Trigonometri.docx

  • Uploaded by: Zulfa rizka
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trigonometri.docx as PDF for free.

More details

  • Words: 948
  • Pages: 3
4. TRIGONOMETRI I A.

Trigonometri Dasar   

B.

y r cos  = x r y tan  = x

sin  =

Perbandingan trigonometri sudut Istimewa (30º, 45º, 60º) Nilai perbandingan trigonometri sudut istimewa dapat dicari dengan menggunakan segitiga siku-siku istimewa (gambar. 1 dan gambar.2) sin cos Tan º 30

½

45 ½ 60

½ 3

2

½ 3

2

½ ½

1 3

3 1

3

gambar 1

gambar 2

C. Perbandingan Trigonometri sudut berelasi Perbandingan trigonometri sudut berelasi dapat dicari dengan menggunakan bantuan lingkaran satuan seperti pada gambar 3 1. Sudut berelasi (90º – ) a) sin(90º – ) = cos  b) cos(90º – ) = sin  c) tan(90º – ) = cot  2. Sudut berelasi (180º – ) a) sin(180º – ) = sin  b) cos(180º – ) = – cos  c) tan(180º – ) = – tan  3. Sudut berelasi (270º – ) a) sin(270º – ) = – cos  b) cos(270º – ) = – sin  c) tan(270º – ) = cot  4. Sudut berelasi (– ) a) sin(– ) = – sin  b) cos(– ) = cos  c) tan(– ) = – tan 

gambar 3

D.

Rumus–Rumus dalam Segitiga a b c 1. Aturan sinus : sin A  sin B  sin C

 2r

Aturan sinus digunakan apabila kondisi segitiganya adalah: 

b



b

 c a. 2 sudut dan satu sisi

b. 2 sisi dan satu sudut di depan sisi sisi

2. Aturan Kosinus : a2 = b2 + c2 – 2bc cos A Aturan kosinus digunakan jika kondisi segitiganya:

b

a

b 

c

c

a. sisi sisi sisi

b. sisi sudut sisi

3. Luas segitiga :  dengan kondisi “sisi sudut sisi”

a) L = ½ a · b sin C 2

b) L = c) L =

a  sin B  sin C 2 sin(B  C)

:  dengan kondisi “sudut sisi sudut”

s( s  a)( s  b)( s  c ) , s = ½(a + b + c)

:  dengan kondisi “sisi sisi sisi”

KUMPULAN SOAL-SOAL UN

1. UN 2011 PAKET 12 Dalam suatu lingkaran yang berjari-jari 8 cm, dibuat segi-8 beraturan. Panjang sisi segi-8 tersebut adalah …

2. UN 2011 PAKET 46 Diberikan segiempat ABCD seperti pada gambar! B 10 2

a. 128  64 3 cm 10 cm

b. 128  64 2 cm c. 128  16 2 cm d. 128  16 2 cm e. 128  16 3 cm Jawab : b

3. UN 2010 PAKET A/B Luas segi 12 beraturan dengan panjang jarijari lingkaran luar 8 cm adalah … a. 192 cm2 b. 172 cm2 c. 162 cm2 d. 148 cm2 e. 144 cm2 Jawab : a

cm

A

30 D

60 45 C

Panjang BC adalah … a. 4 2 cm d. 5 6 cm b. 6 2 cm

e. 7 6 cm

c. 7 3 cm

Jawab : d

4. UN 2010 PAKET B Diketahui segitiga PQR dengan P(1, 5, 1), Q(3, 4, 1), dan R(2, 2, 1). Besar sudut PQR adalah … a. 135 b. 90 c. 60 d. 45 e. 30 Jawab : b

5. UN 2009 PAKET A/B S R P Q

Diketahui segiempat PQRS dengan PS = 5cm, PQ = 12 cm, QR = 8cm, besar sudut SPQ = 90, dan besar sudut SQR = 150. Luas PQRS adalah … a. 46 cm2 b. 56 cm2 c. 100 cm2 d. 164 cm2 e. 184 cm2 Jawab : b 7. UN 2007 PAKET A Diketahui segitiga ABC dengan A(3, 1), B(5,2), dan C(1, 5). Besar sudut BAC adalah … a. 45 b. 60 c. 90 d. 120 e. 135 Jawab : c

6. UN 2008 PAKET A/B Diketahui  PQR dengan PQ = 464 2 m, PQR = 105º, dan RPQ = 30º. Panjang QR = … m a. 464 3 b. 464 c. 332 2 d. 232 2 e. 232 Jawab : b

8. UN 2007 PAKET A Sebuah kapal berlayar dari pelabuhan A ke pelabuhan B sejauh 60 mil dengan arah 40 dari A, kemudian berputar haluan dilanjutkan ke pelabuhan C sejauh 90 mil, dengan arah 160 dari B. Jarak terdekat dari pelabuhan A ke C adalah … mil a. 30 2 b. 30 5 c. 30 7 d. 30 10 e. 30 30

9. UN 2007 PAKET B Dua buah mobil A dan B, berangkat dari tempat yang sama. Arah mobil A dengan mobil B membentuk sudut 60. Jika kecepatan mobil A = 40 km/jam, mobil B = 50 km/jam, dan setelah 2 jam kedua mobil berhenti, maka jarak kedua mobil tersebut adalah … km a. 10 21 b. 15 21 c. 20 21 d. 10 61

Jawab : c 10. UN 2005 Diketahui segitiga ABC dengan panjang sisi a = 13 cm, b = 14 cm, dan c = 15 cm, panjang garis tinggi BD adalah … a. 7 cm b. 8 cm c. 10 cm d. 11 cm e. 12 cm Jawab : e

e. 20 61 Jawab : c

11. UAN 2003

12. EBTANAS 2002

Pada segitiga lancip ABC diketahui panjang sisi AC = 4cm, AB = 5 cm, dan cos B = 4 , 5

maka cos C = …

a.

3 5

b.

1 4

c.

3 4

d.

1 3 1 2

e.

7

7 7

Jawab : b

Diketahui segitiga ABC dengan panjang sisi AB = 3 cm, AC = 4 cm, dan CAB = 60. CD adalah tinggi segitiga ABC. Panjang CD = … cm a. 23 3

b. 3 c. 2 d. 32 3 e. 2 3 Jawab : e

More Documents from "Zulfa rizka"