Trac Nghiem Chuong 1 Ds-gt K12

  • Uploaded by: Ho Xuan Hung
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trac Nghiem Chuong 1 Ds-gt K12 as PDF for free.

More details

  • Words: 940
  • Pages: 1
© HXH

D/ H/soá ñaït CT taïi ñieåm x = 1; f (1) = 3 , C1:Xeùt chieàu bieán thieân cuûa haøm soá: y =

3x

ñaït CÑ taïi ñieåm x = 2; f (2) = 1

2

x +1 A/ Haøm soá ÑB treân (−∞; −1) vaø (1; +∞ ) , C7: Tìm cöïc trò cuûa hsoá: y = 3x 4 − 4x 3 − 24x 2 + 48 x − 3 .

NB treân khoaûng (−1;1) B/ Haøm soá NB treân (−∞; −1) vaø (1; +∞ ) ,

A/ H/soá ñaït CT taïi x = 1; f (1) = 20 ,

ÑB treân khoaûng (−1;1) .

ñaït CÑ taïi x = −2; f (−2) = −115 vaø x = 2; f (2) = 13

C/ Haøm soá NB treân khoaûng (−∞; −1) ,

B/ H/soá ñaït CÑ taïi x = 1; f (1) = 20 ,

ÑB treân khoaûng (−1; +∞ )

ñaït CT taïi x = −2; f (−2) = 115 vaø x = 2; f (2) = 13

D/ Haøm soá ÑB treân khoaûng (−∞; −1) ,

C/ H/soá ñaït CÑ taïi x = 1; f (1) = 20 ,

NB treân khoaûng (−1; +∞ ) C2: Xeùt chieàu bieán thieân cuûa haøm soá: y =

x +1

3 x A/ Haøm soá NB treân caùc khoaûng (−∞;0) vaø (1; +∞ ) , ÑB treân khoaûng (0;1) B/ Haøm soá ÑB treân khoaûng (0;1) , NB treân khoaûng (1; +∞ ) C/ Haøm soá NB treân khoaûng (0;1) , ÑB treân khoaûng (1; +∞ ) . D/ Haøm soá ÑB treân caùc khoaûng (−∞;0) vaø (1; +∞ ) , NB treân khoaûng (0;1) 1 C3: Haøm soá: y = x 4 + x 3 − x + 5 2 A/ Hsoá ÑB treân caùc khoaûng (−∞; −1) vaø (1 / 2; +∞ ) , NB treân khoaûng (−1;1 / 2) B/ Hsoá ÑB treân khoaûng (−∞ ;1 / 2) , NB treân khoaûng (1 / 2; +∞ ) C/ Hsoá NB treân caùc khoaûng (−∞; −1) vaø (1 / 2; +∞ ) , ÑB treân khoaûng (−1;1 / 2) D/ Hsoá NB treân khoaûng (−∞;1 / 2) , ÑB treân khoaûng (1 / 2; +∞ ) . m C4: Vôùi giaù trò naøo cuûa m thì haøm soá: y = x + 2 + x −1 ÑB treân moãi khoaûng xaùc ñònh cuûa noù A/ m ≥ 0 B/ m < 0 C/ m ≤ 0 . D/ m > 0 C5: Vôùi giaù trò naøo cuûa a thì haøm soá:

1 y = − x3 + 2x2 + (2a + 1)x − 3a + 2 NB treân R 3 A/ a ≥ −5 / 2 B/ a < −5 / 2 C/ a > −5 / 2 D/ a ≤ −5 / 2 . C6: Tìm cöïc trò cuûa haøm soá: y = −5x 3 + 3x 2 − 4x + 5 . A/ H/soá ñoàng bieán treân R neân khoâng coù cöïc trò B/ H/soá nghòch bieán treân R neân khoâng coù cöïc trò. C/ H/soá ñaït CÑ taïi ñieåm x = 1; f (1) = 3 , ñaït CT taïi ñieåm x = 2; f (2) = 1 D:\HXH\Chuyen mon\Khoi 12\3. Trac nghiem GT bai1-bai5.doc

ñaït CT taïi x = −2; f (−2) = −115 vaø x = 2; f (2) = 13 . D/ H/soá ñaït CT taïi x = 1; f (1) = 20 , ñaït CÑ taïi x = −2; f (−2) = 115 vaø x = 2; f (2) = 13 x 2 + 8 x − 24 . C8: Tìm cöïc trò cuûa haøm soá: y = x2 − 4 A/ H/soá ñaït CÑ taïi ñieåm x = 1; f (1) = 5 , ñaït CT taïi ñieåm x = 4; f (4) = 2 B/ H/soá ñaït CÑ taïi ñieåm x = 1; f (1) = 5 , ñaït CT taïi ñieåm x = 4; f (4) = −2 C/ H/soá ñaït CT taïi ñieåm x = 1; f (1) = −5 , ñaït CÑ taïi ñieåm x = 4; f (4) = 2 D/ H/soá ñaït CT taïi ñieåm x = 1; f (1) = 5 , ñaït CÑ taïi ñieåm x = 4; f (4) = 2 . C9: Tìm cöïc trò cuûa haøm soá: y = sin2 x − 3.cos x, x ∈ [ 0; π ] .

5π 5π 7 ; f( )= . 6 6 4 5π 5π 7 ;f( )= B/ H/soá ñaït CT taïi ñieåm x = 6 6 4 −π −π 7 C/ H/soá ñaït CÑ taïi ñieåm x = ;f( )= 6 6 4 −π −π 7 D/ H/soá ñaït CT taïi ñieåm x = ; f( )= 6 6 4 A/ H/soá ñaït CÑ taïi ñieåm x =

C10: Tìm caùc heä soá a, b, c sao cho haøm soá:

f (x) = x 3 + ax 2 + bx + c ñaït cöïc tieåu taïi ñieåm x = 1; f (1) = −3 vaø ñoà thò cuûa haøm soá caét truïc tung taïi ñieåm coù tung ñoä laø 2 A/ a = 3; b = 9; c = 2

B/ a = −3; b = −9; c = 2

C/ a = 3; b = −9; c = 2 . D/ a = 3; b = −9; c = −2 C11:

Tìm GTNN – GTLN cuûa haøm soá:

f (x) = x 4 − 8 x 2 + 16 treân ñoaïn [ −1;3 ] A/

min f (x) = f (0)=16; max f ( x) = f (3) = 24 x∈[ −1;3] x∈[ −1;3 ]

1

Related Documents

Trac Nghiem
November 2019 21
Trac Nghiem
October 2019 24
Trac Nghiem Trang
October 2019 18

More Documents from ""

To Hop Xac Suat
November 2019 24
De Hk1 (tham Khao2)
December 2019 16
De Hk1 (tham Khao)
December 2019 19
Day Tu Chon 11 Hk1
December 2019 16
Thi Hk1 08-09 (12nc) 2
December 2019 13
De Tnpt
December 2019 16