Transition Probability Matrix For Markov Chain Analysis

  • Uploaded by: Sangita
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Transition Probability Matrix For Markov Chain Analysis as PDF for free.

More details

  • Words: 286
  • Pages: 6
the population of a city = 100000 Two Milk providing Company 1 Sun City CompanyGain 2 Suburb Company Loss

Loss Gain

Sun City Suburb 0.65 0.45 0.35 0.55

Transition Propability Matrix 1 Current Year

Dr. Sangita

First Year Population after first(one) year

2 Second Year

Population after Second(two) year

3 Third Year

Population after thirdt(three) year

4 ……..Year

Population after …………. year

5 ……..Year

Population after …………. year

0.65 0.35 0.58 0.42 100000

0.65 0.35 0.57 0.43 100000

0.65 0.35 0.56 0.44 100000

0.65 0.35 0.56 0.44 100000

0.65 0.35

0.45 0.55

X

0.65 0.35

X

0.58 0.42

X

0.57 0.43

X

0.56 0.44

X

0.56 0.44

58000 42000 100000 0.45 0.55

56600 43400 100000 0.45 0.55

56320 43680 100000 0.45 0.55

56264 43736 100000 0.45 0.55

0.56 0.44 100000 56252.8 43747.2 100000

6 ……..Year

Population after …………. year

7 ……..Year

Population after …………. year

8 ……..Year

Population after …………. year

Steady State Vector or Stable Vector or Equillibrium Vector

9 ……..Year

(same value of vector multiple) Population after …………. year

10 ……..Year

Population after …………. year

Direct Computation of Steady State Vector

0.65 0.35 0.56 0.44 100000

0.65 0.35 0.56 0.44 100000

0.65 0.35 0.56 0.44 100000

0.65 0.35 0.56 0.44 100000

0.65 0.35 0.56 0.44 100000

0.45 0.55

X

0.56 0.44

X

0.56 0.44

X

0.56 0.44

X

0.56 0.44

X

0.56 0.44

### ### 100000 0.45 0.55

### ### 100000 0.45 0.55

### ### 100000 0.45 0.55

56250 43750 100000 0.45 0.55

56250 43750 100000

0.65 0.35

0.45 0.55

0.65

0.45

-

Index matrix 1 0

To conver this matrix as Index matreix R1=R1 1 0 R2=R2+R1 0 1

0.35

0.55

-0.35 0.35

0.45 -0.45

-0.35 0

0.45 0

Index matrix 0 1

Related Documents


More Documents from ""