Trigonometric Functions Vs Hyperbolic Functions

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trigonometric Functions Vs Hyperbolic Functions as PDF for free.

More details

  • Words: 2,318
  • Pages: 6
Trigonometric Functions vs Hyperbolic Functions Definitions ix

-ix

e x - e- x 2 x e + e- x cosh x = 2 sinh x tanh x = cosh x 1 csch x = sinh x 1 sech x = cosh x cosh x coth x = sinh x Inverse Hyperbolic Functions Expressed in Terms of Logarithmic Functions

e -e 2i ix e + e-ix cos x = 2 sin x tan x = cos x 1 csc x = sin x 1 sec x = cos x cos x cot x = sin x

sin x =

sinh x =

(

)

sinh-1 x = ln x + x 2 + 1 -¥ < x < ¥

(

)

cosh-1 x = ln x + x 2 -1

x ³ 1 ( cosh -1 x > 0 is principal value) 1 æ1 + x ö÷ tanh -1 x = ln çç ÷ 2 çè1- x ÷ø -1 < x < 1 æ1 ö 1 csch -1 x = ln ççç + 2 + 1÷÷÷ ÷ø x èç x x¹0 æ1 ö 1 sech -1 x = ln ççç + 2 -1÷÷÷ ÷ø çè x x 0 < x £ 1 ( sech -1 x > 0 is principal value) 1 æ x + 1ö÷ coth -1 x = ln çç ÷ 2 çè x -1÷ø x > 1 or x < -1 Relationship between Hyperbolic and Trigonometric Functions sin (ix ) = i sinh x sinh (ix ) = i sin x cos (ix) = cosh x

cosh (ix ) = cos x

tan (ix ) = i tanh x

tanh (ix ) = i tan x

csc (ix ) = -i csch x

csch (ix ) = -i csc x 1

sec (ix ) = sech x

sech (ix ) = sec x

cot (ix ) = -i coth x

coth (ix ) = -i cot x

Relationship between Inverse Hyperbolic and Inverse Trigonometric Functions sin -1 (ix ) = i sinh -1 x sinh -1 (ix ) = i sin -1 x

cos-1 x = i cosh-1 x tan -1 (ix ) = i tanh-1 x

cosh-1 x = i cos-1 x tanh -1 (ix ) = i tan-1 x

csc-1 (ix ) = -i csch -1 x

csch -1 (ix) = -i csc-1 x

sec-1 x = i sech-1 x cot -1 (ix ) = -i coth -1 x

sech -1 x = i sec-1 x coth -1 (ix ) = -i cot -1 x

Relationships among Trigonometric Relationships among Hyperbolic Functitons Functitons 2 2 cos x + sin x = 1 cosh 2 x - sinh 2 x = 1 sec 2 x - tan 2 x = 1 sech 2 x + tanh 2 x = 1 csc2 x - cot 2 x = 1 coth 2 x - csch 2 x = 1 Relations between Inverse Relations between Inverse Hyperbolic Trigonometric Functions Functions 1 1 csc-1 x = sin -1 csch-1 x = sinh -1 x x 1 1 sec-1 x = cos-1 sech -1 x = cosh -1 x x 1 1 cot -1 x = tan -1 coth -1 x = tanh -1 x x Negative Angle Formulas sin (-x ) = - sin x sinh (-x ) = - sinh x cos (-x ) = cos x

cosh (-x ) = cosh x

tan (-x ) = - tan x

tanh (-x ) = - tanh x

csc (-x ) = - csc x

csch (-x ) = - csch x

sec (-x) = sec x

sech (-x ) = sech x

cot (-x) = - cot x sin (-x ) = - sin -1

coth (-x) = - coth x -1

sinh -1 (-x ) = - sinh -1 x

x

cos-1 (-x ) = p - cos-1 x

cosh -1 (-x) = pi - cosh -1 x

tan -1 (-x ) = - tan -1 x

tanh -1 (-x ) = - tanh -1 x

cot -1 (-x) = p - cot -1 x

coth -1 (-x) = - coth -1 x

sec-1 (-x) = p - sec-1 x

sech -1 (-x) = pi - sech -1 x

csc-1 (-x ) = - csc-1 x

csch -1 (-x) = - csch -1 x

sin ( x  y )

Addition Formulas sinh ( x  y )

= sin x cos y  cos x sin y

= sinh x cosh y  cosh x sinh y 2

cos ( x  y )

cosh ( x  y )

= cos x cos y  sin x sin y

= cosh x cosh y  sinh x sinh y

tan ( x  y ) =

tanh ( x  y )

tan x  tan y 1  tan x tan y

=

cot ( x  y )

tanh x  tanh y 1  tanh x tanh y

coth ( x  y )

coth x coth y  1 coth y  coth x Half Angle Formulas x x 1- cos x cosh x -1 sinh =  sin =  2 2 2 2 (+ if x 2 is in quadrant I or II (+ if x > 0 =

cot x cot y  1 cot y  cot x

=

- if x 2 is in quadrant III or IV)

- if x < 0 )

x 1 + cos x cos =  2 2

cosh

x cosh x + 1 = 2 2

(+ if x 2 is in quadrant I or IV - if x 2 is in quadrant II or III)

x 1- cos x = 2 1 + cos x sin x 1- cos x = = 1 + cos x sin x = csc x - cot x (+ if x 2 is in quadrant I or III

x cosh x -1 = 2 cosh x + 1 sinh x cosh x -1 = = cosh x + 1 sinh x = coth x - csch x (+ if x > 0

tan

tanh

- if x 2 is in quadrant II or IV) - if x < 0 ) Multiple Angle Formulas sin 2 x = 2sin x cos x sinh 2 x = 2sinh x cosh x 2 2 cos 2 x = cos x - sin x cos 2 x = cosh 2 x + sinh 2 x

= 2 cos 2 x -1

= 2 cosh 2 x -1

= 1- 2sin 2 x 2 tan x tan 2 x = 1- tan 2 x sin 3 x = 3sin x - 4sin 3 x cos 3x = 4 cos3 x - 3cos x 3 tan x - tan 3 x tan 3x = 1- 3 tan 2 x sin 4 x = 4sin x cos x - 8sin 3 x cos x cos 4 x = 8cos 4 x - 8cos 2 x + 1 4 tan x - 4 tan 3 x tan 4 x = 1- 6 tan 2 x + tan 4 x

= 1 + 2sinh 2 x 2 tanh x tanh 2 x = 1 + tanh 2 x sinh 3 x = 3sinh x + 4sinh 3 x cos 3x = 4 cosh 3 x - 3cosh x 3 tanh x + tanh 3 x tanh 3 x = 1 + 3 tanh 2 x sinh 4 x = 8sinh 3 x cosh x + 4sinh x cosh x cosh 4 x = 8cosh 4 x - 8cosh 2 x + 1 4 tanh x + 4 tanh 3 x tanh 4 x = 1 + 6 tanh 2 x + tanh 4 x 3

Powers of Trigonometric Function 1 1 sin 2 x = - cos 2 x 2 2 1 1 cos 2 x = + cos 2 x 2 2 3 1 sin 3 x = sin x - sin 3 x 4 4 3 1 cos3 x = cos x + cos 3x 4 4 3 1 1 sin 4 x = - cos 2 x + cos 4 x 8 2 8 3 1 1 cos 4 x = + cos 2 x + cos 4 x 8 2 8 Sum, Difference and Product of Trigonometric Functions sin x + sin y

x+ y x- y cos 2 2 sin x - sin y x+ y x- y sin = 2 cos 2 2 cos x + cos y x+ y x- y cos = 2 cos 2 2 cos x - cos y x+ y x- y = 2sin sin 2 2 sin x sin y 1 = - éë cos ( x + y ) - cos ( x - y )ùû 2 cos x cos y = 2sin

1 = éë cos ( x + y ) + cos ( x - y )ùû 2 sin x cos y 1 = éësin ( x + y ) + sin ( x - y )ùû 2 cos x sin y 1 = éësin ( x + y ) - sin ( x - y )ùû 2 d sin x = cos x dx d cos x = - sin x dx

Powers of Hyperbolic Function 1 1 sinh 2 x = cosh 2 x 2 2 1 1 cos 2 x = cosh 2 x + 2 2 1 3 sinh 3 x = sinh 3x - sinh x 4 4 1 3 cos3 x = cosh 3 x + cosh x 4 4 3 1 1 sinh 4 x = - cosh 2 x + cosh 4 x 8 2 8 3 1 1 cos 4 x = + cosh 2 x + cosh 4 x 8 2 8 Sum, Difference and Product of Hyperbolic Functions sinh x + sinh y

x+ y x- y cosh 2 2 sinh x - sinh y x+ y x- y sinh = 2 cosh 2 2 cosh x + cosh y x+ y x- y cosh = 2 cosh 2 2 cosh x - cosh y x+ y x- y sinh = 2sinh 2 2 sinh x sinh y 1 = éë cosh ( x + y ) - cosh ( x - y )ùû 2 cosh x cosh y 1 = éë cosh ( x + y ) + cosh ( x - y )ùû 2 sinh x cosh y 1 = éësinh ( x + y ) + sinh ( x - y )ùû 2 cosh x sinh y 1 = éësinh ( x + y ) - sinh ( x - y )ùû 2 Derivatives d sinh x = cosh x dx d cosh x = sinh x dx = 2sinh

4

d tan x = sec2 x dx d csc x = - csc x cot x dx d sec x = sec x tan x dx d cot x = - csc 2 x dx d 1 sin -1 x = dx 1- x 2

d tanh x = sech 2 x dx d csch x = - csch x coth x dx d sech x = - sech x tanh x dx d coth x = - csch 2 x dx 1 d sinh -1 x = 2 dx x +1

d 1 cos-1 x = dx 1- x 2

d 1 cosh -1 x =  2 dx x -1 -1 (+ if cosh x > 0 , x > 1 - if cosh -1 x < 0 , x > 1 )

d 1 csc-1 x = dx x x 2 -1

d 1 tanh-1 x = dx 1- x 2 ( -1 < x < 1 ) 1 d csch -1 x = dx x 1+ x2

d 1 sec-1 x = dx x x 2 -1

d 1 sech -1 x = dx x 1- x 2

d 1 tan -1 x = dx 1+ x2

d 1 cot -1 x = dx 1+ x2

d 1 coth -1 x = dx 1- x 2 ( x > 1 or x < -1 ) Integrals

ò sin x dx = - cos x ò cos x dx = sin x ò tan x dx = - ln cos x ò csc x dx = ln (csc x - cot x) = ln tan

ò sinh x dx = cosh x ò cosh x dx = sinh x ò tanh x dx = ln cosh x x

ò csch x dx = ln tanh 2

x 2

ò sec x dx = ln (sec x + tan x)

ò sech x dx = sin

æ x pö = ln tan çç + ÷÷÷ çè 2 4 ø

2

(tanh x)

= tan -1 (sinh x)

ò cot x dx = ln sin x

ò sin

-1

ò coth x dx = ln sinh x

x sin 2 x x dx = 2 4

ò sinh

5

2

x dx =

sinh 2 x x 4 2

ò cos

2

x dx =

x sin 2 x + 2 4

ò cosh

ò tan x dx = tan x - x ò csc x dx = - cot x ò sec x dx = tan x ò cot x dx = - cot x - x ò sec x tan x dx = sec x ò csc x cot x dx = - csc x

2

x dx =

sinh 2 x x + 4 2

ò tanh x dx = x - tanh x ò csch x dx = - coth x ò sech x dx = tanh x ò coth x dx = x - coth x ò sech x tanh x dx = - sech x ò csch x coth x dx = - csch x

2

2

2

2

2

2

2

2

6

Related Documents