Tio2 Quality

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tio2 Quality as PDF for free.

More details

  • Words: 1,231
  • Pages: 11
Overview of AAQRL activities www.aerosols.wustl.edu/aaqrl/

Aerosol and Air Quality Research Laboratory Aerosol Formation and Capture

SYNTHESIS & PROCESSING

CONTROL & CAPTURE

•Aerosol Flame Reactors •Aerosol Furnace Reactors •Pristine and Doped TiO2 •Nanostructured Coatings •Nanocomposite Magnetic Oxides

Ambient Aerosols and Air Quality •Diesel Engine Exhausts & Children’s Health • Morphology of Ambient PM • Health Effects of Nanoparticles

•Soft X-Ray/Unipolar Coronas for Particle Charging & Capture •Capture in Magnetic Fields • Photocatalysis using TiO2 – inactivation of bioaerosols and organics •Oxygen Enriched Coal Combustion /Hg Capture

AAQRL Aerosol and Air Quality Research Laboratory

Colloids/Bio-colloids

•Detection of Micro-organisms •Electrostatic Filtration •Inactivation of bio-agents

Dr. Pratim Biswas Stifel and Quinette Jens Professor Director, Environmental Engr. Sci. Campus Box 1180, WUStL St. Louis, MO 63130 Email: [email protected] Tel: 314-935-5482

Aerosol and Air Quality Research Laboratory AAQRL (Urbauer Hall 311) Faculty Dr. Pratim Biswas Graduate Students Soubir Basak Kuk Cho Chris Hogan Shaohua Hu Prakash Kumar Rafael McDonald Ayano Niwa Marina Smallwood Achariya Suriyawong Post-doctoral Fellows: Dr. M. H. Lee

AAQRL

Undergraduate Students David Weingeist Michael Mendehall Bukky Akiniemi Outside Collaborators: Dr. M. Buller, SLU Dr. Sahle-Demessie, US EPA Dr. Phil Fraundorf, UMSL Dr. Grace LeMasters, University of Cincinnati Dr. G. Oberdorster, U of Rochester Dr. David Pui, Univ. of Minnesota Dr. Chang Yu Wu, University of Florida Dr. N. Namiki, Kanazawa Univ. Drs. Axelbaum, Chen, Khomami, Indeck, Giammar, Angenent, Stanley (WUStL)

Aerosol and Air Quality Research Laboratory

Understand formation of stable clusters from molecular state; and growth dynamics of these particles

Fly Ash (volatile Metals) Molecular State (Vapor)

Stable Clusters (Particles)

Cenospheric Fly Ash Engineered Nanoparticles •Energy and Fuels, vol. 15(3), 510-516, 2001. •J.of Nanoparticle Research, vol. 5 (3-4): 259-268, 2003.

Resultant size distribution with peaks in submicrometer size range (DIFFICULT TO CAPTURE IN PARTICLE CONTROL DEVICES)

J. Air and Waste Mgmt. Associn., vol. 54, 149-156, 2004.

AAQRL Aerosol and Air Quality Research Laboratory

Inject sorbent precursors to form agglomerated structures that have a very high surface area and chemical affinity for trace species SUBMICROMETER MODE SUPPRESSED; READILY CAPTURED

WHY ARE SUBMICROMETER SIZED PARTICLES DIFFICULT TO CAPTURE?

Fe2O3 Aerosols Positive corona DE: 0.575mm φ

80

5 kV X-ray OFF 5 kV X-ray ON 8 kV X-ray OFF 8 kV X-ray ON 9 kV X-ray ON 10 kV X-ray OFF 10 kV X-ray ON

60

V=10 kV X-ray ON

V=10 kV X-ray OFF

0.35 0.30 0.25

V=0 kV X-ray OFF

10 6

0.20 0.15 0.10 0.05

10 5

0.00 0

3

6

9

12

15

18

21

24

27

Time (min)

40

Variation in total particle concentration And average charge with time

20

0

30

600

100

Diameter, nm

Capture efficiencies of Fe2O3 aerosol with and without X-ray irradiation

Enhance Particle Charging in ESPS using Soft X-rays to enhance Unipolar Coronas

Biswas, Kulkarni, Namiki – US Patent Pending, 2002

J. Aerosol Sci., vol. 33 (9), 1279-1298, 2002.

0.40

V=0 kV X-ray OFF

V=10 kV X-ray OFF

V=0 kV X-ray ON

Voltage,V=0 kV X-ray OFF

Particle number concentration (#/cm3)

% Capture efficiency, η

100

10 7

30

Average charge per particle (unit electron charge)

• minimum mobility due to balance of competing mechanisms • In ESP, limitations in charging small particles

Toluene gas TiO2

T

TiO2

T T

TiO2

T

Can also use this device to trap airborne bacteria (easily) and viruses (nanometer sized particles) and inactivate them.

TiO2

T TiO2

TiO2

T

TiO2 TiO2

e-

T CO2

TiO2

Unipolar ion due to TiO2 corona

TiO2

+ +

+ +

+ +

TiO2

- -+ e + -

+

+

TiO2

Bipolar ion TiO2 created by photo TiO2 ionization of gas TiO2

T

Soft X-ray emitter

Nanostructured photocatalyst coating

TiO2

CO2

TiO2

TiO2

Discharge Electrode (DE)

Collecting Electrode of ESP

AAQRL Aerosol and Air Quality Research Laboratory

4 log removal demonstrated Hogan, Lee, Biswas (2004) Paper to appear Aerosol Sci. Technol

The Synthesis and Characterization of Titanium Dioxide Photocatalysts and Their Performance in Selected Applications of Air and Water Remediation and Organic Synthesis

0.07 Cyclohexanol Cyclohexanone

0.06 0.05 0.04 0.03 0.02 0.01

he xa ne t ra ch lo r ch ide lo ro di ch fo rm lo ro m et ha ne ac et on iso e pr op an ol be nz en e nhe xa ne

0

te

ca

rb

on

cy

clo

product formed (mmoles)

-1

• •

Design and develop methods for using flame aerosol reactors for synthesizing nanostructured titania powders, doped titania, and films Investigate the role of particle size on photoactivity Demonstrate the effects of iron-doping titania on light absorption and photoactivity Apparent Photooxidation Rate Constant for Phenol (min )



Solvent

Product Formation in Various Solvents

AAQRL Aerosol and Air Quality Research Laboratory

0.030 Ishihara S T -01 0.025

0.020 A natase + R utile 0.015

0.010

0.005 A natase 0.000 R utile

0

100

200

300

400

500

600

700

P a rticle S ize (nm )

Effect of Particle Size on Photo-oxidation Rate of Phenol

Effective Light Distributed TiO2 Film Reactor Out Cooling Water In

Oxygen

Methane Mass Flow Controller

Mass Flow Controller

Clean Air Mass Flow Controller

Collision Nebulizer Titanium Isopropoxide

1

dipcoating

0.9 0.8

silica mat

efficiency

0.7 0.6 0.5

steel plate

0.4 0.3 0.2 0.1 0

15V

18V

AAQRL Aerosol and Air Quality Research Laboratory

Research Objective: Developing effective light distributed nanostructured TiO2 film reactors for photo-oxidation applications in compact geometries

Transport Characteristics of Fine Particles in Magnetic Fields Research Objectives: •Recovery of Magnetic Oxides from Combustor Exhausts •To capture ferromagnetic particles using magnetic field

1 .2

1 .0

Capture effciency

0 .8

10

0 .4

0

0 .2 -2

0 .0

-4

-0 .2

T h e o r e tic a l

3

collision frequency(cm /sec)

10

E x p e r im e n ta l 0 .6

10

10

10

10

0

10

15

20

C a p tu r e e ffic e n c y in M a g n e tic F ie ld

-8

-1 0

10

5

G a p (b e tw e e n th e tu b e a n d th e u p p e r s u rfa c e o f m a g n e t)in m m

-6

-7

-6

10 d ia m e te r j ( m )

10

-5

Collision frequency function in magnetic field

AAQRL

Aerosol and Air Quality Research Laboratory

25

ANGULAR DISTRIBUTION OF SCATTERED INTENSITY FOR ROD SHAPED MICRO-ORGANISMS

ANGULAR DISTRIBUTION OF SCATTERED INTENSITY

Sethi, Patnaik, Biswas, Clark and Rice (1997) Evaluation of optical detection methods for waterborne suspensions, J AWWA, 89, 97-112.

AAQRL Aerosol and Air Quality Research Laboratory

Electrostatic Water Filters Simplified Electric Field Lines

Particles

Research Objective • Capturing fine colloidal particles in drinking water using electrical fields in granular packed beds

Sand grains Outer Cylindrical electrode

Central electrode

Sample Inlet Particle Injection Point

Inlet head peizometer

Inlet Sample Port Air flush line

Cathode

Power Supply

C/Co (Turbidity)

Fluid Flow Lines

Anode Outlet head peizometer

Fine sand bed

10 V, CE:negative

10 V, CE:positive

No Field

20 V, CE Negative

5 V, CE:negative

20 V, CE:positive

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

No field

5 V, CE: negative 10 V; CE: 20 V, CE: positive

20 V, CE: negative

0

50

100

150

200

Time, minutes Sample outlet

AAQRL Aerosol and Air Quality Research Laboratory

10 V, CE: negative

250

300

350

Related Documents

Tio2 Quality
November 2019 12
Tio2 Msds
November 2019 21
Tio2 Financial
June 2020 11
Tio2 Nano.docx
June 2020 8
Tio2 Production
June 2020 10
Tio2 As Photocatalyst
June 2020 4