VII
1
Transmission Lines
(a) Parallel-plate transmission line
(b) Two-wire transmission line
Metal strip Metal strip Dielectric subtrate Grounded conducting plane
Grounded conducting plane
Dielectric subtrate Grounded conducting plane
Two types of microstrip lines
(c) Coaxial transmission line
VII
2
TEM-Waves along a Parallel-Plate Transmission Line
Lossless case:
y
d
x
z
w
( term e jωt always omitted) r r r E = Ey ⋅ ey = E0 ⋅ e− γz ⋅ ey r r r E H = Hx ⋅ ex = − 0 ⋅ e− γz ⋅ ex Γ µ γ = jω µε Γ = ε
in order to find the charge density and the current density we use: r r Dn2 − Dn1 = σ → D ⋅ ey = σ → σ = ε ⋅ Ey = ε E0 ⋅ e− γz σ: free surface charge r r r r r r E Ht 2 − Ht1 = Js → ey × H = Js → Js = − ez ⋅ Hx = ez ⋅ 0 e− γ z Γ Js: free surface current d Ι ds
VII
3
Fields, Charge and Current Distribution along a Coaxial Transmission Line B
+ +++ + x x x xx x
-
E
E -
---
+++ x
+
+++
x x x xx x
x xx
-
+ +++ + x x x xx x
+
-
---
+
-
---
-
---
+
B -
-
---
x xx
-
+ +++ + x x x xx x
x xx
-
E
+ +++ +
-
---
x xx
-
λ
B
Current
Displacement Current
VII
4
Parallel-Plate Transmission Line in Terms of L and C Lossless case
(term e
jωt
)
always omitted
r r ∇ × E = − jωµH
+
dEy = jωµHx dz
r r ∇ × H = jωε E dHx = jωε Ey dz
d d d Eydy = jωµ ∫ Hxdy ∫ dz 0 0
w d w Hxdx = jωε ∫ Eydx dz ∫0 0
( ) = jωµ J (z) ⋅ d sz dz
dV z
d = jω µ Jsz z ⋅ w w
( () )
() [H m]
= jω L ⋅ Ι z L = µ⋅
d w
−
d Ι ( z) = − jωε Ey ( z) ⋅ w dz w = jω ε −Ey ( z) ⋅ d d = jω CV( z)
(
C=ε
w d
[F m]
)
VII
5
( ) = −ω 2LCΙ(z)
d2V( z) 2 2 = − ω LCV ( z) dz V( z) = V0 ⋅ e− jω
LC z
d2Ι z d z2
= V0 ⋅ e− jω
µε z
Ι( z) = Ι 0 ⋅ e− jω
Phase velocity:
up =
ω 1 1 = = ω µε µε LC
Characteristic impedance:
Z0 =
V( z) L = Ι( z) C
LC z
= Ι 0 ⋅ e− jω
µε z
VII
6
Lossy Parallel-Plate Transmission Line
Conductance between the two conductors: Compare with the analogy of resistance and capacitance ε c case a
= R⋅κ case b
1 κ κ w w = C = ⋅ε = κ ⋅ R ε ε d d w G= κ⋅ [S m] d ⇒G=
VII
7
Ohmic power dissipated in the plates r r r SLoss = ezEz × ex ⋅ Hx * Def.
Surface impedance Zs =
r Power flux density flowing into the plates (ey ) Et Js
Js = free surface current
dΙ z dx
Zs = Rs + j ⋅ Xs Rs =
=
1 length 1 l ⋅ = κ c cross sec tion κ w ⋅ d
1 l κ c µ cω l µ cω ⋅ ⋅ = κc w 2 w 2κ c
effective series resistance per unit length 2 µ cω 2 µ c f ⋅ π R= = [Ω / m] κc w 2κ c w
d = penetration depth =
2 κ c µ cω
VII
Equivalent Circuit of a Differential Length ∆ z of a Two-Conductor Transmission Line
R ∆z •
L ∆z •
G ∆z •
C ∆z •
8
VII
9
Distributed Parameters of Transmission Lines Parameter
Parallel Plate 2 πfµ c w κc
Two-Wire Line Rs πa
Coaxial Line R s 1 1 + 2π a b
R
Ω/m
L
d µ w
µ D cosh −1 2a π
µ b ln 2π a
H/m
G
w κ d
πκ cosh−1(D / 2a)
2πκ ln(b / a)
S/m
w d
πε cosh−1(D / 2a)
2πε ln(b / a)
F/m
ε C
w=width d=separation
Rs =
πfµ c κc
a=radius D=distance cosh −1(D / 2a) ≈ ln (D / a) if (D / 2a) >> 1 2
Rs =
πfµ c κc
a=radius center cond. b=radius outer cond.
Unit
VII
10
Wave Equation for Lossy Transmission Lines
dV( z) = (R + jωL) Ι ( z) dz d Ι ( z) − = (G + jωC) V ( z) dz d2V( z) = γ 2V( z) 2 dz d2Ι ( z) 2 2 = γ Ι ( z) dz −
γ = α + j β = (R + jωL)(G + jωC)
VII
11
Waveguides y x
z
A uniform waveguide with an arbitrary cross section Time-harmonic waves in lossless media: r r ∆E + ω 2µ ε E = 0 r r0 j ωt −k z ⋅z ) E ( x, y, z, t ) = E ( x, y) ⋅ e (
(∇ ∇ xy
2
∇ xy
2
2 xy
+ ∇z
2
)
r r r 2 2 E = ∇ xy E − k z E
r r 2 2 E + ω µε − k z E = 0
(
)
r r 2 2 H + ω µε − k z H = 0
(
)
VII
r r From ∇ x E = − jωµH we get: ∂E0z + jk zEy0 = − jωµH0x ∂y − jk zE0x
∂E0z = − jωµH0y − ∂x
∂E0y ∂E0x − = − jωµH0z ∂x ∂y
H0x
1 ∂H0z ∂E0z = − 2 jk z − jωε ∂x ∂y h
H0y
∂H0z ∂E0z 1 = − 2 jk z + jωε ∂y ∂x h
E0x
∂E0z ∂H0z 1 = − 2 jk z + jωµ ∂x ∂y h
E0y
∂E0z ∂H0z 1 = − 2 jk z − jωµ ∂y ∂x h
r r From ∇ xH = jωεE we get: ∂Hz0 + jk zHy0 = jωεE0x ∂y − jk zH0x
∂Hz0 = jωεEy0 − ∂x
∂Hy0 ∂H0x − = jωεE0z ∂x ∂y
h2 = ω 2µε − k z2
12
VII
13
Three Types of Propagating Waves
Transverse electromagnetic waves TEM
:
EZ = 0 & HZ = 0
Transverse magnetic waves TM
:
EZ - 0 & HZ = 0
Transverse electric waves TE
:
EZ = 0 & HZ - 0
VII
14
TEM - Waves Hz = 0 & Ez = 0 → − k z2TEM + ω 2µε = 0 → k z TEM = ω µε 1 ω = µε kz
Phase velocity
upTEM =
Wave impedance
ωµ µ E0x Z TEM = 0 = = ε Hy k z TEM
for hollow single-conductor
waveguides:
Hz = 0 → there is only Hx and Hy r div H = 0 → H − fields must form closed loops ∂Dz Ez = 0 → =0 ∂t r r rot H = J → TEM waves cannot exist in sin gle − conductor hollow waveguides
VII
15
TM-Waves
Ex =
− jk z ∂Ez ω 2µε − k z2 ∂x
Ey =
− jk z ∂Ez ω 2µε − k z2 ∂y
Hx =
jωε ∂Ez ω 2µε − k z2 ∂y
Hy =
− jωε ∂Ez ω 2µε − k z2 ∂x
Wave equation ∂2Ez ∂2Ez 2 2 2 + 2 + ω µε − k z Ez = 0 ∂x ∂y
(
)
VII
16
TM-Modes in Rectangular Waveguides
boundary conditions
x
Ez (0, y) = 0
and
Ez (a, y) = 0
in the x direction
Ez ( x, 0) = 0
and
Ez ( x, b) = 0
in the y direction
separation of variables
a z
( )
Ez ( x, y) = E0 sin(k x x) sin k y y y b
kx =
mπ a
and
ky =
nπ b
( m, n are int egers)
VII
17
Solution
Ex ( x, y) =
− jk z mπ mπ x sin nπ y E cos 0 a b a ω 2µε − k z2
TM13 mode means m=1, n=3 (if m=0 or n=0 then E=H=0)
Ey ( x, y) =
Hx ( x, y) =
Hz ( x, y) =
nπ mπ − jk z nπ y E x sin cos 0 a b b ω 2µε − k z2
mπ nπ = ω µε − − a b 2
kz
2
2
2
jωε nπ mπ nπ y E x sin cos 0 a b b ω 2µε − k z2
mπ 2 nπ 2 ω c µε − + =0 a b
mπ − jωε mπ x sin nπ y E cos 0 a b a ω 2µε − k z2
mπ + nπ fc = b 2π µε a
2
1
if f < fc then jkz is real
2
2
cut off frequency
no wave propagation
VII
18
Field Lines for TM11 Mode in Rectangular Waveguide
y/b
y/b 1,0
x x
0,5 x
x/a
O Electric field lines
0 0
x
x x x x x π/2
x
x
x x x
x
π
Magnetic field lines
3π/2
2π βz
VII
19
TE-Waves
Ex =
− jωµ ∂Hz ω 2µε − k z2 ∂y
Ey =
jωµ ∂Hz ω 2µε − k z2 ∂x
− jk z ∂Hz Hx = 2 ω µε − k z2 ∂x Hy =
− jk z ∂Hz ω 2µε − k z2 ∂y
wave equation ∂2Hz ∂2Hz 2 2 2 + 2 + ω µε − k z Hz = 0 ∂x ∂y
(
)
VII
20
TE-Modes in Rectangular Waveguides
boundary condition ∂Hz 0, y = 0 ∂x ∂Hz x,0 = 0 ∂y
( )
and
( )
and
∂Hz a, y = 0 ∂x ∂Hz x,b = 0 ∂y
( )
in the x direction
(Ey ) = 0
( )
in the y direction
(Ex ) = 0
separation of variables mπ nπ Hz ( x, y) = H0 cos x cos y a b
VII
Solution: Ex ( x, y) =
21
jωµ nπ mπ x sin nπ y H cos 0 a b b ω 2µε − k z2
− jωµ mπ mπ nπ y H x sin cos 0 a b a ω 2µε − k z2 jk mπ mπ nπ Hx ( x, y) = 2 z 2 H0 sin x cos y a b a ω µε − k z Ey ( x, y) =
Hy ( x, y) =
TE01 mode means m = 0, n = 1 mπ nπ = ω µε − − a b 2
kz
2
2
2
nπ jk z mπ x sin nπ y H cos 0 a b b ω 2µε − k z2
mπ + nπ cut off frequency fc = b 2π µε a no wave propagation if f < fc then jkz is real 1
2
2
VII
22
Field Lines for TE10 Mode in Rectangular Waveguide y/b
y/b 1,0
x x x x x
0,5
O
x
x x x x x x
x
x/a
x
x x
0 0
x x
π/2
π
3π/2
2π βz
π
3π/2
2π βz
x/a 1,0 x x
Electric field lines x
Magnetic field lines
x x
x
x x
x x
x
x
x
x x
x 0 0
π/2