Thermodynamics MTX 220 Formules Chapter 2 – Concepts & Definitions Formule Pressure
•
Units
P=
Units Pa
F A
1 Pa = 1 N / m2 1 bar = 105 Pa = 0.1 Mpa 1 atm = 101325 Pa
Specific Volume
v=
V m
Density
m3 / kg
m ρ= V
kg / m3
1 ρ= v
Static Pressure Variation
Pa
∆P = ρ gh Absolute Temperature
↑= − , ↓ = +
T ( K ) = T (°C ) + 273.15
Chapter 3 – Properties of a Pure Substance Formule
Units
Quality
(vapour mass fraction)
x=
mvapor mtot (Liquid mass fraction)
1− x =
mliquid mtot
Specific Volume
m3 / kg
v = v f + xv fg Average Specific Volume
(only two phase
v = (1 − x )v f + xvg
m3 / kg
mixture)
Ideal –gas law
P << Pc •
Z =1
T << Tc
Equations
Pv = RT •
Universal Gas Constant
•
Gas Constant
PV = mRT = nRT kJ / kmol K
R = 8.3145 = molekulêre mass
R R= M Compressibility Factor
Z
M
kJ / kg K
Pv = ZRT
Reduced Properties
,
Pr =
P Pc
Tr =
T Tc
Chapter 4 – Work & Heat Formule
Units
Displacement Work
2
1
Integration
J
2
W = ∫ Fdx = ∫ PdV 1
J
2
W = ∫ PdV = P( V2 −V1 ) 1
Specific Work
(work per unit mass)
W w= m Power (rate of work) •
Velocity
•
Torque
J / kg
W&= FV = PV&= T ω
W
V = rω
rad / s
T = Fr
Nm
Polytropic Process
( n ≠ 1)
n n PV n = Const = PV 1 1 = PV 2 2
Pv n = C •
Polytropic Exponent
•
n=1
Polytropic Process Work
P ln 2 P1 n= V ln 1 V2
PV = Const = PV 1 1 =P 2 V2 W2 =
1
•
n=1
W2 = PV 2 2 ln
1
Adiabatic Process
1 (PV 2 2 − PV 1 1) 1− n
Q=0
V2
V1
n≠ 1
J
J
Conduction Heat Transfer
,
,
Q&= hA∆T Radiation Heat Transfer
W
=convection coefficient
W
k
dT Q&= −kA dx Convection Heat Transfer
=conductivity
h
4 Q&= εσ A(Ts4 − Tamb )
W
Terminology = heat
Q = heat transferred during the process between state 1 and state 2 1
Q2 = rate of heat transfer
Q& = work
W = work done during the change from state 1 to state 2
W2
1
= rate of work = Power. 1 W=1 J/s
W&
Chapter 5 – The First Law of Thermodynamics Formule
Units
Total Energy
E = U + KE + PE → dE = dU+ d (KE +) d (PE )
J
Energy
dE = δ Q − δ W → E2 − E1 =1 Q2 −1 W2
J
KE = 0.5mV
J
Kinetic Energy Potential Energy
Internal Energy
Specific Internal Energy of Saturated Steam (two-phase mass average) Total Energy
PE = mgZ → PE2 − PE1 = mg( Z2 −Z1)
u = (1 − x)u f + xu g
kJ / kg
u = u f + xu fg
m(V22 − V12 ) + mg( Z2 − Z1) = 1 Q2 −1W2 2
J
e = u + 0.5V 2 + gZ
Enthalpy
H = U + PV
Specific Enthalpy
h = u + Pv
For Ideal Gasses
Pv = RT and u = f( T)
•
Enthalpy
h = u + Pv = u + RT
•
R Constant
u = f ( t) → h = f ( T )
Specific Enthalpy for Saturation State (two-phase mass average)
J
U = U liq + U vap → mu = mliq u f + mvap ug
U 2 − U1 + Specific Energy
2
h = (1 − x )h f + xhg h = h f + xh fg
kJ / kg
kJ / kg
Specific Heat at Constant Volume
Cv =
1 δQ 1 δU δ u = = m δ T v m δ T v δ T v
→ (ue − ui ) = Cv (Te −Ti ) Specific Heat at Constant Pressure
Cp =
1 δQ 1 δH δh = = m δ T p m δ T p δ T p
→ (he − hi ) =C p (Te −Ti ) Solids & Liquids
Incompressible, so v=constant (Tables A.3 & A.4)
C = Cc = Cp
u2 − u1 = C (T2 − T1) h2 − h1 = u2 − u1 + v( P2 − P1) Ideal Gas
h = u + Pv = u + RT u2 − u1 ≅ Cv ( T2 − T1) h2 − h1 ≅ C p (T2 − T1 )
Energy Rate
E&= Q&− W& ( rate = +in − out) → E2 − E1 = 1 Q2 − 1W2 ( change = +in −out)
Chapter 6 – First-Law Analysis for A Control Volume Formule Volume Flow Rate
Units
(using average velocity)
V&= ∫ V dA = AV Mass Flow Rate
(using average values)
kg / s
V m&= ∫ ρVdA = ρ AV = A v Power
& p VT W&= mC
& v VT W&= mC
Flow Work Rate
& W&flow = PV&= mPv
Flow Direction
From higher P to lower P unless significant KE or PE
•
Total Enthalpy
Instantaneous Process • Continuity Equation •
Energy Equation
W
& m&= V v
htot = h + 1 V 2 + gZ 2
m&C .V . = ∑ m&i − ∑ m&e First Law
E&C .V . = Q&C .V . − W&C .V . +∑ & mi htot i −∑ & me htot e
(
)
dE → Q&+ ∑ m&i (hi + 1 V 2+ gZ i )= + ∑ m&e he+ 1 V 2+ gZe − W & 2 2 dt Steady State Process •
No Storage
•
Continuity Equation
A steady-state has no storage effects, with all properties constant with time
m&C .V . = 0, E&C .V . = 0 (in = out)
∑ m& = ∑ m& i
e
•
Energy Equation
(in = out) First Law
& +∑m &i htot i = W &e htot e Q&C .V . + ∑ m C .V .
(
→ Q&+ ∑ m&i (hi + 1 V 2 + gZ i ) = W&+ ∑ m&e h e+ 1 V 2+ gZ e 2 2 •
•
•
Specific Heat Transfer Specific Work
SS Single Flow Eq.
Transient Process
kJ / kg
Q& q = C .V . m&
w=
)
W&C .V . m&
kJ / kg
(in = out)
q + htot i = w + htot e Change in mass (storage) such as filling or emptying of a container.
•
Continuity Equation
m2 − m1 = ∑ mi − ∑ me
•
Energy Equation
E2 − E1 = QC V. − WC V. . +∑ mi htot i −∑ me htot e
(
)
(
)
E2 − E1 = m2 u2 + 1 V22 + gZ2 − m1 u1 +1 V12 +gZ1 2 2
(
)
(
)
QC .V + ∑ mi htot i = ∑ me htot e + m2 u2 + 1 V2 2 + gZ2 − m1 u1 + 1 V2 2 + gZ1 − W 2 2 C .V . C .V .
Chapter 7 – The Second Law of Thermodynamics Formule All
Units
can also be rates W, Q
W&, Q&
Heat Engine
WHE = QH − QL •
Thermal efficiency
•
Carnot Cycle
η HE =
WHE Q = 1− L QH QH
ηThermal = 1 − •
Real Heat Engine
η HE =
QL T = 1− L QH TH
WHE T ≤ ηCarnot HE = 1 − L QH TH
Heat Pump
WHP = QH − QL •
Coefficient of Performance
•
Carnot Cycle
•
Real Heat Pump
Refrigerator •
Coefficient of Performance
•
Carnot Cycle
′ = β HP
QH QH = WHP QH − QL
′ = β HP
QH TH = QH − QL TH − TL
β HP =
QH TH ≤ βCarnot HP = WHP TH − TL
WREF = QH − QL
β REF =
β=
QL QL = WREF QH − QL
QL TL = QH − QL TH − TL
•
Real Refrigerator
Absolute Temp.
β REF =
QL TL ≤ βCarnot REF = WREF TH − TL
TL QL = TH QH
Chapter 8 – Entropy Formule Inequality of Clausis
Entropy
Change of Entropy
Specific Entropy
δQ
Ñ ∫ T
≤0
δQ dS ≡ T rev
kJ / kgK
δQ S 2 − S1 = ∫ T rev 1
kJ / kgK
s = (1 − x ) s f + xsg
kJ / kgK
2
s = s f + xs fg Entropy Change
Units
•
Carnot Cycle
Isothermal Heat Transfer: 2
S 2 − S1 =
1 Q δQ = 1 2 ∫ TH 1 TH
Reversible Adiabatic (Isentropic Process):
δQ dS = T rev Reversible Isothermal Process:
δQ 3 Q4 S 4 − S3 = ∫ = T rev TL 3 4
Reversible Adiabatic (Isentropic Process): Entropy decrease in process 3-4 = the entropy increase in process 1-2. •
Reversible Heat-Transfer Process
Gibbs Equations
s2 − s1 = s fg =
2 2 h 1 δQ 1 q = δ Q = 1 2 = fg ∫ ∫ m 1 T rev mT 1 T T
Tds = du + Pdv Tds = dh − vdP
Entropy Generation
dS =
δQ + δ Sgen T
δ Wirr = PdV − T δ Sgen 2
δQ + 1 S2 gen T 1 2
S 2 − S1 = ∫ dS = ∫ 1
Entropy Balance Eq.
VEntropy = + in − out + gen
Principle of the Increase of Entropy
dSnet = dSc. m. + dSsurr =∑ δ S gen ≥0
Entropy Change •
Solids & Liquids
s2 − s1 = c ln
T2 T1
Reversible Process:
dsgen = 0 Adiabatic Process:
dq = 0 •
Ideal Gas
Constant Volume: 2
s2 − s1 = ∫ Cv0 1
dT v + R ln 2 v1 T
Constant Pressure: 2
s2 − s1 = ∫ Cp0 1
dT P − R ln 2 P1 T
Constant Specific Heat:
s2 − s1 = Cv0 ln
s2 − s1 = Cp0 ln Standard Entropy
T
s =∫ 0 T
T0
Change in Standard Entropy
C p0 T
T2
T1
− R ln
P2
T1
+ R ln
v2
v1
P1 kJ / kgK
dT
s2 − s1 = ( sT02 − sT01 ) − R ln P2
T2
kJ / kgK
P1
Ideal Gas Undergoing an Isentropic Process
s2 − s1 = 0 = Cp0 ln T2
T1
− R ln P2
but
T P → 2 = 2 T1 P1
P1
,
C − Cv 0 k − 1 R = p0 = C p0 C p0 k
= ratio of
k=
C p0 Cv 0
specific heats
T v ⇒ 2 = 1 T1 v 2
k −1
,
P2 v 1 = P1 v 2
k
Special case of polytropic process where k = n:
Pv k = const Reversible Polytropic Process for Ideal Gas
n n PV n = const = PV 1 1 = PV 2 2
n
P V → 2 = 1 , P1 V2
•
•
Work
T2 P2 = T1 P1
2
2
1
1
1W2 = ∫ PdV = const ∫
Values for n
n
V = 1 V2
n−1
dV PV − PV mR (T2 − T1 ) = 2 2 1 1= n V 1− n 1− n
Isobaric process:
Isothermal Process:
Isentropic Process:
n −1
R
Cp 0
Isochronic Process:
n = ∞,
v = const
Chapter 9 – Second-Law Analysis for a Control Volume Formule 2nd Law Expressed as a Change of Entropy
dSc.m. Q& = ∑ + S&gen dt T
Entropy Balance Eq.
rate of change = + in − out + generation
→
Unit s
& dSC .V . Q = ∑ m&i si − ∑ m&e se + ∑ C .V . +S&gen dt T
where
SC .V . = ∫ ρ sdV = mc.v.s = m As A + m Bs B + ... and
S&gen = ∫ ρ s&gen dV = S&gen .A + S& gen .B + ... Steady State Process
dSC .V . =0 dt •
→
∑ m&e se −
Q&C .V . & + Sgen C .V . T
∑ m&i si = ∑
Continuity eq.
m&i = m&e = m&
Q&C .V . & + Sgen C .V . T
⇒ m&( se − si ) = ∑
•
Adiabatic process
Transient Process
se = si + sgen ≥ si
Q& d ( ms ) C .V . = ∑ m&i si − ∑ m&e se + ∑ C.V . + S&gen dt T
→ ( m2 s2 − m1 s1 ) C .V . = Reversible Steady State Process • If Process Reversible & Adiabatic
∑ mi si − ∑ me se +
Q&C .V . dt + 1 S& 2 gen T 0 t
∫
se = si e
he − hi = ∫ vdP i
Vi 2 − Ve 2 + g ( Zi − Ze ) 2 e Vi 2 − Ve 2 = − ∫ vdP + + g ( Zi − Ze ) 2 i
w = ( hi − he ) +
•
If Process is Reversible and Isothermal
m&( se − si ) =
Q 1 Q&C .V . = C .V . ∑ T C .V . T
or
T ( se − si ) = •
Incompressible Fluid
e Q&C .V . = q → T ( se − si ) = ( he − hi ) − ∫ vdP m& i
Bernoulli Eq.
v ( Pe − Pi ) +
V − Vi + g ( Ze − Z i) = 0 2 2 e
2
•
Reversible Polytropic Process for Ideal Gas
e
w = − ∫ vdP and i
e
e
i
i
w = − ∫ vdP = −C ∫ =− •
Isothermal Process (n=1)
Principle of the Increase of Entropy
Pv n = const = C n
dP P
1
n
n nR ( Pe ve − Pv ( Te − Ti ) i i) = − n −1 n −1 e
e
i
i
w = − ∫ vdP = −C ∫
Pe dP = − Pv i i ln P Pi
dSnet dS C.V . dS surr = + = ∑ S&gen ≥ 0 dt dt dt
Efficiency •
Turbine
Turbine work is out
η= •
•
•
Compressor (Pump)
Cooled Compressor
wa hi − he = ws hi − hes Compressor work is in
η=
ws hi − hes = wa hi − he
η=
wT w
Nozzle
Kinetic energy is out
1 V2 e η= 2 2 1 V 2 es