Trabajo De Algebra 2.docx

  • Uploaded by: Charlie Ladera
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trabajo De Algebra 2.docx as PDF for free.

More details

  • Words: 2,356
  • Pages: 12
1.- Obtener la factorización QR de la matriz:

{

{

1 U1 0 1

[

1 1 0 A= 0 −1 1 1 0 −1

]

{

1 U 2 −1 0

0 U3 1 −1

V1= U1 V1=(1,0,1) V2= U2-

(VV 1.1.

)

U 2 .V 1 VI ( 1,0,1 ) . ( 1,−1,0 ) .(1,0,1) ( 1,0,1 ) ( 1,0,1 )

V2=(1,-1,0)-

(

V2= (1,-1,0)-

( 12 ) .(1,0,1)

V2=

)

( 12 ,−1,− 12 )

V3= U3-

(VIV 1.

U3 V1

V2=(1,-1,0)-(

1 1 , 0, ) 2 2

2 V2=(1,-1,-1)

)

.V1-

(VV 2.2

)

U 3 .V 2 V2

-1 V3=(0,1,-1)-

0

(((

)

(

1,0,1 ) . ( 0,1,−1 ) ( ( 1,−1,−1 ) . ( 0,1,−1 ) . 1,0,1 ) − 1,0,1 ) ( 1,0,1 ) ( 1,−1,−1 ) ( 1,−1,−1 ) 2

V3=(0,1,-1)-

V3=

3

( −12 ) . ( 1,0,1 )

( 12 , 1,− 12 )

)

V3=(0,1,-1)-

( −12 ,0,− 12 )

2 V3=(1,1,-1)

Base ortogonal: {(1,0,1);(1,-1,-1);(1,1,-1)} q1=

1 * v1 ‖V 1‖

‖V 1‖ =

√ 12+0 2+1 2

‖V 1‖ = √ 2

.(1,-1,-1)

= 0/3= 0

1 √2

q1=

.(1,0,1)

( √12 , 0, √12 )

q1=

q2=

1 * v2 ‖V 2‖

‖V 2‖ =

q2=

1 √3

q2=

* (1,-1,-1)

1 * v3 ‖V 3‖ 1 q3= * (1,1,-1) √3 Base ortonormal: {

[

1 1 0 0 −1 1 1 0 −1

]

√ 12 +12−12

( √12 , 0, √12 ); ( √13 ,− √13 ,− √13 ); ( √13 , √13 ,− √13 )

[ ] 1 √3 −1 √3 −1 √3

0 1 √2

1 √3 1 √3 −1 √3

Q

U1=

8 U2= 7 −2

U3 =

[ ] 2 √2

*

0 0

1 √2 2 √3 0

−1 √2 0 2 √3

R

2. Obtener la factorización QR de la matriz A

2 1 −2

‖V 3‖ = √ 3

( √13 , √13 ,− √13 )

q3=

1 √2

=

‖V 2‖ = √ 3

( √13 ,− √13 ,− √13 )

‖V 3‖ =

q3=

√ 12−12−12

[

2 8 2 1 7 −1 −2 −2 1

]

2 −1 1

V1= U1 V1= (2,1,-2) V2= U2-

V1.U2 V1.V1

.

V1

V2 = (8,7,-2) – (2,1,-2).(8,7,-2) . (2,1,-2) (2, 1,-2) (2, 1,-2)

V2= (8, 2,-2) – (3). (2,1,-1)

V 2= (8, 7,-2) – (6,3,-6)

V2= (2,4,4 ) V3= U3-

V1 . U3 V1. V1

V3= (2,-1,1) -

.

V2. U3 . V2 V2. V2

(2, 1,-2). (2,-1, 1) (2, 1,-2) (2, 1,-2)

V3 = (2, -1, 1) –

1 . (2, 1,-2) – 9

V3= (2,-1,1) -

2 , 1 , -2 9 9 9

V3= 16 , -10 , 11 9

V1 -

9

-

9

. (2, 1,-2) -

4 36

-

. (2, 4,4)

2, 4, 4 9 9 9

2, 4 , 4 9

9

(2, 4,4) . (2,-1, 1) . (2, 4,4) (2, 4,4) (2, 4,4)

9 V 3 = (14, -14, 7)

9

base ortogonal: (2,1,-2); (2,4,4 ); (14, -14, 7)

ǁV3ǁ=

√ 22 + 12 + (-2)2

ǁV2ǁ=

√ 23 + 4 2 + 4 2

ǁV3ǁ= q1=

q2=

2

√ 14 1 √9 1 √ 36

.

ǁV1ǁ= ǁV 2ǁ=

+ 42 + 42 (2, 1, -2)

. (2, 4, 4)

ǁV 3ǁ= q 1= (

q 2= (

2 6

√9

√ 36 √ 441

2 1 , 3 3 ,

4 6

,

,

−2 3

4 ) 6

)

q3=

1 √ 441

. (14, -14,7)

2 1 , 3 3

Base Ortonormal:

,

q 3= (

14 21

;

2 6

−2 3

,

,

−14 21

,

4 6

4 6

,

7 21

)

;

14 21

,

−14 21

,

7 21

2 8 2 1 7 −1 −2 −2 4

2 3 1 3 −2 3

=

2 6 4 9 4 6

14 21 −14 21 7 21

Q

3 9 .

0 6 0 0

1 3 2 3 7 3

R

3.- Obtener una base ortonormal de R3 , con el producto escalar canónico, partiendo de una base formada por los vectores { x 1=( 1,−1,0 ) , x 2=( 2,0,−1 ) , x 3=( 0,1,2 ) }

1=¿ (1,-1,0) x¿

x 2=( 2,0,−1 )

x 3=( 0,1,2 )

V1= U1 V1=(1,-1,0)

(VV 1.1.

)

U 2 .V 1 VI ( 1,−1,0 ) . (2,0,−1) 1,−1,0 V2=(2,0,-1)* (1,-1,0) ¿ ¿ ((1,−1,0) ¿ ¿) ¿ ¿ ¿ V2= U2-

2

2

V2=(2,0,-1)-(1).(1,-1,0)

V2=(1,1,-1)

v2= (2,0,-1)-(1,-1,0)

(VIV 1.

V3= U3-

U3 V1

)

.V1-

(VV 2.2

)

U 3 .V 2 V2

-1

-1

((

)

1,−1,0 ) . (0,1,2) . (1,-1,0)(1,−1,0) (1,−1,0)

V3= (0,1,2)-

((

1,1−1 ) . (0,1,2) ( 1,1,−1) (1,1,−1)

2 V3=(0,1,2)—

V3=(0,1,2)-

6 V3=

(5,6

)

.(1,1,-1)

3.

( −12 ) . ( 1,−1,0) −( −13 ) .(1,1,−1) ( −12 , 12 , 0)−( −13 ,− 13 , 13 ) 5, 5 6 3

)

V3=

( 12 , 12 ,2)

-

( −13 ,− 13 , 13 )

6V3= (7,5,5)

Base ortogonal: (1,-1,0; (2,1,-1) ; ( 5,5,5 )

q1=

q1=

1 * v1 ‖V 1‖ 1 √2

‖V 1‖ =

.(1,-1,0)

q2=

1 * v2 ‖V 2‖

q2=

1 √3

1 * v3 ‖V 3‖ 1 q3= * (5,5,5) 75 Base ortonormal: {

q2=

√ 12 +12−12

‖V 2‖ = √ 3

( √13 , √13 ,− √13 )

‖V 3‖ = q3=

‖V 1‖ = √ 2

( √12 ,− √12 , 0)

‖V 2‖ =

* (1,1,-1)

q3=

q1=

√ 12−12+ 02

√ 52 +52 +52

‖V 3‖ = √ 75

( 755 , √575 , √575 )

( √12 ,− √12 , 0); ( √13 , √13 ,− √13 ); ( 755 , √575 , √575 )

4.- Obtener una base ortonormal de R4 , con el producto escalar canónico, partiendo de una base formada por los vectores { x 1=( 2,−1,1,2 ) , x 2=( 3,−1,0,4 ) } V1=(2,-1,1,2) V2=(3,-1,0,4)-

( ((

V2=(3,-1,0,4)-

( 1510 )

V2=(3,-1,0,4)-

( 32 )

V2=(3,-1,0,4)-(3,-

1 2

V2=(0,

,

)

2,−1,1,2 ) . (3,−1,0,4 ) .(2,−1,1,2) 2,−1,1,2 ) ( 2,−1,1,2 ) .(2,-1,1,2)

.(2,-1,1,2)

3 3 , ,3 ) 2 2

−3 ,1 ) 2

V2=(0,1,-3,1)

 Q1=

Q1=

1 ‖2,−1,1,2‖

‖2,−1,1,2‖ =

Q1= Q1=

Base Ortogonal: V1=(2,-1,1,2 )

V2=(0,1,-3,1)

* (2,-1,1,2)

√ 22−12+ 12+22

‖2,−1,1,2‖ = √ 10

1 .(2,−1,1,2) √ 10

Q1=

Q2=

1 *V2 ‖V 2‖

Q2=

‖0,1,−3,1‖=¿

√ 02 +12−32 +12

Q2=

‖0,1,−3,1‖=¿

√ 11

Q2=

( √210 ,− √110 , √110 , √210 ,)

1 ∗( 0,1,−3,1 ) ‖0,1,−3,1‖

Q2=

1 √ 11

.(0,1,-3,1)

Q2=

(0, √111 ,− √311 , √111 ,)

Base ortonormal:

(

2 1 1 2 ,− , , , √10 √ 10 √10 √ 10

) ( ;

0,

1 3 1 ,− , , √11 √ 11 √11

5. Encuentra la matriz asociada de la transformación lineal T= P2 p2 definida por T: P(t) = P(x+2) , B= 1, x, 2, (x+2) 2 , C = T(P(X))=P(x+2 B= 1, X+2, (X+22 .,C= 1,X,X2 B= P(X) = a+bx+c+2 T(P(X)) = XP(3) T(P(X+2)) = P(X+4) T(P(X+22)) = P(X2+4X+6) α(1) + β (X) + θ (x2) = 3 α + Βx +θx2 = 3 α=3 β=0 Θ=0 α + β x +θx2 = x+4 α=4 β=1 θ=0 α + β x + θ x 2 = x2 + 4 x + 6 α=6 β=4 θ=1 A=

3 4 6

6.- Sea

0 0 1 0 4 1 4 T : R → M 22 una transformación lineal definida

1, x, x2

)

, V = P (x) = a+bx+cx2

T ( x , y , z , w )=

[

−x− y 2 z +3 w 4 x−2 z+ w 3 x− y +4 z

]

Determine: Núcleo(T) , Nulidad(T) Imagen(T), Rango(T) La matriz asociada a la transformación lineal respecto a las bases

{[ ] [

] [ ] [ ]}

1 3 , −1 3 , 8 2 , 1 0 B={ ( 0,1,1,1 ) , ( 1,0,1,1 ) , ( 1,1,0,1 ) , (1,1,1,0 ) } y C= 2 4 0 1 0 0 0 0

{

[ ]}

Ker ( T )= (x , y , z , w)∈ R4 /T ( x , y , z , w )= 0 0 0 0

{

−x – y=0 2 z+3 w=0 ⇒ 4 x−2 z +w=0 3 x− y + 4 z=0

[

[

1 1 0 0 0 0 2 3 4 0 −2 1 3 −1 4 0

][

1 1 0 0 0 1 1/2 1 /4 0 0 2 3 0 −4 4 0

][

⋮0 1 1 0 0 ⋮0 ⇒ 0 0 2 3 ⋮0 0 −4 −2 1 ⋮0 0 −4 4 0

−1 2 1 2 2 6

1 0

⋮0 ⋮0 ⇒ 0 1 ⋮0 ⋮0 0 0 0 0

1 4 −1 4 3 −1

][

][

−1 ⋮0 2 1 0 1 ⋮0 ⇒ 2 ⋮0 ⋮0

1 0

0 0

1

0 0

6

Ker ( T )= {⟨ 0 0 0 0 ⟩ } Rgo(T)=Dim(R4)-Nul(T)=4

{[ ] [ ] [ ] [ ]} 1 0 ; 0 1 ; 0 0 ; 0 0 0 0 0 0 1 0 0 1

Imagen (T)=

Matriz Asociada

[

]

[

]

[

]

⋮0 1 1 0 0 ⋮0 ⋮ 0 ⇒ 0 −4 −2 1 ⋮0 ⇒ ⋮0 0 0 2 3 ⋮0 ⋮0 0 −4 4 0 ⋮0

]

T ( 0,1,1,1 )= −1 5 ; T ( 1,0,1,1 )= −1 5 ; T ( 1,1,0,1 )= −2 3 ; −1 3 −1 7 5 2

1 4 −1 4 3 2 −1

⋮0

][

1 0 0 0 1 0

1 −1 ⋮0 ⇒ 3 0 0 1 2 ⋮0 0 0 0 −10 ⋮0

⋮0 ⋮0

][

1 ⇒ 0 ⋮0 0 0 ⋮0

[

T ( 1,1,1,0)= −2 2 2 6

{

]

[ ] [

] [ ] [ ][

α 11 1 3 + β 21 −1 3 + γ 31 8 2 + δ 41 2 4 0 1 0 0

[ ] [

[ ] [

[ ] [

[

−1 2 9 −41 4 181 2

5 2 −8 39 4 −18 2

1 2 −7 2 27

]

]

α 13=

{

α 14 =1 1 0 = −2 2 ⇒ sol= β24 =2 7 0 0 2 6 γ 34= 2 δ 44 =27

] [ ] [ ][

α 14 1 3 + β 24 −1 3 + γ 34 8 2 + δ 44 2 4 0 1 0 0

−1 2 5 B M (T )C = −17 4 77 2

]

α 12 =

5 2 β 23 =−8 1 0 = −2 3 ⇒ sol= 39 0 0 5 2 γ 33= 4 −181 δ 43= 2

] [ ] [ ][

α 13 1 3 + β23 −1 3 + γ 33 8 2 + δ 43 2 4 0 1 0 0

]

−1 2 β22=9 1 0 = −1 5 ⇒ sol= −41 0 0 −1 7 γ 32= 4 181 δ 41= 2

] [ ] [ ][

α 12 1 3 + β 22 −1 3 +γ 32 8 2 + δ 42 2 4 0 1 0 0

{ { {

−1 2 β21=5 1 0 = −1 5 ⇒ sol= −17 0 0 −1 3 γ 31= 4 77 δ 41= 2 α 11 =

]

7.- Sea

T : M 22 → M 22

una transformación lineal definida por:

([ ]) [

w−z−2 x T x y = 3 w+2 y−2 x z w 6 x−2 y −3 z + 4 w 6 x−2 y +2 z −5 w

]

Determina una base para el

kernel(t) y la Imagen(t) “ESTE EJERCICIO SE REALIZO EN CLASE” .8.- Sea T: P2P2 una transformación lineal para la cual T(1+x) = 1 + x2, T(x + x2) = x – x2, T(1 + x2) = 1 + x + x2 Encuentre T(4 - x + 3x2) y T(a + bx +cx2) T(1+X) =1+ x2 T(X+X2) = X-X2 T(1+X2)= 1+X+X2 T=(4-X+3X2)=? T=(a+bx+cx2)=?

x +¿ 1+¿ x2 x2 ¿=4−x +3 x2 ∝ ( 1+ x ) + β ¿ ¿+ ϑ ¿ 1+ x+ βx+ β 2 x + ϑ + ϑ x2= 4-x+3 x2 ∝¿ ∝+ ϑ=4

∝=0

∝+ β=−1

β=−1

β+ ϑ=3

ϑ=4

0.(1+x)+(-1)(x+x2)+4(1+x2)= 4-x+3x2 (0).T(1+x)+(-1) T(x+x2)+4T(1+x2)=T(4-x+3x2) (0.(1+x2)+(-1(x-x2)+4(1+x+x2)= T(4-x+3x2) -x+x2+4+4x+4x2= T(4-x+3x2)

T(4-x+3x2)= 5x2+3x+4 T=(a+bx+cx2)=?

∝ ( 1+ x ) + β

(x+x2)+ ϑ

∝+ ∝ x+ βx+ β

x2+ ϑ

(1+x2)= a+bx+cx2 + ϑ

x2 = a+bx+cx2

∝=

∝+ ϑ=a

a+b−c 2

∝+ β=b

ϑ=

a−b+ c 2

β+ ϑ=c

β=

−a+b+ c 2

( a+b−c 2 )

(1+x)+

c ( −a+b+ ) 2

(x+x2)+

−a+b+ c T ( 1+ X )+¿ ( a+b−c ) ( ) 2 2

( a−b+c 2 )

(1+x2) +

c ( −a+b+ ) 2

( a−b+c 2 )

T(x+x2) +

= a+bx+cx2

( a−b+c 2 )

T(1+x2) = T(a+bx+cx2)

( a−b+c 2 )

(x-x2) +

(1+x+x2)= T(a+bx+cx2)

a+b−c −a+b+ c −a+b+ c + ( x + ( x- ( ( a+b−c ) ) ) ) 2 2 2 2 a−b+c a−b+c a−b+c + ( x+ ( + ( x ( a−b+c ) ) ) 2 2 2 2 )

T(a+bx+cx2)=

2

+

2

T(a+bx+cx2) = a+cx+

( a−b+c 2 )

x2

9.- Sea definida por T(X,Y,Z,W) =(X-Y+Z,Y+Z-W) Probar que es una transformación lineal U=(A,B,C,D) 1. T(U+V)= T(U)+ T()V T(A,B,C,D) + (M,N,O,P)

x y z w T=(a+m, b+n, c+o, d+p)

V=(M,N,O,P)

= ( a+m) – (b+n) + (c+o).,(b+n) + (c+o) – (d+p) = (a-b+c) + (m-n+o) , (b+c+d) + (n+p-p) =

(a-b+c, b+c-d) + (m-n +o,n +o-p)

= T (a, b, c, d) + T (m, n, o, p) T (α.U) = α T (U) T α. (a, b, c, d)

T(αa,αb,αc,αd)

= (αa –αb + αc, αb +αc -αd) = α(a-b + c, b + c-d)

α T(a, b, c, d)

= α T U… se cumple es una transformación lineal

Related Documents


More Documents from "Deivys Villa"