Paper 1 1.
x = 0.5, y = 2
3. 5.
1 ≤ f(x) ≤ 7 (a) Hint: Use Factor Theorem 2 1 1+ + , 6.52 x 1 x 12 (a) (i) 2 sin 2x 5 sin x (ii) 4 cos 2x 5 cos x 5 (i) 5 2 4 (c) Draw y = 2 x 5 (a) k = 5 n n 1 2 (b) (i) 1 + nx + x + ... 2 (b) 4 + 160 cos ( 18.43) (b) (i) k = 0.0479, n = 1.14
6. 7. 8. 9. 10.
11. 12.
6 13 4. x = 4, y = 16 or x = 16, y = 4 (b) 0, 72, 90, 144, 180
2.
6 ≤ k ≤
(b) (, 6), minimum, point (ii) 24
5 2 2
(ii) 1 + 10nx + 40x2 + . . .
(iii) n = 5, b = 100
(c) = 56.2 (ii) 8.91 s
Paper 2 1. (i) 900.5 g (iii) 546 g 2. (i) α + β = 3 and αβ = 92
(ii) 0.05 (iv) 35.4 g/year (ii) 13x2 2x 2 = 0
3.
(a) (i) Hint: Use Double Angle
(ii) 68.0, 292.0
4.
(a)
5.
(c) Hint: Remove log (ii) Hint: Use discriminant
1 178
(b) Draw y = 4 x + 2
(b) 2.55 y
y = 2x3 x2 2x 8
(iii) x
2 8
6. 7.
8. 9. 10.
(a) Use Mid Point Theorem (c) Use Intersecting Chords Theorem 4x sin 3x (2x 2 3)3 cos 3x (a) sin 2 3x 6 (b) (i) 3x 1 (a) 0.896
(b) Use Tangent-Secant Theorem (d) State Pythagoras Theorem
(i) (x + 4)2 + y2 = 16 (i) t = 0.5 s (iii) a = 2 + 4 2
(iii) x2 + y2 + 8y + 32 2 32 = 0 (ii) s = t2 2 ln (2t + 1) + 3 (iv) 3.28 m
(i) 5.5
(ii)
2 t 1
11.
(iii)
dA 1 55 2 = 110x 3025 16 4 x dx 2
1 2
(c) x = 2.5 6 decibels/sec 11 (b) (i) (0, 3)
(ii)
55 11 4 2
(iii) 49.1 (ii)
52 121 units2
55 2 x x 52 or 110x 3025 16 4 x
110 552 x , A is maximum at x = 4