Overview of AAQRL activities www.aerosols.wustl.edu/aaqrl/
Aerosol and Air Quality Research Laboratory Aerosol Formation and Capture
SYNTHESIS & PROCESSING
CONTROL & CAPTURE
•Aerosol Flame Reactors •Aerosol Furnace Reactors •Pristine and Doped TiO2 •Nanostructured Coatings •Nanocomposite Magnetic Oxides
Ambient Aerosols and Air Quality •Diesel Engine Exhausts & Children’s Health • Morphology of Ambient PM • Health Effects of Nanoparticles
•Soft X-Ray/Unipolar Coronas for Particle Charging & Capture •Capture in Magnetic Fields • Photocatalysis using TiO2 – inactivation of bioaerosols and organics •Oxygen Enriched Coal Combustion /Hg Capture
AAQRL Aerosol and Air Quality Research Laboratory
Colloids/Bio-colloids
•Detection of Micro-organisms •Electrostatic Filtration •Inactivation of bio-agents
Dr. Pratim Biswas Stifel and Quinette Jens Professor Director, Environmental Engr. Sci. Campus Box 1180, WUStL St. Louis, MO 63130 Email:
[email protected] Tel: 314-935-5482
Aerosol and Air Quality Research Laboratory AAQRL (Urbauer Hall 311) Faculty Dr. Pratim Biswas Graduate Students Soubir Basak Kuk Cho Chris Hogan Shaohua Hu Prakash Kumar Rafael McDonald Ayano Niwa Marina Smallwood Achariya Suriyawong Post-doctoral Fellows: Dr. M. H. Lee
AAQRL
Undergraduate Students David Weingeist Michael Mendehall Bukky Akiniemi Outside Collaborators: Dr. M. Buller, SLU Dr. Sahle-Demessie, US EPA Dr. Phil Fraundorf, UMSL Dr. Grace LeMasters, University of Cincinnati Dr. G. Oberdorster, U of Rochester Dr. David Pui, Univ. of Minnesota Dr. Chang Yu Wu, University of Florida Dr. N. Namiki, Kanazawa Univ. Drs. Axelbaum, Chen, Khomami, Indeck, Giammar, Angenent, Stanley (WUStL)
Aerosol and Air Quality Research Laboratory
Understand formation of stable clusters from molecular state; and growth dynamics of these particles
Fly Ash (volatile Metals) Molecular State (Vapor)
Stable Clusters (Particles)
Cenospheric Fly Ash Engineered Nanoparticles •Energy and Fuels, vol. 15(3), 510-516, 2001. •J.of Nanoparticle Research, vol. 5 (3-4): 259-268, 2003.
Resultant size distribution with peaks in submicrometer size range (DIFFICULT TO CAPTURE IN PARTICLE CONTROL DEVICES)
J. Air and Waste Mgmt. Associn., vol. 54, 149-156, 2004.
AAQRL Aerosol and Air Quality Research Laboratory
Inject sorbent precursors to form agglomerated structures that have a very high surface area and chemical affinity for trace species SUBMICROMETER MODE SUPPRESSED; READILY CAPTURED
WHY ARE SUBMICROMETER SIZED PARTICLES DIFFICULT TO CAPTURE?
Fe2O3 Aerosols Positive corona DE: 0.575mm φ
80
5 kV X-ray OFF 5 kV X-ray ON 8 kV X-ray OFF 8 kV X-ray ON 9 kV X-ray ON 10 kV X-ray OFF 10 kV X-ray ON
60
V=10 kV X-ray ON
V=10 kV X-ray OFF
0.35 0.30 0.25
V=0 kV X-ray OFF
10 6
0.20 0.15 0.10 0.05
10 5
0.00 0
3
6
9
12
15
18
21
24
27
Time (min)
40
Variation in total particle concentration And average charge with time
20
0
30
600
100
Diameter, nm
Capture efficiencies of Fe2O3 aerosol with and without X-ray irradiation
Enhance Particle Charging in ESPS using Soft X-rays to enhance Unipolar Coronas
Biswas, Kulkarni, Namiki – US Patent Pending, 2002
J. Aerosol Sci., vol. 33 (9), 1279-1298, 2002.
0.40
V=0 kV X-ray OFF
V=10 kV X-ray OFF
V=0 kV X-ray ON
Voltage,V=0 kV X-ray OFF
Particle number concentration (#/cm3)
% Capture efficiency, η
100
10 7
30
Average charge per particle (unit electron charge)
• minimum mobility due to balance of competing mechanisms • In ESP, limitations in charging small particles
Toluene gas TiO2
T
TiO2
T T
TiO2
T
Can also use this device to trap airborne bacteria (easily) and viruses (nanometer sized particles) and inactivate them.
TiO2
T TiO2
TiO2
T
TiO2 TiO2
e-
T CO2
TiO2
Unipolar ion due to TiO2 corona
TiO2
+ +
+ +
+ +
TiO2
- -+ e + -
+
+
TiO2
Bipolar ion TiO2 created by photo TiO2 ionization of gas TiO2
T
Soft X-ray emitter
Nanostructured photocatalyst coating
TiO2
CO2
TiO2
TiO2
Discharge Electrode (DE)
Collecting Electrode of ESP
AAQRL Aerosol and Air Quality Research Laboratory
4 log removal demonstrated Hogan, Lee, Biswas (2004) Paper to appear Aerosol Sci. Technol
The Synthesis and Characterization of Titanium Dioxide Photocatalysts and Their Performance in Selected Applications of Air and Water Remediation and Organic Synthesis
0.07 Cyclohexanol Cyclohexanone
0.06 0.05 0.04 0.03 0.02 0.01
he xa ne t ra ch lo r ch ide lo ro di ch fo rm lo ro m et ha ne ac et on iso e pr op an ol be nz en e nhe xa ne
0
te
ca
rb
on
cy
clo
product formed (mmoles)
-1
• •
Design and develop methods for using flame aerosol reactors for synthesizing nanostructured titania powders, doped titania, and films Investigate the role of particle size on photoactivity Demonstrate the effects of iron-doping titania on light absorption and photoactivity Apparent Photooxidation Rate Constant for Phenol (min )
•
Solvent
Product Formation in Various Solvents
AAQRL Aerosol and Air Quality Research Laboratory
0.030 Ishihara S T -01 0.025
0.020 A natase + R utile 0.015
0.010
0.005 A natase 0.000 R utile
0
100
200
300
400
500
600
700
P a rticle S ize (nm )
Effect of Particle Size on Photo-oxidation Rate of Phenol
Effective Light Distributed TiO2 Film Reactor Out Cooling Water In
Oxygen
Methane Mass Flow Controller
Mass Flow Controller
Clean Air Mass Flow Controller
Collision Nebulizer Titanium Isopropoxide
1
dipcoating
0.9 0.8
silica mat
efficiency
0.7 0.6 0.5
steel plate
0.4 0.3 0.2 0.1 0
15V
18V
AAQRL Aerosol and Air Quality Research Laboratory
Research Objective: Developing effective light distributed nanostructured TiO2 film reactors for photo-oxidation applications in compact geometries
Transport Characteristics of Fine Particles in Magnetic Fields Research Objectives: •Recovery of Magnetic Oxides from Combustor Exhausts •To capture ferromagnetic particles using magnetic field
1 .2
1 .0
Capture effciency
0 .8
10
0 .4
0
0 .2 -2
0 .0
-4
-0 .2
T h e o r e tic a l
3
collision frequency(cm /sec)
10
E x p e r im e n ta l 0 .6
10
10
10
10
0
10
15
20
C a p tu r e e ffic e n c y in M a g n e tic F ie ld
-8
-1 0
10
5
G a p (b e tw e e n th e tu b e a n d th e u p p e r s u rfa c e o f m a g n e t)in m m
-6
-7
-6
10 d ia m e te r j ( m )
10
-5
Collision frequency function in magnetic field
AAQRL
Aerosol and Air Quality Research Laboratory
25
ANGULAR DISTRIBUTION OF SCATTERED INTENSITY FOR ROD SHAPED MICRO-ORGANISMS
ANGULAR DISTRIBUTION OF SCATTERED INTENSITY
Sethi, Patnaik, Biswas, Clark and Rice (1997) Evaluation of optical detection methods for waterborne suspensions, J AWWA, 89, 97-112.
AAQRL Aerosol and Air Quality Research Laboratory
Electrostatic Water Filters Simplified Electric Field Lines
Particles
Research Objective • Capturing fine colloidal particles in drinking water using electrical fields in granular packed beds
Sand grains Outer Cylindrical electrode
Central electrode
Sample Inlet Particle Injection Point
Inlet head peizometer
Inlet Sample Port Air flush line
Cathode
Power Supply
C/Co (Turbidity)
Fluid Flow Lines
Anode Outlet head peizometer
Fine sand bed
10 V, CE:negative
10 V, CE:positive
No Field
20 V, CE Negative
5 V, CE:negative
20 V, CE:positive
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
No field
5 V, CE: negative 10 V; CE: 20 V, CE: positive
20 V, CE: negative
0
50
100
150
200
Time, minutes Sample outlet
AAQRL Aerosol and Air Quality Research Laboratory
10 V, CE: negative
250
300
350