Tp1.docx

  • Uploaded by: JJairo Quidel
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tp1.docx as PDF for free.

More details

  • Words: 746
  • Pages: 13
Control Automático de Procesos. Trabajo Práctico de Gabinete N° 1: Práctica intensiva de Introducción a Matlab. Alumna: Quevedo Sol Agustina >> A = [1,2,3 4,5,6 7,8,9] A= 1 4 7

2 5 8

3 6 9

>> A(1,2) ans = 2 >> VECTOR = [1,2,3] VECTOR = 1

2

3

>> MATRIZ = [1,2,3;4,5,6;7,8,9] MATRIZ = 1 4 7

2 5 8

3 6 9

>> eye (10) ans = 1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0 0 0 0 1 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

>> ones (10) ans = 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

>> MATRIZ2 = [1 2 3 123 1 2 3] MATRIZ2 = 1 1 1

2 2 2

3 3 3

>> C = MATRIZ * MATRIZ2 C= 6 12 18 15 30 45 24 48 72 >> D = MATRIZ .* MATRIZ2 D= 1 4 9 4 10 18 7 16 27

>> det(MATRIZ)

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

ans = 6.6613e-16 >> det (C) ans = 0 >> det (MATRIZ2) ans = 0 >> inv(C) Warning: Matrix is singular to working precision. ans = Inf Inf Inf Inf Inf Inf Inf Inf Inf

>> C(:,2) ans = 12 30 48 >> VECTOR2 = 2*VECTOR VECTOR2 = 2

4

6

>> VECTOR2(:,2) ans = 4

>> P=[1,3,-2,0,1]

P= 1

3 -2

0

1

>> roots(P) ans = -3.5421 + 0.0000i 0.5446 + 0.4685i 0.5446 - 0.4685i -0.5470 + 0.0000i

raices = -3.5421 + 0.0000i 0.5446 + 0.4685i 0.5446 - 0.4685i -0.5470 + 0.0000i >> polyval (P,raices) ans = 1.0e-12 * -0.2807 + 0.0000i 0.0011 + 0.0003i 0.0011 - 0.0003i 0.0002 + 0.0000i >> P2 = [3 4 5] P2 = 3

4

5

>> P3 = [2 1 2] P3 = 2

1

2

>> PP = conv(P2,P3) PP =

6 11 20 13 10

>> [Q,R] = deconv (P2,P3) Q= 1.5000

R= 0 2.5000 2.0000 >> >> a=[2, 3; 5, -2] a= 2 3 5 -2 >> b=[4; 6] b= 4 6 >> s=inv(a)*b s= 1.3684 0.4211

>> t=solve('2*x^2+3*x-2') t= -2 1/2 >> [a,b] = solve('a^2 + a*b - b = 3','a^2 - 4*b - 5 = 0') a=

-1 - 2*2^(1/2) - 1 2*2^(1/2) - 1

b= -1 2^(1/2) + 1 1 - 2^(1/2) >> y=dsolve('Dy-x-y=0','y(0)=1', 'x') y= 2*exp(x) - x - 1 >> ezplot(y, 0, 2); grid on

>> int(sym('x*sin(x)')) ans = sin(x) - x*cos(x) >> s=int(sym('x*sin(x)'),0,pi)

s= pi >> syms x >> y=x^3-8 y= x^3 - 8 >> t=factor(y) t= (x - 2)*(x^2 + 2*x + 4) >> e=taylor(exp(x),x, 5) e= exp(5) + exp(5)*(x - 5) + (exp(5)*(x - 5)^2)/2 + (exp(5)*(x - 5)^3)/6 + (exp(5)*(x - 5)^4)/24 + (exp(5)*(x 5)^5)/120 >> e=taylor(exp(x),x, 5) e= exp(5) + exp(5)*(x - 5) + (exp(5)*(x - 5)^2)/2 + (exp(5)*(x - 5)^3)/6 + (exp(5)*(x - 5)^4)/24 + (exp(5)*(x 5)^5)/120 >> f='2*t+1'; t=3 t= 3 >> y=eval(f) y= 7 >> f=3*x^2+5*x f=

3*x^2 + 5*x >> t=factor(f) s=expand(t) t= x*(3*x + 5)

s= 3*x^2 + 5*x >> >> limit(sin(x)/x) ans = 1 >> x=-4:.01:4; y=sin(x); plot(x,y)

>> x=-1.5:.01:1.5; y=exp(-x.^2); plot(x,y)

>> t=0:.001:2*pi; x=cos(3*t); y=sin(2*t); plot(x,y)

>> function y=expcu(x) >> fplot ('expcu', [-1.5,1.5])

>> t=.01:.01:2*pi; x=cos(t); y=sin(t); z=t.^3; plot3(x,y,z)

>> mesh(eye(10))

>> xx=-2:.2:2; yy=xx yy = Columns 1 through 11 -2.0000 -1.8000 -1.6000 -1.4000 -1.2000 -1.0000 -0.8000 -0.6000 -0.4000 -0.2000 Columns 12 through 21 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 >> [x,y]=meshgrid(xx,yy); z=exp(-x.^2-y.^2); mesh(z)

0

>> colormap(cool)

>> shading flat

>> colormap (jet)

More Documents from "JJairo Quidel"

Formulario Laplace.doc
December 2019 1
December 2019 2
December 2019 1
December 2019 0
December 2019 0
Tp1.docx
December 2019 1