 = 2 x3 =

(C-19)

− x1 ± − 3x12 2

(C-20)

− x1 ± x1 − 3 2

(C-21)

x3 =

⎡−1± j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-22)

⎡−1− j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-23)

Choose

Recall equation (C-14). x 2 = − x1 − x 3

(C-24)

⎡−1− j 3 ⎤ x 2 = − x1 − x1 ⎢ ⎥ 2 ⎣ ⎦

(C-25)

12

⎧⎪ ⎡ − 1 − j 3 ⎤ ⎫⎪ x 2 = x1⎨−1 − ⎢ ⎥⎬ 2 ⎪⎩ ⎣ ⎦ ⎪⎭

(C-26)

⎧⎪ ⎡1 + j 3 ⎤ ⎫⎪ x 2 = x1⎨−1 + ⎢ ⎥⎬ ⎪⎩ ⎣ 2 ⎦ ⎪⎭

(C-27)

⎧ 2 1+ j 3 ⎫ x 2 = x1 ⎨− + ⎬ 2 ⎭ ⎩ 2

(C-28)

⎡−1+ j 3 ⎤ x 2 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-29)

The roots x2 and x3 thus form a complex conjugate pair. Summarize the roots. 1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 2 2 x 1= a + b 6 ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬

(

)



⎝3

⎝3

a⎠

a ⎠⎭

(C-30)

⎡−1+ j 3 ⎤ x 2 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-31)

⎡−1− j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-32)

Example Solve for x. x3 = 2 + j 7

(C-33)

x = [2 + j 7]1 / 3

(C-34)

a=2

(C-35)

13

b=7

(C-36)

n=3

(C-37)

There are three roots. The first root is 1 ⎧ ⎛1 b ⎞⎫ b⎞ ⎛1 2 2 x 1= a + b 6 ⎨cos⎜ arctan ⎟ + j sin ⎜ arctan ⎟⎬

(

)



⎝3

⎝3

a⎠

a ⎠⎭

(C-38)

x1 = 1.938 [ 0.909 + j 418]

(C-39)

x1 = 1.761 + j 0.809

(C-40)

The second root is a coordinate transformation of the first root. ⎡−1+ j 3 ⎤ x 2 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-41)

⎡−1+ j 3 ⎤ x 2 = [1.762 + j 0.809] ⎢ ⎥ 2 ⎣ ⎦

(C-42)

x 2 = − 1.581 + j1.120

(C-43)

⎡−1− j 3 ⎤ x 3 = x1 ⎢ ⎥ 2 ⎣ ⎦

(C-44)

⎡−1− j 3 ⎤ x 3 = [1.761 + j 0.809]⎢ ⎥ 2 ⎣ ⎦

(C-45)

x 3 = −0.180 − j1.930

(C-46)

14

In summary, the cube roots of (2 + j 7) are x1 = 1.761 + j 0.809

(C-47)

x 2 = − 1.581 + j1.120

(C-48)

x 3 = −0.180 − j1.930

(C-49)

APPENDIX D Derivation of the Quadratic Formula

ax 2 + bx + c = 0

(D-1)

x 2 + (b / a )x + (c / a ) = 0

(D-2)

b ⎞2 b2 c ⎛ x + + =0 ⎜ ⎟ − 2 2a ⎠ a ⎝ 4a

(D-3)

b ⎞2 b2 c ⎛ x + = − ⎜ ⎟ 2 2a ⎠ a ⎝ 4a

(D-4)

b ⎞ 2 b 2 − 4ac ⎛ ⎜x + ⎟ = 2a ⎠ ⎝ 4a 2

(D-5)

b ⎞ b 2 − 4ac ⎛ ⎜x + ⎟ = ± 2a ⎠ ⎝ 4a 2

(D-6)

15

b ⎞ ± b 2 − 4ac ⎛ ⎜x + ⎟ = 2a ⎠ 2a ⎝

(D-7)

b 2 − 4ac 2a

(D-8)

− b ± b 2 − 4ac 2a

(D-9)

b x= − ± 2a

x=

16

Related Documents

Trigonometry
June 2020 9
Trigonometry
June 2020 13
Trigonometry
May 2020 28
Trigonometry
May 2020 23
Trigonometry
June 2020 2
Trigonometry
June 2020 2