Thermodynamic Formulas

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Thermodynamic Formulas as PDF for free.

More details

  • Words: 2,614
  • Pages: 17
Thermodynamics MTX 220 Formules Chapter 2 – Concepts & Definitions Formule Pressure



Units

P=

Units Pa

F A

1 Pa = 1 N / m2 1 bar = 105 Pa = 0.1 Mpa 1 atm = 101325 Pa

Specific Volume

v=

V m

Density

m3 / kg



m ρ= V

kg / m3

1 ρ= v

Static Pressure Variation

Pa

∆P = ρ gh Absolute Temperature

↑= − , ↓ = +

T ( K ) = T (°C ) + 273.15

Chapter 3 – Properties of a Pure Substance Formule

Units

Quality

(vapour mass fraction)

x=

mvapor mtot (Liquid mass fraction)

1− x =

mliquid mtot

Specific Volume

m3 / kg

v = v f + xv fg Average Specific Volume

(only two phase

v = (1 − x )v f + xvg

m3 / kg

mixture)

Ideal –gas law

P << Pc •

Z =1

T << Tc

Equations

Pv = RT •

Universal Gas Constant



Gas Constant

PV = mRT = nRT kJ / kmol K

R = 8.3145 = molekulêre mass

R R= M Compressibility Factor

Z

M

kJ / kg K

Pv = ZRT

Reduced Properties

,

Pr =

P Pc

Tr =

T Tc

Chapter 4 – Work & Heat Formule

Units

Displacement Work

2

1

Integration

J

2

W = ∫ Fdx = ∫ PdV 1

J

2

W = ∫ PdV = P( V2 −V1 ) 1

Specific Work

(work per unit mass)

W w= m Power (rate of work) •

Velocity



Torque

J / kg

W&= FV = PV&= T ω

W

V = rω

rad / s

T = Fr

Nm

Polytropic Process

( n ≠ 1)

n n PV n = Const = PV 1 1 = PV 2 2

Pv n = C •

Polytropic Exponent



n=1

Polytropic Process Work

P ln  2  P1  n=  V ln  1   V2 

PV = Const = PV 1 1 =P 2 V2 W2 =

1



n=1

 W2 = PV 2 2 ln  

1

Adiabatic Process

1 (PV 2 2 − PV 1 1) 1− n

Q=0

V2

 V1 

n≠ 1

J

J

Conduction Heat Transfer

,

,

Q&= hA∆T Radiation Heat Transfer

W

=convection coefficient

W

k

dT Q&= −kA dx Convection Heat Transfer

=conductivity

h

4 Q&= εσ A(Ts4 − Tamb )

W

Terminology = heat

Q = heat transferred during the process between state 1 and state 2 1

Q2 = rate of heat transfer

Q& = work

W = work done during the change from state 1 to state 2

W2

1

= rate of work = Power. 1 W=1 J/s

W&

Chapter 5 – The First Law of Thermodynamics Formule

Units

Total Energy

E = U + KE + PE → dE = dU+ d (KE +) d (PE )

J

Energy

dE = δ Q − δ W → E2 − E1 =1 Q2 −1 W2

J

KE = 0.5mV

J

Kinetic Energy Potential Energy

Internal Energy

Specific Internal Energy of Saturated Steam (two-phase mass average) Total Energy

PE = mgZ → PE2 − PE1 = mg( Z2 −Z1)

u = (1 − x)u f + xu g

kJ / kg

u = u f + xu fg

m(V22 − V12 ) + mg( Z2 − Z1) = 1 Q2 −1W2 2

J

e = u + 0.5V 2 + gZ

Enthalpy

H = U + PV

Specific Enthalpy

h = u + Pv

For Ideal Gasses

Pv = RT and u = f( T)



Enthalpy

h = u + Pv = u + RT



R Constant

u = f ( t) → h = f ( T )

Specific Enthalpy for Saturation State (two-phase mass average)

J

U = U liq + U vap → mu = mliq u f + mvap ug

U 2 − U1 + Specific Energy

2

h = (1 − x )h f + xhg h = h f + xh fg

kJ / kg

kJ / kg

Specific Heat at Constant Volume

Cv =

1 δQ  1  δU   δ u    =   =  m  δ T v m  δ T v  δ T  v

→ (ue − ui ) = Cv (Te −Ti ) Specific Heat at Constant Pressure

Cp =

1  δQ  1 δH   δh    =   =  m  δ T  p m  δ T  p  δ T p

→ (he − hi ) =C p (Te −Ti ) Solids & Liquids

Incompressible, so v=constant (Tables A.3 & A.4)

C = Cc = Cp

u2 − u1 = C (T2 − T1) h2 − h1 = u2 − u1 + v( P2 − P1) Ideal Gas

h = u + Pv = u + RT u2 − u1 ≅ Cv ( T2 − T1) h2 − h1 ≅ C p (T2 − T1 )

Energy Rate

E&= Q&− W& ( rate = +in − out) → E2 − E1 = 1 Q2 − 1W2 ( change = +in −out)

Chapter 6 – First-Law Analysis for A Control Volume Formule Volume Flow Rate

Units

(using average velocity)

V&= ∫ V dA = AV Mass Flow Rate

(using average values)

kg / s

V m&= ∫ ρVdA = ρ AV = A v Power

& p VT W&= mC

& v VT W&= mC

Flow Work Rate

& W&flow = PV&= mPv

Flow Direction

From higher P to lower P unless significant KE or PE



Total Enthalpy

Instantaneous Process • Continuity Equation •

Energy Equation

W

& m&= V v

htot = h + 1 V 2 + gZ 2

m&C .V . = ∑ m&i − ∑ m&e  First Law

E&C .V . = Q&C .V . − W&C .V . +∑ & mi htot i −∑ & me htot e

(

)

dE → Q&+ ∑ m&i (hi + 1 V 2+ gZ i )= + ∑ m&e he+ 1 V 2+ gZe − W & 2 2 dt Steady State Process •

No Storage



Continuity Equation

A steady-state has no storage effects, with all properties constant with time

m&C .V . = 0, E&C .V . = 0 (in = out)

∑ m& = ∑ m& i

e



Energy Equation

(in = out)  First Law

& +∑m &i htot i = W &e htot e Q&C .V . + ∑ m C .V .

(

→ Q&+ ∑ m&i (hi + 1 V 2 + gZ i ) = W&+ ∑ m&e h e+ 1 V 2+ gZ e 2 2 •





Specific Heat Transfer Specific Work

SS Single Flow Eq.

Transient Process

kJ / kg

Q& q = C .V . m&

w=

)

W&C .V . m&

kJ / kg

(in = out)

q + htot i = w + htot e Change in mass (storage) such as filling or emptying of a container.



Continuity Equation

m2 − m1 = ∑ mi − ∑ me



Energy Equation

E2 − E1 = QC V. − WC V. . +∑ mi htot i −∑ me htot e

(

)

(

)

E2 − E1 = m2 u2 + 1 V22 + gZ2 − m1 u1 +1 V12 +gZ1 2 2 

(

)

(

)

QC .V + ∑ mi htot i = ∑ me htot e +  m2 u2 + 1 V2 2 + gZ2 − m1 u1 + 1 V2 2 + gZ1  − W 2 2   C .V . C .V .

Chapter 7 – The Second Law of Thermodynamics Formule All

Units

can also be rates W, Q

W&, Q&

Heat Engine

WHE = QH − QL •

Thermal efficiency



Carnot Cycle

η HE =

WHE Q = 1− L QH QH

ηThermal = 1 − •

Real Heat Engine

η HE =

QL T = 1− L QH TH

WHE T ≤ ηCarnot HE = 1 − L QH TH

Heat Pump

WHP = QH − QL •

Coefficient of Performance



Carnot Cycle



Real Heat Pump

Refrigerator •

Coefficient of Performance



Carnot Cycle

′ = β HP

QH QH = WHP QH − QL

′ = β HP

QH TH = QH − QL TH − TL

β HP =

QH TH ≤ βCarnot HP = WHP TH − TL

WREF = QH − QL

β REF =

β=

QL QL = WREF QH − QL

QL TL = QH − QL TH − TL



Real Refrigerator

Absolute Temp.

β REF =

QL TL ≤ βCarnot REF = WREF TH − TL

TL QL = TH QH

Chapter 8 – Entropy Formule Inequality of Clausis

Entropy

Change of Entropy

Specific Entropy

δQ

Ñ ∫ T

≤0

 δQ  dS ≡    T rev

kJ / kgK

 δQ  S 2 − S1 = ∫   T  rev 1

kJ / kgK

s = (1 − x ) s f + xsg

kJ / kgK

2

s = s f + xs fg Entropy Change

Units



Carnot Cycle

Isothermal Heat Transfer: 2

S 2 − S1 =

1 Q δQ = 1 2 ∫ TH 1 TH

Reversible Adiabatic (Isentropic Process):

 δQ  dS =    T rev Reversible Isothermal Process:

 δQ  3 Q4 S 4 − S3 = ∫   = T  rev TL 3 4

Reversible Adiabatic (Isentropic Process): Entropy decrease in process 3-4 = the entropy increase in process 1-2. •

Reversible Heat-Transfer Process

Gibbs Equations

s2 − s1 = s fg =

2 2 h 1  δQ  1 q = δ Q = 1 2 = fg   ∫ ∫ m 1  T  rev mT 1 T T

Tds = du + Pdv Tds = dh − vdP

Entropy Generation

dS =

δQ + δ Sgen T

δ Wirr = PdV − T δ Sgen 2

δQ + 1 S2 gen T 1 2

S 2 − S1 = ∫ dS = ∫ 1

Entropy Balance Eq.

VEntropy = + in − out + gen

Principle of the Increase of Entropy

dSnet = dSc. m. + dSsurr =∑ δ S gen ≥0

Entropy Change •

Solids & Liquids

s2 − s1 = c ln

T2 T1

Reversible Process:

dsgen = 0 Adiabatic Process:

dq = 0 •

Ideal Gas

Constant Volume: 2

s2 − s1 = ∫ Cv0 1

dT v + R ln 2 v1 T

Constant Pressure: 2

s2 − s1 = ∫ Cp0 1

dT P − R ln 2 P1 T

Constant Specific Heat:

s2 − s1 = Cv0 ln

s2 − s1 = Cp0 ln Standard Entropy

T

s =∫ 0 T

T0

Change in Standard Entropy

C p0 T

T2

T1

− R ln

P2

T1

+ R ln

v2

v1

P1 kJ / kgK

dT

s2 − s1 = ( sT02 − sT01 ) − R ln P2

T2

kJ / kgK

P1

Ideal Gas Undergoing an Isentropic Process

s2 − s1 = 0 = Cp0 ln T2

T1

− R ln P2

but

T P  → 2 = 2  T1  P1 

P1

,

C − Cv 0 k − 1 R = p0 = C p0 C p0 k

= ratio of

k=

C p0 Cv 0

specific heats

T v  ⇒ 2 = 1  T1  v 2 

k −1

,

P2  v 1  =  P1  v 2 

k

Special case of polytropic process where k = n:

Pv k = const Reversible Polytropic Process for Ideal Gas

n n PV n = const = PV 1 1 = PV 2 2

n

P V  → 2 = 1  , P1  V2 





Work

T2  P2  =  T1  P1 

2

2

1

1

1W2 = ∫ PdV = const ∫

Values for n

n

V  = 1  V2 

n−1

dV PV − PV mR (T2 − T1 ) = 2 2 1 1= n V 1− n 1− n

Isobaric process:

Isothermal Process:

Isentropic Process:

n −1

R

Cp 0

Isochronic Process:

n = ∞,

v = const

Chapter 9 – Second-Law Analysis for a Control Volume Formule 2nd Law Expressed as a Change of Entropy

dSc.m. Q& = ∑ + S&gen dt T

Entropy Balance Eq.

rate of change = + in − out + generation



Unit s

& dSC .V . Q = ∑ m&i si − ∑ m&e se + ∑ C .V . +S&gen dt T

where

SC .V . = ∫ ρ sdV = mc.v.s = m As A + m Bs B + ... and

S&gen = ∫ ρ s&gen dV = S&gen .A + S& gen .B + ... Steady State Process

dSC .V . =0 dt •



∑ m&e se −

Q&C .V . & + Sgen C .V . T

∑ m&i si = ∑

Continuity eq.

m&i = m&e = m&

Q&C .V . & + Sgen C .V . T

⇒ m&( se − si ) = ∑



Adiabatic process

Transient Process

se = si + sgen ≥ si

Q& d ( ms ) C .V . = ∑ m&i si − ∑ m&e se + ∑ C.V . + S&gen dt T

→ ( m2 s2 − m1 s1 ) C .V . = Reversible Steady State Process • If Process Reversible & Adiabatic

∑ mi si − ∑ me se +

Q&C .V . dt + 1 S& 2 gen T 0 t



se = si e

he − hi = ∫ vdP i

Vi 2 − Ve 2 + g ( Zi − Ze ) 2 e Vi 2 − Ve 2 = − ∫ vdP + + g ( Zi − Ze ) 2 i

w = ( hi − he ) +



If Process is Reversible and Isothermal

m&( se − si ) =

Q 1 Q&C .V . = C .V . ∑ T C .V . T

or

T ( se − si ) = •

Incompressible Fluid

e Q&C .V . = q → T ( se − si ) = ( he − hi ) − ∫ vdP m& i

 Bernoulli Eq.

v ( Pe − Pi ) +

V − Vi + g ( Ze − Z i) = 0 2 2 e

2



Reversible Polytropic Process for Ideal Gas

e

w = − ∫ vdP and i

e

e

i

i

w = − ∫ vdP = −C ∫ =− •

Isothermal Process (n=1)

Principle of the Increase of Entropy

Pv n = const = C n

dP P

1

n

n nR ( Pe ve − Pv ( Te − Ti ) i i) = − n −1 n −1 e

e

i

i

w = − ∫ vdP = −C ∫

Pe dP = − Pv i i ln P Pi

dSnet dS C.V . dS surr = + = ∑ S&gen ≥ 0 dt dt dt

Efficiency •

Turbine

Turbine work is out

η= •





Compressor (Pump)

Cooled Compressor

wa hi − he = ws hi − hes Compressor work is in

η=

ws hi − hes = wa hi − he

η=

wT w

Nozzle

Kinetic energy is out

1 V2 e η= 2 2 1 V 2 es

Related Documents

14 Thermodynamic
October 2019 17
Formulas
May 2020 26
Formulas
December 2019 37
Formulas
June 2020 24