Thermal Power Station

  • Uploaded by: christian fruto
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Thermal Power Station as PDF for free.

More details

  • Words: 22,180
  • Pages: 46
Donate Now »

Thermal power station

A thermal power station is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser; this is known as a Rankine cycle. The greatest variation in the design of thermal power stations is due to the different fuel sources. Some prefer to use the term energy center because such facilities convert forms of heat energy into electrical energy. However, power plant is the most common term in the United States, while power station prevails in many Commonwealth countries and especially in the United Kingdom. Almost all coal, nuclear, geothermal, solar thermal electric, and waste incineration plants, as well as many natural gas power plants are thermal. Natural gas is frequently combusted in gas turbines as well as boilers. The waste heat from a gas turbine can be used to raise steam, in a combined cycle plant that improves overall efficiency.Such power stations are most usually constructed on a very large scale and designed for continuous operation.

History Reciprocating steam engines have been used for mechanical power sources since the 18th Century, with notable improvements being made by James Watt. The very first commercial central electrical generating stations in New York and London, in 1882, also used reciprocating steam engines. As generator sizes increased, eventually turbines took over due to higher efficiency and lower cost of construction. By the 1920s any central station larger than a few thousand kilowatts would use a turbine prime mover.

Efficiency The electric efficiency of a conventional thermal power station, considered as saleable energy produced at the plant busbars compared with the heating value of the fuel consumed, is typically 33 to 48% efficient, limited as all heat engines are by the laws of thermodynamics (See: Carnot cycle). The rest of the energy must leave the plant in the form of heat. This waste heat can be disposed of with cooling water or in cooling towers. If the waste heat is instead utilized for e.g. district heating, it is called cogeneration. An important class of thermal power station are associated with desalination facilities; these are typically found in desert countries with large supplies of natural gas and in these plants, freshwater production and electricity are equally important coproducts. Since the efficiency of the plant is fundamentally limited by the ratio of the absolute temperatures of the steam at turbine input and output, efficiency improvements require use of higher temperature, and therefore higher pressure, steam. Historically, other working fluids such as mercury have been experimentally used in a mercury vapour turbine power plant, since these can attain higher temperatures than water at lower working pressures. However, the obvious hazards of toxicity, and poor heat transfer properties, have ruled out mercury as a working fluid.

Diagram of a typical coal-fired thermal power station

Typical diagram of a coal-fired thermal power station 1. Cooling tower 10. Steam control valve 2. Cooling water pump 11. High pressure steam turbine 3. Three-phase transmission line 12. Deaerator 4. Step-up transformer 13. Feedwater heater 5. Electrical generator 14. Coal conveyor 6. Low pressure steam turbine 15. Coal hopper 7. Boiler feedwater pump 16. Coal pulverizer 8. Surface condenser 17. Boiler steam drum 9. Intermediate pressure steam 18. Bottom ash hopper turbine

Steam generator

19. Superheater 20. Forced draught (draft) fan 21. Reheater 22. Combustion air intake 23. Economiser 24. Air preheater 25. Precipitator 26. Induced draught (draft) fan 27. Flue gas stack

Schematic diagram of typical coal-fired power plant steam generator highlighting the air preheater (APH) location. (For simplicity, any radiant section tubing is not shown.) The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator. The generator includes the economizer, the steam drum, the chemical dosing equipment, and the furnace with its steam generating tubes and the superheater coils. Necessary safety valves are located at suitable points to avoid excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan, air preheater (APH), boiler furnace, induced draft (ID) fan, fly ash collectors (electrostatic precipitator or baghouse) and the flue gas stack.[1][2][3] For units over about 200 MW capacity, redundancy of key components is provided by installing duplicates of the FD fan, APH, fly ash collectors and ID fan with isolating dampers. On some units of about 60 MW, two boilers per unit may instead be provided.

Boiler furnace and steam drum

Once water inside the boiler or steam generator, the process of adding the latent heat of vaporization or enthalpy is underway. The boiler transfers energy to the water by the chemical reaction of burning some type of fuel. The water enters the boiler through a section in the convection pass called the economizer. From the economizer it passes to the steam drum. Once the water enters the steam drum it goes down the downcomers to the lower inlet waterwall headers. From the inlet headers the water rises through the waterwalls and is eventually turned into steam due to the heat being generated by the burners located on the front and rear waterwalls (typically). As the water is turned into steam/vapor in the waterwalls, the steam/vapor once again enters the steam drum. The steam/vapor is passed through a series of steam and water separators and then dryers inside the steam drum. The steam separators and dryers remove the water droplets from the steam and the cycle through the waterwalls is repeated. This process is known as natural circulation. The boiler furnace auxiliary equipment includes coal feed nozzles and igniter guns, soot blowers, water lancing and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after a trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal. The steam drum (as well as the superheater coils and headers) have air vents and drains needed for initial startup. The steam drum has internal devices that removes moisture from the wet steam entering the drum from the steam generating tubes. The dry steam then flows into the superheater coils. Geothermal plants need no boiler since they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. Nuclear plants also boil water to raise steam, either directly passing the working steam through the reactor or else using an intermediate heat exchanger.

Fuel preparation system

In coal-fired power stations, the raw feed coal from the coal storage area is first crushed into small pieces and then conveyed to the coal feed hoppers at the boilers. The coal is next pulverized into a very fine powder. The pulverizers may be ball mills, rotating drum grinders, or other types of grinders. Some power stations burn fuel oil rather than coal. The oil must kept warm (above its pour point) in the fuel oil storage tanks to prevent the oil from congealing and becoming unpumpable. The oil is usually heated to about 100°C before being pumped through the furnace fuel oil spray nozzles. Boilers in some power stations use processed natural gas as their main fuel. Other power stations may use processed natural gas as auxiliary fuel in the event that their main fuel supply (coal or oil) is interrupted. In such cases, separate gas burners are provided on the boiler furnaces.

Fuel firing system and igniter system From the pulverized coal bin, coal is blown by hot air through the furnace coal burners at an angle which imparts a swirling motion to the powdered coal to enhance mixing of the coal powder with the incoming preheated combustion air and thus to enhance the combustion. To provide sufficient combustion temperature in the furnace before igniting the powdered coal, the furnace temperature is raised by first burning some light fuel oil or processed natural gas (by

Air path External fans are provided to give sufficient air for combustion. The forced draft fan takes air from the atmosphere and, first warming it in the air preheater for better combustion, injects it via the air nozzles on the furnace wall. The induced draft fan assists the FD fan by drawing out combustible gases from the furnace, maintaining a slightly negative pressure in the furnace to avoid backfiring through any opening. At the furnace outlet, and before the furnace gases are handled by the ID fan, fine dust carried by the outlet gases is removed to avoid atmospheric pollution. This is an environmental limitation prescribed by law, and additionally minimizes erosion of the ID fan.

Auxiliary systems Fly ash collection Fly ash is captured and removed from the flue gas by electrostatic precipitators or fabric bag filters (or sometimes both) located at the outlet of the furnace and before the induced draft fan. The fly ash is periodically removed from the collection hoppers below the precipitators or bag filters. Generally, the fly ash is pneumatically transported to storage silos for subsequent transport by trucks or railroad cars. Bottom ash collection and disposal At the bottom of every boiler, a hopper has been provided for collection of the bottom ash from the bottom of the furnace. This hopper is always filled with water to quench the ash and clinkers falling down from the furnace. Some arrangement is included to crush the clinkers and for conveying the crushed clinkers and bottom ash to a storage site. Boiler make-up water treatment plant and storage Since there is continuous withdrawal of steam and continuous return of condensate to the boiler, losses due to blow-down and leakages have to be made up for so as to maintain the desired water level in the boiler steam drum. For this, continuous make-up water is added to the boiler water system. The impurities in the raw water input to the plant generally consist of calcium and magnesium salts which impart hardness to the water. Hardness in the make-up water to the boiler will form deposits on the tube water surfaces which will lead to overheating and failure of the tubes. Thus, the salts have to be removed from the water and that is done by a water demineralising treatment plant (DM). A DM plant generally consists of cation, anion and mixed bed exchangers. The final water from this process consists essentially of hydrogen ions and hydroxide ions which is the chemical composition of pure water. The DM water, being very pure, becomes highly corrosive once it absorbs oxygen from the atmosphere because of its very high affinity for oxygen absorption.

The capacity of the DM plant is dictated by the type and quantity of salts in the raw water input. However, some storage is essential as the DM plant may be down for maintenance. For this purpose, a storage tank is installed from which DM water is continuously withdrawn for boiler make-up. The storage tank for DM water is made from materials not affected by corrosive water, such as PVC. The piping and valves are generally of stainless steel. Sometimes, a steam blanketing arrangement or stainless steel doughnut float is provided on top of the water in the tank to avoid contact with atmospheric air. DM water make-up is generally added at the steam space of the surface condenser (i.e., the vacuum side). This arrangement not only sprays the water but also DM water gets deaerated, with the dissolved gases being removed by the ejector of the condenser itself.

Steam turbine-driven electric generator The steam turbine-driven generators have auxiliary systems enabling them to work satisfactorily and safely. The steam turbine generator being rotating equipment generally has a heavy, large diameter shaft. The shaft therefore requires not only supports but also has to be kept in position while running. To minimise the frictional resistance to the rotation, the shaft has a number of bearings. The bearing shells, in which the shaft rotates, are lined with a low friction material like Babbitt metal. Oil lubrication is provided to further reduce the friction between shaft and bearing surface and to limit the heat generated.

Barring gear Barring gear (or "turning gear") is the mechanism provided to rotate the turbine generator shaft at a very low speed after unit stoppages. Once the unit is "tripped" (i.e., the steam inlet valve is closed), the turbine coasts down towards standstill. When it stops completely, there is a tendency for the turbine shaft to deflect or bend if allowed to remain in one position too long. This is because the heat inside the turbine casing tends to concentrate in the top half of the casing, making the top half portion of the shaft hotter than the bottom half. The shaft therefore could warp or bend by millionths of inches. This small shaft deflection, only detectable by eccentricity meters, would be enough to cause damaging vibrations to the entire steam turbine generator unit when it is restarted. The shaft is therefore automatically turned at low speed (about one revolution per minute) by the barring gear until it has cooled sufficiently to permit a complete stop.

Condenser

Diagram of a typical water-cooled surface condenser.[2][3][4][5]

The surface condenser is a shell and tube heat exchanger in which cooling water is circulated through the tubes.[6][7][8][2] The exhaust steam from the low pressure turbine enters the shell where it is cooled and converted to condensate (water) by flowing over the tubes as shown in the adjacent diagram. Such condensers use steam ejectors or rotary motor-driven exhausters for continuous removal of air and gases from the steam side to maintain vacuum. For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 oC where the vapor pressure of water is much less than atmospheric pressure, the condenser generally works under vacuum. Thus leaks of non-condensible air into the closed loop must be prevented. Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for air conditioning. The condenser generally uses either circulating cooling water from a cooling tower to reject waste heat to the atmosphere, or once-through water from a river, lake or ocean.

Feedwater heater

A Rankine cycle with a two-stage steam turbine and a single feedwater heater. In the case of a conventional steam-electric power plant utilizing a drum boiler, the surface condenser removes the latent heat of vaporization from the steam as it changes states from vapour to liquid. The heat content (btu) in the steam is referred to as Enthalpy. The condensate pump then pumps the condensate water through a feedwater heater. The feedwater heating equipment then raises the temperature of the water by utilizing extraction steam from various stages of the turbine.[2][3] Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system.[9] This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle.

Superheater As the steam is conditioned by the drying equipment inside the drum, it is piped from the upper drum area into an elaborate set up of tubing in different areas of the boiler. The areas known as superheater and reheater. The steam vapor picks up energy and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves of the high pressure turbine.

Deaerator

Diagram of boiler feed water deaerator (with vertical, domed aeration section and horizontal water storage section A steam generating boiler requires that the boiler feed water should be devoid of air and other dissolved gases, particularly corrosive ones, in order to avoid corrosion of the metal. Generally, power stations use a deaerator to provide for the removal of air and other dissolved gases from the boiler feedwater. A deaerator typically includes a vertical, domed deaeration section mounted on top of a horizontal cylindrical vessel which serves as the deaerated boiler feedwater storage tank.[2][3][10] There are many different designs for a deaerator and the designs will vary from one manufacturer to another. The adjacent diagram depicts a typical conventional trayed deaerator.[10][11] If operated properly, most deaerator manufacturers will guarantee that oxygen in the deaerated water will not exceed 7 ppb by weight (0.005 cm³/L).[10][12]

Auxiliary systems Oil system An auxiliary oil system pump is used to supply oil at the start-up of the steam turbine generator. It supplies the hydraulic oil system required for steam turbine's main inlet steam stop valve, the governing control valves, the bearing and seal oil systems, the relevant hydraulic relays and other mechanisms. At a preset speed of the turbine during start-ups, a pump driven by the turbine main shaft takes over the functions of the auxiliary system. Generator heat dissipation The electricity generator requires cooling to dissipate the heat that it generates. While small units may be cooled by air drawn through filters at the inlet, larger units generally require special cooling arrangements. Hydrogen gas cooling, in an oil-sealed casing, is used because it has the highest known heat transfer coefficient of any gas and for its low viscosity which reduces windage losses. This system requires special handling during start-up, with air in the chamber first displaced by carbon dioxide before filling with hydrogen. This ensures that the highly flammable hydrogen does not mix with oxygen in the air. The hydrogen pressure inside the casing is maintained slightly higher than atmospheric pressure to avoid outside air ingress. The hydrogen must be sealed against outward leakage where the shaft emerges from the casing. Mechanical seals around the shaft are installed with a very small annular gap to avoid rubbing between the shaft and the seals. Seal oil is used to prevent the hydrogen gas leakage to atmosphere.

The generator also uses water cooling. Since the generator coils are at a potential of about 22 kV and water is conductive, an insulating barrier such as Teflon is used to interconnect the water line and the generator high voltage windings. Demineralized water of low conductivity is used. Generator high voltage system The generator voltage ranges from 11 kV in smaller units to 22 kV in larger units. The generator high voltage leads are normally large aluminum channels because of their high current as compared to the cables used in smaller machines. They are enclosed in well-grounded aluminum bus ducts and are supported on suitable insulators. The generator high voltage channels are connected to step-up transformers for connecting to a high voltage electrical substation (of the order of 110 kV or 220 kV) for further transmission by the local power grid. The necessary protection and metering devices are included for the high voltage leads. Thus, the steam turbine generator and the transformer form one unit. In smaller units, generating at 11 kV, a breaker is provided to connect it to a common 11 kV bus system.

Other systems Monitoring and alarm system Most of the power plant operational controls are automatic. However, at times, manual intervention may be required. Thus, the plant is provided with monitors and alarm systems that alert the plant operators when certain operating parameters are seriously deviating from their normal range.

Battery supplied emergency lighting and communication A central battery system consisting of lead acid cell units is provided to supply emergency electric power, when needed, to essential items such as the power plant's control systems, communication systems, turbine lube oil pumps, and emergency lighting. This is essential for a safe, damage-free shutdown of the units in an emergency situation.

Transport of coal fuel to site and to storage Most thermal stations use coal as the main fuel. Raw coal is transported from coal mines to a power station site by trucks, barges, bulk cargo ships or railway cars. Generally, when shipped by railways, the coal cars are sent as a full train of cars. The coal received at site may be of different sizes. The railway cars are unloaded at site by rotary dumpers or side tilt dumpers to tip over onto conveyor belts below. The coal is generally conveyed to crushers which crush the coal to about ¾ inch (6 mm) size. The crushed coal is then sent by belt conveyors to a storage pile. Normally, the crushed coal is compacted by bulldozers, as compacting of highly volatile coal avoids spontaneous ignition. The crushed coal is conveyed from the storage pile to silos or hoppers at the boilers by another belt conveyor system.

I.D. Fan (I.D. fan) Steam turbine or electric motor driven fan which develops negative draft within the boiler to pull the hot exhaust gases through the boiler.

Boiler A boiler is a closed vessel in which water or other fluid is heated. The heated or vaporized fluid exits the boiler for use in various processes or heating applications. Diagram of a water-tube boiler.

Diagram of a fire-tube boiler

Application Boilers have many applications. They can be used in stationary applications to provide heat, hot water, or steam for domestic use, or in generators and they can be used in mobile applications to provide steam for locomotion in applications such as trains, ships, and boats. Using a boiler is a way to transfer stored energy from the fuel source to the water in the boiler, and then finally to the point of end use.

Materials

Construction of boilers is mainly in steel, stainless steel, and wrought iron. In live steam models, copper or brass is often used. Historically copper was often used for fireboxes (particularly for steam locomotives), because of its better thermal conductivity. The price of copper now makes this impractical. Cast iron is used for domestic water heaters. Although these are usually termed "boilers", their purpose is to produce hot water, not steam, and so they run at low pressure and try to avoid actual boiling. The brittleness of cast iron makes it impractical for steam pressure vessels. For much of the Victorian "age of steam", the only material for boilermaking was the highest grade of wrought iron, with assembly by rivetting. This iron was often obtained from specialist ironworks, such as Cleator Moor (UK), noted for the high quality of their rolled plate and its suitability for high reliability use in critical applications, such as high pressure boilers. 20th century practice moved towards steel and welding.

Fuel The source of heat for a boiler is combustion of any of several fuels, such as wood, coal, oil, or natural gas. Electric steam boilers use resistance or immersion type heating elements. Nuclear fission is also used as a heat source for generating steam. Heat recovery steam generators (HRSGs) use the heat rejected from other processes such as gas turbines.

Configurations Boilers can be classified into the following configurations: •

"Pot boiler" or "Haycock boiler": a primitive "kettle" where a fire heats a partially-filled water container from below. 18th Century Haycock boilers generally produced and stored large volumes of very lowpressure steam, often hardly above that of the atmosphere. These could burn wood or most often, coal. Efficiency was very low.



Fire-tube boiler. Here, water partially fills a boiler barrel with a small volume left above to accommodate the steam (steam space). This is the type of boiler used in nearly all steam locomotives. The heat source is inside a furnace or firebox that has to be kept permanently surrounded by the water in order to maintain the temperature of the heating surface just below boiling point. The furnace can be situated at one end of a fire-tube which lengthens the path of the hot gases, thus augmenting the heating surface which can be further increased by making the gases reverse direction through a second parallel tube or a bundle of multiple tubes (two-pass or return flue boiler); alternatively the gases may be taken along the sides and then beneath the boiler through flues (3-pass boiler). In the case of a locomotive-type boiler, a boiler barrel extends from the firebox and the hot gases pass through a bundle of fire tubes inside the barrel which greatly increase the heating surface compared to a single tube and further improve heat transfer. Fire-tube boilers usually have a comparatively low rate of steam production, but high steam storage capacity. Fire-tube boilers mostly burn solid fuels, but are readily adaptable to those of the liquid or gas variety.



Water-tube boiler. In this type,the water tubes are arranged inside a furnace in a number of possible configurations: often the water tubes connect large drums, the lower ones containing water and the upper ones, steam; in other cases, such as a monotube boiler, water is circulated by a pump through a succession of coils. This type generally gives high steam production rates, but less storage capacity than the above. Water tube boilers can be designed to exploit any heat source including nuclear fission and are generally preferred in high pressure applications since the high pressure water/steam is contained within narrow pipes which can withstand the pressure with a thinner wall.

Boiler for steam locomotive[3] •

Flash boiler. A specialized type of water-tube boiler.



Fire-tube boiler with Water-tube firebox. Sometimes the two above types have been combined in the following manner: the firebox contains an assembly of water tubes, called thermic syphons. The gases

then pass through a conventional firetube boiler. Water-tube fireboxes were installed in many Hungarian locomotives, but have met with little success in other countries. •

Sectional boiler. In a cast iron sectional boiler, sometimes called a "pork chop boiler" the water is contained inside cast iron sections. These sections are assembled on site to create the finished boiler.

Type of boilers Fire Tube Boiler In fire tube boiler, hot gases pass through the tubes and boiler feed water in the shell side is converted into steam. Fire tube boilers are generally used for relatively small steam capacities and low to medium steam pressures. As a guideline, fire tube boilers are competitive for steam rates up to 12,000 kg/hour and pressures up to 18 kg/cm2. Fire tube boilers are available for operation with oil, gas or solid fuels. For economic reasons, most fire tube boilers are nowadays of “packaged” construction (i.e. manufacturers shop erected) for all fuels.

Water Tube Boiler

Fig: Simple Diagram of Water Tube Boiler Reference: http://www.yourdictionary.com/ images/ahd/jpg/A4boiler.jpg In water tube boiler, boiler feed water flows through the tubes and enters the boiler drum. The circulated water is

heated by the combustion gases and converted into steam at the vapour space in the drum. These boilers are selected when the steam demand as well as steam pressure requirements are high as in the case of process cum power boiler / power boilers. Most modern water boiler tube designs are within the capacity range 4,500 – 120,000 kg/hour of steam, at very high pressures. Many water tube boilers nowadays are of “packaged” construction if oil and /or gas are to be used as fuel. Solid fuel fired water tube designs are available but packaged designs are less common. The features of water tube boilers are: •

Forced, induced and balanced draft provisions help to improve combustion efficiency.



Less tolerance for water quality calls for water treatment plant.



Higher thermal efficiency levels are possible

Packaged Boiler The packaged boiler is so called because it comes as a complete package. Once delivered to site, it requires only the steam, water pipe work, fuel supply and electrical connections to be made for it to become operational. Package boilers are generally of shell type with fire tube design so as to achieve high heat transfer rates by both radiation and convection. The features of package boilers are: •

Small combustion space and high heat release rate resulting in faster evaporation.



Large number of small diameter tubes leading to good convective heat transfer.



Forced or induced draft systems resulting in good combustion efficiency.



Number of passes resulting in better overall heat transfer.



Higher thermal efficiency levels compared with other boilers.

These boilers are classified based on the number of passes - the number of times the hot combustion gases pass through the boiler. The combustion chamber is taken, as the first pass after which there may be one, two or three sets of fire-tubes. The most common boiler of this class is a three-pass unit with two sets of fire-tubes and with the exhaust gases exiting through the rear of the boiler. Fluidized Bed Combustion (FBC) Boiler Fluidized bed combustion (FBC) has emerged as a viable alternative and has significant advantages over conventional firing system and offers multiple benefits – compact boiler design, fuel flexibility, higher combustion efficiency and reduced emission of noxious pollutants such as SOx and NOx. The fuels burnt in these boilers include coal, washery rejects, rice husk, bagasse & other agricultural wastes. The fluidized bed boilers have a wide capacity range- 0.5 T/hr to over 100 T/hr. When an evenly distributed air or gas is passed upward through a finely divided bed of solid particles such as sand supported on a fine mesh, the particles are undisturbed at low velocity. As air velocity is gradually increased, a stage is reached when the individual particles are suspended in the air stream – the bed is called “fluidized”. With further increase in air velocity, there is bubble formation, vigorous turbulence, rapid mixing and formation of dense defined bed surface. The bed of solid particles exhibits the properties of a boiling liquid and assumes the appearance of a fluid – “bubbling fluidized bed”. If sand particles in a fluidized state is heated to the ignition temperatures of coal, and coal is injected continuously into the bed, the coal will burn rapidly and bed attains a uniform temperature. The fluidized bed combustion (FBC) takes place at about 840 OC to 950 OC. Since this temperature is much below the ash fusion temperature, melting of ash and associated problems are avoided. The lower combustion temperature is achieved because of high coefficient of heat transfer due to rapid mixing in the fluidized bed and effective extraction of heat from the bed through in-bed heat transfer tubes and walls of the bed. The gas velocity is maintained between minimum fluidisation velocity and particle entrainment velocity. This ensures stable operation of the bed and avoids particle entrainment in the gas stream. Atmospheric Fluidized Bed Combustion (AFBC) Boiler Most operational boiler of this type is of the Atmospheric Fluidized Bed Combustion. (AFBC). This involves little more than adding a fluidized bed combustor to a conventional shell boiler. Such systems have similarly being installed in conjunction with conventional water tube boiler. Coal is crushed to a size of 1 – 10 mm depending on the rank of coal, type of fuel fed to the combustion chamber. The atmospheric air, which acts as both the fluidization and combustion air, is delivered at a pressure, after being preheated

by the exhaust fuel gases. The in-bed tubes carrying water generally act as the evaporator. The gaseous products of combustion pass over the super heater sections of the boiler flow past the economizer, the dust collectors and the air preheater before being exhausted to atmosphere. Pressurized Fluidized Bed Combustion (PFBC) Boiler In Pressurized Fluidized Bed Combustion (PFBC) type, a compressor supplies the Forced Draft (FD) air and the combustor is a pressure vessel. The heat release rate in the bed is proportional to the bed pressure and hence a deep bed is used to extract large amount of heat. This will improve the combustion efficiency and sulphur dioxide absorption in the bed. The steam is generated in the two tube bundles, one in the bed and one above it. Hot flue gases drive a power generating gas turbine. The PFBC system can be used for cogeneration (steam and electricity) or combined cycle power generation. The combined cycle operation (gas turbine & steam turbine) improves the overall conversion efficiency by 5 to 8%.

Atmospheric Circulating Fluidized Bed Combustion Boilers (CFBC) In a circulating system the bed parameters are so maintained as to promote solids elutriation from the bed. They are lifted in a relatively dilute phase in a solids riser, and a down-comer with a cyclone provides a return path for the solids. There are no steam generation tubes immersed in the bed. Generation and super heating of steam takes place in the convection section, water walls, at the exit of the riser. CFBC boilers are generally more economical than AFBC boilers for industrial application requiring more than 75 – 100 T/hr of steam. For large units, the taller furnace characteristics of CFBC boilers offers better space utilization, greater fuel particle and sorbent residence time for efficient combustion and SO2 capture, and easier application of staged combustion techniques for NOx control than AFBC steam generators. Stoker Fired Boilers Stokers are classified according to the method of feeding fuel to the furnace and by the type of grate. The main classifications are spreader stoker and chain-gate or traveling-gate stoker. Spreader Stokers Spreader stokers utilize a combination of suspension burning and grate burning. The coal is continually fed into the furnace above a burning bed of coal. The coal fines are burned in suspension; the larger particles fall to the grate, where they are burned in a thin, fast-burning coal bed. This method of firing provides good flexibility to meet load fluctuations, since ignition is almost instantaneous when firing rate is increased. Due to this, the spreader stoker is favored over other types of stokers in many industrial applications. Chain-grate or Traveling-grate Stoker Coal is fed onto one end of a moving steel grate. As grate moves along the length of the furnace, the coal burns before dropping off at the end as ash. Some degree of skill is required, particularly when setting up the grate, air dampers and baffles, to ensure clean combustion leaving the minimum of unburnt carbon in the ash.

The coal-feed hopper runs along the entire coal-feed end of the furnace. A coal gate is used to control the rate at which coal is fed into the furnace by controlling the thickness of the fuel bed. Coal must be uniform in size as large lumps will not burn out completely by the time they reach the end of the grate. Pulverized Fuel Boiler Most coal-fired power station boilers use pulverized coal, and many of the larger industrial water-tube boilers also use this pulverized fuel. This technology is well developed, and there are thousands of units around the world, accounting for well over 90% of coal-fired capacity. The coal is ground (pulverized) to a fine powder, so that less than 2% is +300 micro meter (μm) and 70-75% is below 75 microns, for a bituminous coal. It should be noted that too fine a powder is wasteful of grinding mill power. On the other hand, too coarse a powder does not burn completely in the combustion chamber and results in higher unburnt losses. The pulverized coal is blown with part of the combustion air into the boiler plant through a series of burner nozzles. Secondary and tertiary air may also be added. Combustion takes place at temperatures from 1300-1700°C, depending largely on coal grade. Particle residence time in the boiler is typically 2 to 5 seconds, and the particles must be small enough for complete combustion to have taken place during this time. This system has many advantages such as ability to fire varying quality of coal, quick responses to changes in load, use of high pre-heat air temperatures etc. One of the most popular systems for firing pulverized coal is the tangential firing using four burners corner to corner to create a fireball at the center of the furnace. Waste Heat Boiler Wherever the waste heat is available at medium or high temperatures, a waste heat boiler can be installed economically. Wherever the steam demand is more than the steam generated during waste heat, auxiliary fuel burners are also used. If there is no direct use of steam, the steam may be let down in a steam turbine-generator set and power produced from it. It is widely used in the heat recovery from exhaust gases from gas turbines and diesel engines. Thermic Fluid Heater In recent times, thermic fluid heaters have found wide application for indirect process heating. Employing petroleum based fluids as the heat transfer medium, these heaters provide constantly maintainable temperatures for the user equipment. The combustion system comprises of a fixed grate with mechanical draft arrangements. The modern oil fired thermic fluid heater consists of a double coil, three pass construction and fitted with modulated pressure jet system. The thermic fluid, which acts as a heat carrier, is heated up in the heater and circulated through the user equipment. There it transfers heat for the process through a heat exchanger and the fluid is then returned to the heater. The flow of thermic fluid at the user end is controlled by a pneumatically operated control valve, based on the operating temperature. The heater operates on low or high fire depending on the return oil temperature, which varies with the system load The advantages of these heaters are: •Closed cycle operation with minimum losses as compared to steam boilers. •Non-Pressurized system operation even for temperatures around 250 0c as against 40 kg/cm2 steam pressure requirement in a similar steam system. •Automatic control settings, which offer operational flexibility.



Good thermal efficiencies as losses due to blow down, condensate drain and flash steam do not exist in a thermic fluid heater system.

The overall economics of the thermic fluid heater will depend upon the specific application and reference basis. Coal fired thermic fluid heaters with a thermal efficiency range of 55-65% may compare favorably with most boilers. Incorporation of heat recovery devices in the flue gas path enhances the thermal efficiency levels further.

To top

Safety Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. Collapsed or dislodged boiler tubes could also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen that loaded coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories could demolish entire buildings.[4] A boiler that has a loss of feed water and is permitted to boil dry can be extremely dangerous. If feed water is then sent into the empty boiler, the small cascade of incoming water instantly boils on contact with the superheated metal shell and leads to a violent explosion that cannot be controlled even by safety steam valves. Draining of the boiler could also occur if a leak occurred in the steam supply lines that was larger than the make-up water supply could replace. The Hartford Loop was invented in 1919 by the Hartford Steam Boiler and Insurance Company as a method to help prevent this condition from occurring, and thereby reduce their insurance claims.[5]

Superheated steam boilers

A superheated boiler on a steam locomotive. Most boilers heat water until it boils, and then the steam is used at saturation temperature (i.e., saturated steam). Superheated steam boilers boil the water and then further heat the steam in a superheater. This provides steam at much higher temperature, and can decrease the overall thermal efficiency of the steam plant due to the fact that the higher steam temperature requires a higher flue gas exhaust temperature. However, there are advantages to superheated steam. For example, useful heat can be extracted from the steam without causing condensation, which could damage piping and turbine blades. Superheated steam presents unique safety concerns because, if there is a leak in the steam piping, steam at such high pressure/temperature can cause serious, instantaneous harm to anyone entering its flow. Since the escaping steam will initially be completely superheated vapor, it is not easy to see the leak, although the intense heat and sound from such a leak clearly indicates its presence. The superheater works like coils on an air conditioning unit, however to a different end. The steam piping (with steam flowing through it) is directed through the flue gas path in the boiler furnace. This area typically is between 1300-1600 degrees Celsius (2500-3000 degrees Fahrenheit). Some superheaters are radiant type (absorb heat by radiation), others are convection type (absorb heat via a fluid i.e. gas) and some are a combination of the two. So whether by convection or radiation the extreme heat in the boiler furnace/flue gas path will also heat the superheater steam piping and the steam within as well. It is important to note that while the temperature of the steam in the superheater is raised, the pressure of the steam is not: the turbine or moving pistons offer a "continuously expanding space" and the pressure remains the same as that of the boiler.[6]The process of superheating steam is most importantly designed to remove all droplets entrained in the steam to prevent damage to the turbine blading and/or associated piping

Supercritical steam generators Supercritical steam generators (also known as Benson boilers) are frequently used for the production of electric power. They operate at "supercritical pressure". In contrast to a "subcritical boiler", a supercritical steam

generator operates at such a high pressure (over 3200 PSI, 22 MPa, 220 bar) that actual boiling ceases to occur, and the boiler has no water - steam separation. There is no generation of steam bubbles within the water, because the pressure is above the "critical pressure" at which steam bubbles can form. It passes below the critical point as it does work in the high pressure turbine and enters the generator's condenser. This is more efficient, resulting in slightly less fuel use. The term "boiler" should not be used for a supercritical pressure steam generator, as no "boiling" actually occurs in this device.

History of supercritical steam generation Contemporary supercritical steam generators are sometimes referred as Benson boilers. In 1922, Mark Benson was granted a patent for a boiler designed to convert water into steam at high pressure. Safety was the main concern behind Benson’s concept. Earlier steam generators were designed for relatively low pressures of up to about 100 bar, corresponding to the state of the art in steam turbine development at the time. One of their distinguishing technical characteristics was the riveted drum. These drums were used to separate water and steam, and were often the source of boiler explosions, usually with catastrophic consequences. However, the drum can be completely eliminated if the evaporation process is avoided altogether. This happens when water is heated at a pressure above the critical pressure and then expanded to dry steam at subcritical pressure. A throttle valve located downstream of the evaporator can be used for this purpose. As development of Benson technology continued, boiler design soon moved away from the original concept introduced by Mark Benson. In 1929, a test boiler that had been built in 1927 began operating in the thermal power plant at Gartenfeld in Berlin for the first time in subcritical mode with a fully open throttle valve. The second Benson boiler began operation in 1930 without a pressurizing valve at pressures between 40 and 180 bar at the Berlin cable factory. This application represented the birth of the modern variable-pressure Benson boiler. After that development, the original patent was no longer used. The Benson boiler name, however, was retained. Two current innovations have a good chance of winning acceptance in the competitive market for once-through steam generators: •

A new type of heat-recovery steam generator based on the Benson boiler, which has operated successfully at the Cottam combined-cycle power plant in the central part of England,



The vertical tubing in the combustion chamber walls of coal-fired steam generators which combines the operating advantages of the Benson system with the design advantages of the drum-type boiler. Construction of a first reference plant, the Yaomeng power plant in China, commenced in 2001.

Hydronic boilers Hydronic boilers are used in generating heat for residential and industrial purposes. They are the typical power plant for central heating systems fitted to houses in northern Europe (where they are commonly combined with domestic water heating), as opposed to the forced-air furnaces or wood burning stoves more common in North America. The hydronic boiler operates by way of heating water/fluid to a preset temperature (or sometimes in the case of single pipe systems, until it boils and turns to steam) and circulating that fluid throughout the home typically by way of radiators, baseboard heaters or through the floors. The fluid can be heated by any means...gas, wood, fuel oil, etc, but in built-up areas where piped gas is available, natural gas is currently the most economical and therefore the usual choice. The fluid is in an enclosed system and circulated throughout by means of a motorized pump. Most new systems are fitted with condensing boilers for greater efficiency. The name can be a misnomer in that, except for systems using steam radiators, the water in a properly functioning hydronic boiler never actually boils. These boilers are referred to as condensing boilers because they condense the water vapor in the flue gases to capture the latent heat of vaporization of the water produced during combustion. Hydronic systems are being used more and more in new construction in North America for several reasons. Among the reasons are: •

They are more efficient and more economical than forced-air systems (although initial installation can be more expensive, because of the cost of the copper and aluminum).



The baseboard copper pipes and aluminum fins take up less room and use less metal than the bulky steel ductwork required for forced-air systems.



They provide more even, less fluctuating temperatures than forced-air systems. The copper baseboard pipes hold and release heat over a longer period of time than air does, so the furnace does not have to switch off and on as much. (Copper heats mostly through conduction and radiation, whereas forced-air heats mostly through forced convection. Air has much lower thermal conductivity and higher specific heat than copper; however, convection results in faster heat loss of air compared to copper. See also thermal mass.)



They do not dry out the interior air as much.



They do not introduce any dust, allergens, mold, or (in the case of a faulty heat exchanger) combustion byproducts into the living space.

Forced-air heating does have some advantages, however. See forced-air heating.

Accessories Boiler fittings and accessories •

Safety valve: It is used to relieve pressure and prevent possible explosion of a boiler.



Water level indicators: They show the operator the level of fluid in the boiler, also known as a sight glass, water gauge or water column is provided.



Bottom blowdown valves: They provide a means for removing solid particulates that condense and lay on the bottom of a boiler. As the name implies, this valve is usually located directly on the bottom of the boiler, and is occasionally opened to use the pressure in the boiler to push these particulates out.



Continuous blowdown valve: This allows a small quantity of water to escape continuously. Its purpose is to prevent the water in the boiler becoming saturated with dissolved salts. Saturation would lead to foaming and cause water droplets to be carried over with the steam - a condition known as priming.



Hand holes: They are steel plates installed in openings in "header" to allow for inspections & installation of tubes and inspection of internal surfaces.



Steam drum internals, A series of screen, scrubber & cans (cyclone separators).



Low- water cutoff: It is a mechanical means (usually a float switch) that is used to turn off the burner or shut off fuel to the boiler to prevent it from running once the water goes below a certain point. If a boiler is "dry-fired" (burned without water in it) it can cause rupture or catastrophic failure.



Surface blowdown line: It provides a means for removing foam or other lightweight non-condensible substances that tend to float on top of the water inside the boiler.



Circulating pump: It is designed to circulate water back to the boiler after it has expelled some of its heat.



Feedwater check valve or clack valve: A nonreturn stop valve in the feedwater line. This may be fitted to the side of the boiler, just below the water level, or to the top of the boiler. A top-mounted check valve is called a top feed and is intended to reduce the nuisance of limescale. It does not prevent limescale formation but causes the limescale to be precipitated in a powdery form which is easily washed out of the boiler.



Desuperheater tubes or bundles: A series of tubes or bundle of tubes, in the water drum but sometime in the steam drum that De-superheated steam. This is for equipment that doesn't need dry steam.



Chemical injection line: A connection to add chemicals for controlling feedwater pH.

Steam accessories •

Main steam stop valve:



Steam traps:



Main steam stop/Check valve: It is used on multiple boiler installations.

Combustion accessories •

Fuel oil system:



Gas system:



Coal system:

Other essential items •

Pressure gauges:



Feed pumps:



Fusible plug:



Inspectors test pressure gauge attachment:



Name plate:



Registration plate:

Controlling draft Most boilers now depend on mechanical draft equipment rather than natural draft. This is because natural draft is subject to outside air conditions and temperature of flue gases leaving the furnace, as well as the chimney height. All these factors make proper draft hard to attain and therefore make mechanical draft equipment much more economical. There are three types of mechanical draft: •

Induced draft: This is obtained one of three ways, the first being the "stack effect" of a heated chimney, in which the flue gas is less dense than the ambient air surrounding the boiler. The denser column of ambient air forces combustion air into and through the boiler. The second method is through use of a steam jet. The steam jet oriented in the direction of flue gas flow induces flue gasses into the stack and allows for a greater flue gas velocity increasing the overall draft in the furnace. This method was common on steam driven locomotives which could not have tall chimneys. The third method is by simply using an induced draft fan (ID fan) which sucks flue gases out of the furnace and up the stack. Almost all induced draft furnaces have a negative pressure.



Forced draft: Draft is obtained by forcing air into the furnace by means of a fan (FD fan) and ductwork. Air is often passed through an air heater; which, as the name suggests, heats the air going into the furnace in order to increase the overall efficiency of the boiler. Dampers are used to control the quantity of air admitted to the furnace. Forced draft furnaces usually have a positive pressure.



Balanced draft: Balanced draft is obtained through use of both induced and forced draft. This is more common with larger boilers where the flue gases have to travel a long distance through many boiler passes. The induced draft fan works in conjunction with the forced draft fan allowing the furnace pressure to be maintained slightly below atmospheric.

Scrubber systems are a diverse group of air pollution control devices that can be used to remove some particulates and/or gases from industrial exhaust streams. Traditionally, the term "scrubber" has referred to pollution control devices that used liquid to "scrub" unwanted pollutants from a gas stream. Recently, the term is also used to describe systems that inject a dry reagent or slurry into a dirty exhaust stream to "scrub out" acid gases. Scrubbers are one of the primary devices that control gaseous emissions, especially acid gases. •

Removal and neutralization The exhaust gases of combustion may at times contain substances considered harmful to the environment, and it is the job of the scrubber to either remove those substances from the exhaust gas stream, or to neutralize those substances so that they cannot do any harm once emitted into the environment as part of the exhaust gas stream...

Wet scrubbing A wet scrubber is used to clean air or other gases of various pollutants and dust particles. Wet scrubbing works via the contact of target compounds or particulate matter with the scrubbing solution. Solutions may simply be water (for dust) or complex solutions of reagents that specifically target certain compounds. Removal efficiency of pollutants is improved by increasing residence time in the scrubber or by the increase of surface area of the scrubber solution by the use of a spray nozzle, packed towers or an aspirator. Wet scrubbers will often significantly increase the proportion of water in waste gases of industrial processes which can be seen in a stack plume. Compliance agencies typically place minimum DP thresholds on wet scrubber.

Dry scrubbing A dry or semi-dry scrubbing system, unlike the wet scrubber, does not saturate the flue gas stream that is being treated with moisture. In some cases no moisture is added; while in other designs only the amount of moisture that can be evaporated in the flue gas without condensing is added. Therefore, dry scrubbers do not have a stack steam plume or wastewater handling/disposal requirements. Dry scrubbing systems are used to remove acid gases (such as SO2 and HCl) primarily from combustion sources. There are a number of dry type scrubbing system designs. However, all consist of two main sections or devices: a device to introduce the acid gas sorbent material into the gas stream and a particulate matter control device to remove reaction products, excess sorbent material as well as any particulate matter already in the flue gas. Dry scrubbing systems can be categorized as dry sorbent injectors (DSIs) or as spray dryer absorbers (SDAs). Spray dryer absorbers are also called semi-dry scrubbers or spray dryers. Dry sorbent injection involves the addition of an alkaline material (usually hydrated lime or soda ash) into the gas stream to react with the acid gases. The sorbent can be injected directly into several different locations: the combustion process, the flue gas duct (ahead of the particulate control device), or an open reaction chamber (if one exists). The acid gases react with the alkaline sorbets to form solid salts which are removed in the particulate control device. These simple systems can achieve only limited acid gas (SO2 and HCl) removal efficiencies. Higher collection efficiencies can be achieved by increasing the flue gas humidity (i.e., cooling using water spray). These devices have been used on medical waste incinerators and a few municipal waste combustors. In spray dryer absorbers, the flue gases are introduced into an absorbing tower (dryer) where the gases are contacted with a finely atomized alkaline slurry. Acid gases are absorbed by the slurry mixture and react to form solid salts which are removed by the particulate control device. The heat of the flue gas is used to evaporate all the water droplets, leaving a non-saturated flue gas to exit the absorber tower. Spray dryers are capable of achieving high (80+%) acid gas removal efficiencies. These devices have been used on industrial and utility boilers and municipal waste combustors.

Mercury removal Mercury has no known beneficial uses in nature, but it is a common substance found in coal that must also be removed. Wet scrubbers are only effective for mercury removal under certain conditions. Mercury vapor in its elemental form, Hg0, is insoluble in the scrubber slurry and not removed. Oxidized mercury, Hg2+, compounds are more soluble in the scrubber slurry and can be captured. The type of coal burned as well as the presence of a selective catalytic reduction unit both affect the ratio of elemental to oxidized mercury in the flue gas and thus the degree to which the mercury is removed.

Scrubber waste products One side effect of scrubbing is that the process only moves the unwanted substance from the exhaust gases into a solid paste or powder form. If there is no useful purpose for this solid waste, it must be either contained or buried to prevent environmental contamination. Limestone-based scrubbers can produce a synthetic gypsum of sufficient quality that can be used to manufacture drywall and other industrial products. Mercury removal results in a waste product that either needs further processing to extract the raw mercury, or must be buried in a special hazardous wastes landfill that prevents the mercury from seeping out into the environment.

Bacteria spread Until recently, scrubbers have not been associated with health risks involving bacteria spread as a result of inadequate cleaning, unlike other devices such as cooling towers. However, a 2005 outbreak of Legionnaires' disease in Norway was proven to emanate from a scrubber, causing ten deaths and more than fifty cases of infection as it spread the bacteria through the air during a period of only two scrubbers being the source of such bacteria

Packed bed tower



Venturi scrubber with mist eliminator

Figure 1



15000 per second or more.

Faraday's law of induction Faraday's law of induction describes a basic law of electromagnetism, which is involved in the working of transformers, inductors, and many forms of electrical generators. The law states:[1] The induced electromotive force or EMF in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit.

The law was discovered by Michael Faraday in 1831 and independently at the same time by Joseph Henry. Quantitatively, the law takes the following form: Where is the electromotive force (EMF) in volts ΦB is the magnetic flux through the circuit (in webers). The direction of the electromotive force (the negative sign in the above formula) is given by Lenz's law. The meaning of "flux through the circuit" is elaborated upon in the examples below. Traditionally, two different ways of changing the flux through a circuit are recognized. In the case of transformer EMF the idea is to alter the field itself, for example by changing the current originating the field

(as in a transformer). In the case of motional EMF, the idea is to move all or part of the circuit through the magnetic field, for example, as in a homopolar generator.

Induction coil from 1800s used to demonstrate induction in physics classes

Terminology The phenomenon of electromagnetic induction, connecting the electromotive force with relation to the magnetic flux through the circuit, should not be confused with the electrostatic induction method for creating an electrical charge in an object with another electrically charged object.

Maxwell-Faraday equation: ∇ × E = –∂B/∂t This subsection is a digression to distinguish "Faraday's law" as understood in this article from the ∇ × E equation that is one of the four Maxwell equations often referred to by the same name. In this article, the ∇ × E equation is called the Maxwell-Faraday equation. If you are not interested in this ambiguity, you can skip this section. In 1855, a curl version of "Faraday's law" was developed by James Clerk Maxwell and in 1884, Oliver Heaviside rewrote it in the from of a curl equation: Where E and B are the electric and magnetic fields, ∇ × denotes curl   denotes the partial time derivative holding r fixed, where r is the position vector.

The equation is interpreted to say that if the spatial dependence of electric field were to curl counter-clockwise on the page (by the right hand rule, that means the curl vector would point out of the page), then the magnetic field would change in time to point less out of the page and more into the page (the opposite sign to the curl vector). The equation relates to change in the magnetic field. It does not mean that the magnetic field is necessarily pointing into the page, only that it is changing towards pointing in that direction. This equation, called in this article the Maxwell-Faraday equation, is best known as being one of the four Maxwell's equations. In the Maxwell-Faraday equation, Heaviside used the partial time derivative. Use of the partial time derivative, instead of the total time derivative that had been used by Maxwell, means that the Maxwell-Faraday equation does not account for motional EMF.[3] Nonetheless, the Maxwell-Faraday equation often simply is called "Faraday's law".[4] In this article the term "Faraday's law" refers to the flux equation, and "Maxwell-Faraday equation" refers to the curl equation of Heaviside that today is one of Maxwell's equations.

Flux through a surface and EMF around a loop Figure 1: The definition of surface integral relies on splitting the surface into small surface elements. Each element is associated with a vector dA of magnitude equal to the area of the element and with direction normal to the element and pointing outward.

Figure 2: A vector field F ( r, t ) defined throughout space, and a surface Σ bounded by curve ∂Σ moving with velocity v over which the field is integrated.

Faraday's law of induction makes use of the magnetic flux ΦB through a surface Σ, defined by an integral over a surface: where dA is an element of surface area of the moving surface Σ(t), B is the magnetic field, and B•dA is a vector dot product. See Figure 1. For more detail, refer to surface integral and magnetic flux. The surface is considered to have a "mouth" outlined by a closed curve denoted ∂Σ(t). See Figure 2. When the flux changes, Faraday's law of induction says that the work   done (per unit charge) moving a test charge around the closed curve ∂Σ(t), called the electromotive force (EMF), is given by: where: is the electromotive force (emf) in volts

ΦB is the magnetic flux in webers. The direction of the electromotive force (the negative sign in the above formula) is given by Lenz's law.

For a tightly-wound coil of wire, composed of N identical loops, each with the same ΦB, Faraday's law of induction states that where:N is the number of turns of wire

ΦB is the magnetic flux in webers through a single loop. In choosing a path ∂Σ(t) to find EMF, the path must satisfy the basic requirements that (i) it is a closed path, and (ii) the path must capture the relative motion of the parts of the circuit (the origin of the t-dependence in ∂Σ(t) ). It is not a requirement that the path follow a line of current flow, but of course the EMF that is found using the flux law will be the EMF around the chosen path. If a current path is not followed, the EMF might not be the EMF driving the current.

Example: Spatially varying B-field Figure 3: Closed rectangular wire loop moving along x-axis at velocity v in magnetic field B that varies with position x.

Consider the case in Figure 3 of a closed rectangular loop of wire in the xy-plane translated in the x-direction at velocity v. Thus, the center of the loop at xC satisfies v = dxC / dt. The loop has length ℓ in the y-direction and width w in the x-direction. A time-independent but spatially varying magnetic field B(x) points in the zdirection. The magnetic field on the left side is B( xC − w / 2), and on the right side is B( xC + w / 2). The electromotive force is to be found directly and by using Faraday's law above.

Lorentz force law method A charge q in the wire on the left side of the loop experiences a Lorentz force q v × B k = −q v B(xC − w / 2) j   ( j, k unit vectors in the y- and z-directions; see vector cross product), leading to an EMF (work per unit charge) of v ℓ B(xC − w / 2) along the length of the left side of the loop. On the right side of the loop the same argument shows the EMF to be v ℓ B(xC + w / 2). The two EMF's oppose each other, both pushing positive charge toward the bottom of the loop. In the case where the B-field increases with position x, the force on the right side is largest, and the current will be clockwise: using the right-hand rule, the B-field generated by the current opposes the impressed field.[5] The EMF driving the current must increase as we move counterclockwise (opposite to the current). Adding the EMF's in a counterclockwise tour of the loop we find

Faraday's law method At any position of the loop the magnetic flux through the loop is The sign choice is decided by whether the normal to the surface points in the same direction as B, or in the opposite direction. If we take the normal to the surface as pointing in the same direction as the B-field of the

induced current, this sign is negative. The time derivative of the flux is then (using the chain rule of differentiation or the general form of Leibniz rule for differentiation of an integral): (where v = dxC / dt is the rate of motion of the loop in the x-direction ) leading to: as before. The equivalence of these two approaches is general and, depending on the example, one or the other method may prove more practical.

Example: Moving loop in uniform B-field Figure 4: Rectangular wire loop rotating at angular velocity ω in radially outward pointing magnetic field B of fixed magnitude. Current is collected by brushes attached to top and bottom discs, which have conducting rims.

Figure 4 shows a spindle formed of two discs with conducting rims and a conducting loop attached vertically between these rims. The entire assembly spins in a magnetic field that points radially outward, but is the same magnitude regardless of its direction. A radially oriented collecting return loop picks up current from the conducting rims. At the location of the collecting return loop, the radial B-field lies in the plane of the collecting loop, so the collecting loop contributes no flux to the circuit. The electromotive force is to be found directly and by using Faraday's law above.

Lorentz force law method In this case the Lorentz force drives the current in the two vertical arms of the moving loop downward, so current flows from the top disc to the bottom disc. In the conducting rims of the discs, the Lorentz force is perpendicular to the rim, so no EMF is generated in the rims, nor in the horizontal portions of the moving loop. Current is transmitted from the bottom rim to the top rim through the external return loop, which is oriented so the B-field is in its plane. Thus, the Lorentz force in the return loop is perpendicular to the loop, and no EMF is generated in this return loop. Traversing the current path in the direction opposite to the current flow, work is done against the Lorentz force only in the vertical arms of the moving loop, where Consequently the EMF is where ℓ is the vertical length of the loop, and the velocity is related to the angular rate of rotation by v = r ω, with r = radius of cylinder. Notice that the same work is done on any path that rotates with the loop and connects the upper and lower rim.

Faraday's law method An intuitively appealing but mistaken approach to using the flux rule would say the flux through the circuit was just ΦB = B w ℓ, where w = width of the moving loop. This number is time-independent, so the approach predicts incorrectly that no EMF is generated. The flaw in this argument is that it fails to consider the entire current path, which is a closed loop. To use the flux rule, we have to look at the entire current path, which includes the path through the rims in the top and bottom discs. We can choose an arbitrary closed path through the rims and the rotating loop, and the flux law will find the EMF around the chosen path. Any path that has a segment attached to the rotating loop captures the relative motion of the parts of the circuit. As an example path, let's traverse the circuit in the direction of rotation in the top disc, and in the direction opposite to the direction of rotation in the bottom disc (shown by arrows in Figure 4). In this case, for the moving loop at an angle θ from the collecting loop, a portion of the cylinder of area A = r ℓ θ is part of the circuit. This area is perpendicular to the B-field, and so contributes to the flux an amount: where the sign is negative because the right-hand rule suggests the B-field generated by the current loop is opposite in direction to the applied B field. As this is the only time-dependent portion of the flux, the flux law predicts an EMF of in agreement with the Lorentz force law calculation.

Now let's try a different path. Follow a path traversing the rims via the opposite choice of segments. Then the coupled flux would decrease as θ increased, but the right-hand rule would suggest the current loop added to the applied B-field, so the EMF around this path is the same as for the first path. Any mixture of return paths leads to the same result for EMF, so it is actually immaterial which path is followed.

Direct evaluation of the change in flux Figure 5: A simplified version of Figure 4. The loop slides with velocity v in a stationary, homogeneous B-field.

The use of a closed path to find EMF as done above appears to depend upon details of the path geometry. In contrast, the Lorentz-law approach is independent of such restrictions. A discussion follows intended to understand better the equivalence of paths and escape the particulars of path selection when using the flux law. Figure 5 is an idealization of Figure 4 with the cylinder unwrapped onto a plane. The same path-related analysis works, but a simplification is suggested. The time-independent aspects of the circuit cannot affect the time-rateof-change of flux. For example, at a constant velocity of sliding the loop, the details of current flow through the loop are not time dependent. Instead of concern over details of the closed loop selected to find the EMF, one can focus on the area of B-field swept out by the moving loop. This suggestion amounts to finding the rate at which flux is cut by the circuit.[6] That notion provides direct evaluation of the rate of change of flux, without concern over the time-independent details of various path choices around the circuit. Just as with the Lorentz law approach, it is clear that any two paths attached to the sliding loop, but differing in how they cross the loop, produce the same rate-of-change of flux. In Figure 5 the area swept out in unit time is simply dA / dt = v ℓ, regardless of the details of the selected closed path, so Faraday's law of induction provides the EMF as:[7] This path independence of EMF shows that if the sliding loop is replaced by a solid conducting plate, or even some complex warped surface, the analysis is the same: find the flux in the area swept out by the moving portion of the circuit. In a similar way, if the sliding loop in the drum generator of Figure 4 is replaced by a 360° solid conducting cylinder, the swept area calculation is exactly the same as for the case with only a loop. That is, the EMF predicted by Faraday's law is exactly the same for the case with a cylinder with solid conducting walls or, for that matter, a cylinder with a cheese grater for walls. Notice, though, that the current that flows as a result of this EMF will not be the same because the resistance of the circuit determines the current.

The Maxwell-Faraday equation Figure 6: An illustration of Kelvin-Stokes theorem with surface Σ its boundary ∂Σ and orientation n set by the right-hand rule.

A changing magnetic field creates an electric field; this phenomenon is described by the Maxwell-Faraday equation:[8] where:

denotes curl E is the electric field B is the magnetic field

This equation appears in modern sets of Maxwell's equations and is often referred to as Faraday's law. However, because it contains only partial time derivatives, its application is restricted to situations where the test charge is stationary in a time varying magnetic field. It does not account for electromagnetic induction in situations where a charged particle is moving in a magnetic field. It also can be written in an integral form by the Kelvin-Stokes theorem:[9] where the movement of the derivative before the integration requires a time-independent surface Σ (considered in this context to be part of the interpretation of the partial derivative), and as indicated in Figure 6: Σ is a surface bounded by the closed contour ∂Σ; both Σ and ∂Σ are fixed, independent of time E is the electric field, dℓ is an infinitesimal vector element of the contour ∂Σ, B is the magnetic field.

dA is an infinitesimal vector element of surface Σ , whose magnitude is the area of an infinitesimal patch of surface, and whose direction is orthogonal to that surface patch.

Both dℓ and dA have a sign ambiguity; to get the correct sign, the right-hand rule is used, as explained in the article Kelvin-Stokes theorem. For a planar surface Σ, a positive path element dℓ of curve ∂Σ is defined by the right-hand rule as one that points with the fingers of the right hand when the thumb points in the direction of the normal n to the surface Σ. The integral around ∂Σ is called a path integral or line integral. The surface integral at the right-hand side of the Maxwell-Faraday equation is the explicit expression for the magnetic flux ΦB through Σ. Notice that a nonzero path integral for E is different from the behavior of the electric field generated by charges. A charge-generated E-field can be expressed as the gradient of a scalar field that is a solution to Poisson's equation, and has a zero path integral. See gradient theorem. The integral equation is true for any path ∂Σ through space, and any surface Σ for which that path is a boundary. Note, however, that ∂Σ and Σ are understood not to vary in time in this formula. This integral form cannot treat motional EMF because Σ is time-independent. Notice as well that this equation makes no reference to EMF ,  and indeed cannot do so without introduction of the Lorentz force law to enable a calculation of work. Figure 7: Area swept out by vector element dℓ of curve ∂Σ in time dt when moving with velocity v.

Using the complete Lorentz force to calculate the EMF, a statement of Faraday's law of induction more general than the integral form of the Maxwell-Faraday equation is (see Lorentz force): where ∂Σ(t) is the moving closed path bounding the moving surface Σ(t), and v is the velocity of movement. See Figure 2. Notice that the ordinary time derivative is used, not a partial time derivative, implying the time variation of Σ(t) must be included in the differentiation. In the integrand the element of the curve dℓ moves with velocity v. Figure 7 provides an interpretation of the magnetic force contribution to the EMF on the left side of the above equation. The area swept out by segment dℓ of curve ∂Σ in time dt when moving with velocity v is (see geometric meaning of cross-product): so the change in magnetic flux ΔΦB through the this portion of the surface enclosed by ∂Σ in time dt is: and if we add these ΔΦB-contributions around the loop for all segments dℓ, we obtain the magnetic force contribution to Faraday's law. That is, this term is related to motional EMF.

Example: viewpoint of a moving observer Revisiting the example of Figure 3 in a moving frame of reference brings out the close connection between Eand B-fields, and between motional and induced EMF's.[10] Imagine an observer of the loop moving with the loop. The observer calculates the EMF around the loop using both the Lorentz force law and Faraday's law of induction. Because this observer moves with the loop, the observer sees no movement of the loop, and zero v × B. However, because the B-field varies with position x, the moving observer sees a time-varying magnetic field, namely: where k is a unit vector pointing in the z-direction.[11] Lorentz force law version The Maxwell-Faraday equation says the moving observer sees an electric field Ey in the y-direction given by (see Curl (mathematics)): Here the chain rule is used: Solving for Ey, to within a constant that contributes nothing to an integral around the loop, Using the Lorentz force law, which has only an electric field component, the observer finds the EMF around the loop at a time t to be:

which is exactly the same result found by the stationary observer, who sees the centroid xC has advanced to a position xC + v t. However, the moving observer obtained the result under the impression that the Lorentz force had only an electric component, while the stationary observer thought the force had only a magnetic component. Faraday's law of induction Using Faraday's law of induction, the observer moving with xC sees a changing magnetic flux, but the loop does not appear to move: the center of the loop xC is fixed because the moving observer is moving with the loop. The flux is then: where the minus sign comes from the normal to the surface pointing oppositely to the applied B-field. The EMF from Faraday's law of induction is now: the same result. The time derivative passes through the integration because the limits of integration have no time dependence. Again, the chain rule was used to convert the time derivative to an x-derivative. The stationary observer thought the EMF was a motional EMF, while the moving observer thought it was an induced EMF.[12]

Faraday's law as two different phenomena Some physicists have remarked that Faraday's law is a single equation describing two different phenomena: The motional EMF generated by a magnetic force on a moving wire, and the transformer EMF generated by an electric force due to a changing magnetic field. As Richard Feynman states:[13] So the "flux rule" that the emf in a circuit is equal to the rate of change of the magnetic flux through the circuit applies whether the flux changes because the field changes or because the circuit moves (or both).... Yet in our explanation of the rule we have used two completely distinct laws for the two    – cases  for "circuit moves" and   for "field changes".  We know of no other place in physics where such a simple and accurate general principle requires for its real understanding an analysis in terms of two different phenomena.

History Faraday's law was originally an experimental law based upon observation.[15][16] Later it was formalized, and along with the other laws of electromagnetism a partial time derivative restricted version of it was incorporated into the modern Heaviside versions of Maxwell's equations. Faraday's law of induction is based on Michael Faraday's experiments in 1831. The effect was also discovered by Joseph Henry at about the same time, but Faraday published first.[17][18] See Maxwell's original discussion of induced electromotive force.[19] Lenz's law, formulated by Baltic German physicist Heinrich Lenz in 1834, gives the direction of the induced electromotive force and current resulting from electromagnetic induction.

Electrical generator Faraday's disc electric generator. The disc rotates with angular rate ω, sweeping the conducting radius circularly in the static magnetic field B. The magnetic Lorentz force v × B drives the current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. Thus, current is generated from mechanical motion.

The EMF generated by Faraday's law of induction due to relative movement of a circuit and a magnetic field is the phenomenon underlying electrical generators. When a permanent magnet is moved relative to a conductor, or vice versa, an electromotive force is created. If the wire is connected through an electrical load, current will flow, and thus electrical energy is generated, converting the mechanical energy of motion to electrical energy. For example, the drum generator is based upon Figure 4. A different implementation of this idea is the

Faraday's disc, shown in simplified form in Figure 8. Note that either the analysis of Figure 5, or direct application of the Lorentz force law, shows that a solid conducting disc works the same way. In the Faraday's disc example, the disc is rotated in a uniform magnetic field perpendicular to the disc, causing a current to flow in the radial arm due to the Lorentz force. It is interesting to understand how it arises that mechanical work is necessary to drive this current. When the generated current flows through the conducting rim, a magnetic field is generated by this current through Ampere's circuital law (labeled "induced B" in Figure 8). The rim thus becomes an electromagnet that resists rotation of the disc (an example of Lenz's law). On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to decrease the flux through that side of the circuit, opposing the increase in flux due to rotation. On the near side of the figure, the return current flows from the rotating arm through the near side of the rim to the bottom brush. The induced Bfield increases the flux on this side of the circuit, opposing the decrease in flux due to rotation. Thus, both sides of the circuit generate an emf opposing the rotation. The energy required to keep the disc moving, despite this reactive force, is exactly equal to the electrical energy generated (plus energy wasted due to friction, Joule heating, and other inefficiencies). This behavior is common to all generators converting mechanical energy to electrical energy. Although Faraday's law always describes the working of electrical generators, the detailed mechanism can differ in different cases. When the magnet is rotated around a stationary conductor, the changing magnetic field creates an electric field, as described by the Maxwell-Faraday equation, and that electric field pushes the charges through the wire. This case is called an induced EMF. On the other hand, when the magnet is stationary and the conductor is rotated, the moving charges experience a magnetic force (as described by the Lorentz force law), and this magnetic force pushes the charges through the wire. This case is called motional EMF. (For more information on motional EMF, induced EMF, Faraday's law, and the Lorentz force, see above example, and see Griffiths[20].)

Electrical motor An electrical generator can be run "backwards" to become a motor. For example, with the Faraday disc, suppose a DC current is driven through the conducting radial arm by a voltage. Then by the Lorentz force law, this traveling charge experiences a force in the magnetic field B that will turn the disc in a direction given by Fleming's left hand rule. In the absence of irreversible effects, like friction or Joule heating, the disc turns at the rate necessary to make d ΦB / dt equal to the voltage driving the current.

Electrical transformer The EMF predicted by Faraday's law is also responsible for electrical transformers. When the electric current in a loop of wire changes, the changing current creates a changing magnetic field. A second wire in reach of this magnetic field will experience this change in magnetic field as a change in its coupled magnetic flux, a d ΦB / d t. Therefore, an electromotive force is set up in the second loop called the induced EMF or transformer EMF. If the two ends of this loop are connected through an electrical load, current will flow.

Magnetic flow meter Faraday's law is used for measuring the flow of electrically conductive liquids and slurries. Such instruments are called magnetic flow meters. The induced voltage ε generated in the magnetic field B due to a conductive liquid moving at velocity v is thus given by: where ℓ is the distance between electrodes in the magnetic flow meter. •

An alternator is an electromechanical device that converts mechanical energy to alternating current electrical energy. Most alternators use a rotating magnetic field but linear alternators are occasionally used. In principle, any AC electrical generator can be called an alternator, but usually the word refers to small rotating machines driven by automotive and other internal combustion engines. In UK, large alternators in power stations which are driven by steam turbines are called turbo-alternators.

Alternating current generating systems were known in simple forms from the discovery of the magnetic induction of electric current. The early machines were developed by pioneers such as Michael Faraday and Hippolyte Pixii. Faraday developed the "rotating rectangle", whose operation was heteropolar - each active conductor passed successively through regions where the magnetic field was in opposite directions. [1] The first public demonstration of a more robust "alternator system" took place in 1886.[2] Large two-phase alternating current generators were built by a British electrician, J.E.H. Gordon, in 1882. Lord Kelvin and Sebastian Ferranti also developed early alternators, producing frequencies between 100 and 300 hertz. In 1891, Nikola Tesla patented a practical "high-frequency" alternator (which operated around 15,000 hertz).[3] After 1891, polyphase alternators were introduced to supply currents of multiple differing phases.[4] Later alternators were designed for varying alternating-current frequencies between sixteen and about one hundred hertz, for use with arc lighting, incandescent lighting and electric motors.[5]

Theory of operation Alternators generate electricity by the same principle as DC generators, namely, when the magnetic field around a conductor changes, a current is induced in the conductor. Typically, a rotating magnet called the rotor turns within a stationary set of conductors wound in coils on an iron core, called the stator. The field cuts across the conductors, generating an electrical current, as the mechanical input causes the rotor to turn. The rotating magnetic field induces an AC voltage in the stator windings. Often there are three sets of stator windings, physically offset so that the rotating magnetic field produces three phase currents, displaced by onethird of a period with respect to each other. The rotor magnetic field may be produced by induction (in a "brushless" alternator), by permanent magnets (in very small machines), or by a rotor winding energized with direct current through slip rings and brushes. The rotor magnetic field may even be provided by stationary field winding, with moving poles in the rotor. Automotive alternators invariably use a rotor winding, which allows control of the alternator generated voltage by varying the current in the rotor field winding. Permanent magnet machines avoid the loss due to magnetizing current in the rotor, but are restricted in size, owing to the cost of the magnet material. Since the permanent magnet field is constant, the terminal voltage varies directly with the speed of the generator. Brushless AC generators are usually larger machines than those used in automotive applications.

Synchronous speeds The output frequency of an alternator depends on the number of poles and the rotational speed. The speed corresponding to a particular frequency is called the synchronous speed for that frequency. This table [6] gives some examples: P ole s

RPM at 50 Hz

RPM at 60 Hz

2

3000

3600

4

1500

1800

6

1000

1200

8

750

900

10

600

720



Rotational speeds are given in revolutions per minute (RPM)

Frequencies are given in hertz (Hz

1 500 600 2 1 428. 514. 4 6 3 1 375 450 6 1 333. 400 8 3 2 300 360 0

Automotive alternators Alternators are used in modern automobiles to charge the battery and to power a car's electric system when its engine is running. Alternators have the great advantage over direct-current generators of not using a commutator, which makes them simpler, lighter, less costly, and more rugged than a DC generator. The stronger construction of automotive alternators allows them to use a smaller pulley so as to turn twice as fast as the engine, improving output when the engine is idling. The availability of low-cost solid-state diodes from about 1960 onward allowed car manufacturers to substitute alternators for DC generators. Automotive alternators use a set of rectifiers (diode bridge) to convert AC to DC. To provide direct current with low ripple, automotive alternators have a three-phase winding. Typical passenger vehicle and light truck alternators use Lundell or claw-pole field construction, where the field north and south poles are all energized by a single winding, with the poles looking rather like fingers of two hands interlocked with each other. Larger vehicles may have salient-pole alternators similar to larger machines. The automotive alternator is usually belt driven at 2-3 times the engine crankshaft speed. Modern automotive alternators have a voltage regulator built into them. The voltage regulator operates by modulating the small field current in order to produce a constant voltage at the stator output. The field current is much smaller than the output current of the alternator; for example, a 70-amp alternator may need only 2 amps of field current. The field current is supplied to the rotor windings by slip rings and brushes. The low current and relatively smooth slip rings ensure greater reliability and longer life than that obtained by a DC generator with its commutator and higher current being passed through its brushes. Efficiency of automotive alternators is limited by fan cooling loss, bearing loss, iron loss, copper loss, and the voltage drop in the diode bridges; at part load, efficiency is between 50-62% depending on the size of alternator, and varies with alternator speed.[7] In comparison, very small high-performance permanent magnet alternators, such as those used for bicycle lighting systems, achieve an efficiency of around only 60%. Larger permanent magnet alternators can achieve much higher efficiency. automotive alternator mounted

The field windings are initially supplied via the ignition switch and charge warning light, which is why the light glows when the ignition is on but the engine is not running. Once the engine is running and the alternator is generating, a diode feeds the field current from the alternator main output, thus equalizing the voltage across the warning light which goes out. The wire supplying the field current is often referred to as the "exciter" wire. The

drawback of this arrangement is that if the warning light fails or the "exciter" wire is disconnected, no excitation current reaches the alternator field windings and so the alternator, due to low residual magnetism in the rotor will not generate any power. However, some alternators will self-excite when the engine is revved to a certain speed. The driver may check for a faulty exciter-circuit by ensuring that the warning light is glowing with the engine stopped. Very large automotive alternators used on buses, heavy equipment or emergency vehicles may produce 300 amperes. Very old automobiles with minimal lighting and electronic devices may have only a 30 ampere alternator. Typical passenger car and light truck alternators are rated around 50-70 amperes, though higher ratings are becoming more common. Very large automotive alternators may be water-cooled or oil-cooled. Many alternator voltage regulators are today linked to the vehicle's on board computer system, and in recent years other factors including air temperature (gained from the mass air flow sensor in many cases) and engine load are considered in adjusting the battery charging voltage supplied by the alternator.

Electrostatic precipitator An electrostatic precipitator (ESP), or electrostatic air cleaner is a particulate collection device that removes particles from a flowing gas (such as air) using the force of an induced electrostatic charge. Electrostatic precipitators are highly efficient filtration devices that minimally impede the flow of gases through the device, and can easily remove fine particulate matter such as dust and smoke from the air stream.[1] •

Invention of the electrostatic precipitator The first use of corona to remove particles from an aerosol was by Hohlfeld in 1824. However, it was not commercialized until almost a century later. In 1907 Dr. Frederick G. Cottrell applied for a patent on a device for charging particles and then collecting them through electrostatic attraction — the first electrostatic precipitator. He was then a professor of chemistry at the University of California, Berkeley. Cottrell first applied the device to the collection of sulfuric acid mist emitted from various acid-making and smelting activities. Cottrell used proceeds from his invention to fund scientific research through the creation of a foundation called Research Corporation in 1912 to which he assigned the patents. Research Corporation has provided vital funding to many scientific projects: Goddard's rocketry experiments, Lawrence's cyclotron, production methods for vitamins A and B1, among many others. The organization continues to be active to this day and the company formed to commercialize the invention for industrial and utility application is still in business as well.

The plate precipitator The most basic precipitator contains a row of thin wires, and followed by a stack of large flat metal plates, with the plates typically spaced about 1 cm apart. The air stream flows through the spaces between the wires, and then passes through the stack of plates. A negative voltage of several thousand volts is applied between wire and plate. If the applied voltage is high enough an electric discharge ionizes the air around the electrodes. Negative ions flow to the plates and charge the gas-flow particles. The ionized particles, following the negative electric field created by the power supply, move to the grounded plates. Particles build up on the collection plates and form a layer. The layer does not collapse, thanks to electrostatic pressure (given from layer resistivity, electric field, and current flowing in the collected layer).

Collection efficiency (R) The collection efficiency of an electrostatic precipitator is strongly dependent on the electrical properties of the particles. A widely taught concept to calculate the collection efficiency is the Deutsch model, which assumes infinite remixing of the particles perpendicular to the gas stream.

Sulfur trioxide is sometimes injected into a flue gas stream to lower the resistivity of the flue gas in order to improve the collection efficiency of the electrostatic precipitator.

Modern industrial electrostatic precipitators ESPs continue to be excellent devices for control of many industrial particulate emissions, including smoke from electricity-generating utilities (coal and oil fired), salt cake collection from black liquor boilers in pulp mills, and catalyst collection from fluidized bed catalytic cracker units in oil refineries to name a few. These devices treat gas volumes from several hundred thousand ACFM to 2.5 million ACFM (1,180 m³/s) in the largest coal-fired boiler applications. The original parallel plate–weighted wire design (described above) has evolved as more efficient (and robust) discharge electrode designs were developed, today focusing on rigid discharge electrodes to which many sharpened spikes are attached, maximizing corona production. Transformer-rectifier systems apply voltages of 50–100 kilovolts at relatively high current densities. Modern controls minimize sparking and prevent arcing, avoiding damage to the components. Automatic rapping systems and hopper evacuation systems remove the collected particulate matter while on line, theoretically allowing ESPs to stay in operation for years at a time.

Wet electrostatic precipitator A wet electrostatic precipitator (WESP or wet ESP) operates with saturated air streams (100% relative humidity). The WESP uses water sprays to clean the collected particulate from the collection surface (plates, tubes). The collected water and particulate forms a wet film slurry that eliminates the resistivity issues associated with dry ESP's.

Consumer-oriented electrostatic air cleaners Plate precipitators are commonly marketed to the public as air purifier devices (such as the Ionic Breeze) or as a permanent replacement for furnace filters, but all have the undesirable attribute of being somewhat messy to clean. A negative side-effect of electrostatic precipitation devices is the production of toxic ozone and NOx. However, electrostatic precipitators offer benefits over other air purifications technologies, such as HEPA filtration, which require expensive filters and can become "production sinks" for many harmful forms of bacteria. With electrostatic precipitators, if the collection plates are allowed to accumulate large amounts of particulate matter, the particles often bond so tightly to the metal plates that vigorous washing and scrubbing may be required to completely clean the collection plates. The close spacing of the plates can make thorough cleaning difficult, and the stack of plates often cannot be easily disassembled for cleaning. One solution, suggested by several manufacturers, is to wash the collector plates in a dishwasher. Some consumer precipitation filters are sold with special soak-off cleaners, where the entire plate array is removed from the precipitator and soaked in a large container overnight, to help loosen the tightly bonded particulates. A study by the Canada Mortgage and Housing Corporation testing a variety of forced-air furnace filters found that ESP filters provided the best, and most cost-effective means of cleaning air using a forced-air system.[

Air preheater An air preheater or air heater is a general term to describe any device designed to heat air before another process (for example, combustion in a boiler) with the primary objective of increasing the thermal efficiency of the process. They may be used alone or to replace a recuperative heat system or to replace a steam coil. In particular, this article describes the combustion air preheaters used in large boilers found in thermal power stations producing electric power from e.g. fossil fuels, biomasses or waste.[1][2][3][4][5] The purpose of the air preheater is to recover the heat from the boiler flue gas which increases the thermal efficiency of the boiler by reducing the useful heat lost in the flue gas. As a consequence, the flue gases are also sent to the flue gas stack (or chimney) at a lower temperature, allowing simplified design of the ducting and the flue gas stack. It also allows control over the temperature of gases leaving the stack (to meet emissions regulations, for example).



Types There are two types of air preheaters for use in steam generators in thermal power stations: One is a tubular type built into the boiler flue gas ducting, and the other is a regenerative air preheater.[1][2][6] These may be arranged so the gas flows horizontally or vertically across the axis of rotation. Another type of air preheater is the regenerator used in iron or glass manufacture.

Tubular type Construction features Tubular preheaters consist of straight tube bundles which pass through the outlet ducting of the boiler and open at each end outside of the ducting. Inside the ducting, the hot furnace gases pass around the preheater tubes, transferring heat from the exhaust gas to the air inside the preheater. Ambient air is forced by a fan through ducting at one end of the preheater tubes and at other end the heated air from inside of the tubes emerges into another set of ducting, which carries it to the boiler furnace for combustion. Problems The tubular preheater ductings for cold and hot air require more space and structural supports than a rotating preheater design. Further, due to dust-laden abrasive flue gases, the tubes outside the ducting wear out faster on the side facing the gas current. Many advances have been made to eliminate this problem such as the use of ceramic and hardened steel. Many new circulating fluidized bed (CFB) and bubbling fluidized bed (BFB) steam generators are currently incorporating tubular air heaters offering an advantage with regards to the moving parts of a rotary type. Dew point corrosion

Dew point corrosion occurs for a variety of reasons.[7][8] The type of fuel used, its sulfur content and moisture content are contributing factors. However, by far the most significant cause of dew point corrosion is the metal temperature of the tubes. If the metal temperature within the tubes drops below the acid saturation temperature,

usually at between 190°F (88°C)and 230°F (110°C), but sometimes at temperatures as high as 260°F (127°C), then the risk of dew point corrosion damage becomes considerable.

Regenerative air preheaters There are two types of regenerative air preheaters: the rotating-plate regenerative air preheaters (RAPH) and the stationary-plate regenerative air preheaters (Rothemuhle).[1][2][3][9] Rotating-plate regenerative air preheater Typical Rotating-plate Regenerative Air Preheater (Bi-sector type)[10]

The rotating-plate design (RAPH)[2] consists of a central rotating-plate element installed within a casing that is divided into two (bi-sector type, three (tri-sector type) or four quad-sector type) sectors containing seals around the element. The seals allow the element to rotate through all the sectors, but keep gas leakage between sectors to a minimum while providing separate gas air and flue gas paths through each sector. Tri-sector types are the most common in modern power generation facilities.[11] In the tri-sector design, the largest sector (usually spanning about half the cross-section of the casing) is connected to the boiler hot gas outlet. The hot exhaust gas flows over the central element, transferring some of its heat to the element, and is then ducted away for further treatment in dust collectors and other equipment before being expelled from the flue gas stack. The second, smaller sector, is fed with ambient air by a fan, which passes over the heated element as it rotates into the sector, and is heated before being carried to the boiler furnace for combustion. The third sector is the smallest one and it heats air which is routed into the pulverizers and used to carry the coal-air mixture to coal boiler burners. Thus, the total air heated in the RAPH provides: heating air to remove the moisture from the pulverised coal dust, carrier air for transporting the pulverised coal to the boiler burners and the primary air for combustion. The rotor itself is the medium of heat transfer in this system, and is usually composed of some form of steel and/or ceramic structure. It rotates quite slowly (around 3-5 RPM) to allow optimum heat transfer first from the hot exhaust gases to the element, then as it rotates, from the element to the cooler air in the other sectors. Construction features

In this design the whole air preheater casing is supported on the boiler supporting structure itself with necessary expansion joints in the ducting. The vertical rotor is supported on thrust bearings at the lower end and has an oil bath lubrication, cooled by water circulating in coils inside the oil bath. This arrangement is for cooling the lower end of the shaft, as this end of the vertical rotor is on the hot end of the ducting. The top end of the rotor has a simple roller bearing to hold the shaft in a vertical position. The rotor is built up on the vertical shaft with radial supports and cages for holding the baskets in position. Radial and circumferential seal plates are also provided to avoid leakages of gases or air between the sectors or between the duct and the casing while in rotation. For on line cleaning of the deposits from the baskets steam jets are provided such that the blown out dust and ash are collected at the bottom ash hopper of the air preheater. This dust hopper is connected for emptying along with the main dust hoppers of the dust collectors. The rotor is turned by an air driven motor and gearing, and is required to be started before starting the boiler and also to be kept in rotation for some time after the boiler is stopped, to avoid uneven expansion and contraction resulting in warping or cracking of the rotor. The station air is generally totally dry (dry air is required for the instrumentation), so the air used to drive the rotor is injected with oil to lubricate the air motor. Safety protected inspection windows are provided for viewing the preheater's internal operation under all operating conditions. The baskets are in the sector housings provided on the rotor and are renewable. The life of the baskets depend on the ash abrasiveness and corrosiveness of the boiler outlet gases. Problems

The boiler flue gas contains many dust particles (due to high ash content) not contributing towards combustion, such as silica, which cause abrasive wear of the baskets, and may also contain corrosive gases depending on the composition of the fuel. For example, Indian coals [1] generally result in high levels of ash, sulfur and silica in the flue gas. The wear of the baskets therefore is generally more than other, cleaner-burning fuels. In this RAPH, the dust laden, corrosive boiler gases have to pass between the elements of air preheater baskets. The elements are made up of zig zag corrugated plates pressed into a steel basket giving sufficient annular space in between for the gas to pass through. These plates are corrugated to give more surface area for the heat to be absorbed and also to give it the rigidity for stacking them into the baskets. Hence frequent replacements are called for and new baskets are always kept ready. In the early days, Cor-ten steel was being used for the elements. Today due to technological advance many manufacturers may use their own patents. Some manufacturers supply different materials for the use of the elements to lengthen the life of the baskets. In certain cases the unburnt deposits may occur on the air preheater elements causing it to catch fire during normal operations of the boiler, giving rise to explosions inside the air preheater. Sometimes mild explosions may be detected in the control room by variations in the inlet and outlet temperatures of the combustion air. Schematic of typical stationary-plate regenerative air preheater

Stationary-plate regenerative air preheater The heating plate elements in this type of regenerative air preheater are also installed in a casing, but the heating plate elements are stationary rather than rotating. Instead the air ducts in the preheater are rotated so as to alternatively expose sections of the heating plate elements to the upflowing cool air.[1][2][3] As indicated in the adjacent drawing, there are rotating inlet air ducts at the bottom of the stationary plates similar to the rotating outlet air ducts at the top of the stationary plates. Stationary-plate regenerative air preheaters are also known as Rothemuhle preheaters, manufactured for over 25

Regenerator A regenerator consists of a brick checkerwork: bricks laid with spaces equivalent to a brick's width between them, so that air can flow relatively easily through the checkerwork. The idea is that as hot exhaust gases flow through the checkerwork, they give up heat to the bricks. The airflow is then reversed, so that the hot bricks heat up the incoming combustion air and fuel. For a glass-melting furnace, a regenerator sits on either side of the furnace, often forming an integral whole. For a blast furnace, the regenerators - commonly called Cowper stoves - sit separate to the furnace; a furnace needs no less than two stoves, but may have three. One of the stoves is 'on gas', receiving hot gases from the furnace top and heating the checkerwork inside, whilst the other is 'on blast', receiving cold air from the blowers, heating it and passing it to the blast furnace. A regenerative heat exchanger, or more commonly a regenerator, is a type of heat exchanger where the flow through the heat exchanger is cyclical and periodically changes direction. It is similar to a countercurrent heat exchanger. However, a regenerator mixes the two fluid flows while a countercurrent exchanger maintains them separated. The temperature profile remains at a nearly constant temperature, and this includes the fluid entering and exiting each end. In regenerative heat exchangers, the fluid on either side of the heat exchanger is nearly always the same fluid. The fluid is cycled through the heat exchanger, often reaching high temperatures. The fluid may go through an external processing step, and then it is flowed back through the heat exchanger in the opposite direction for further processing. Usually the application will use this process cyclically or repetitively. Thus, in regenerative heat exchangers, a fluid incoming to a process is heated using the energy contained in the fluid exiting this process. The regenerative heat exchanger gives a considerable net savings in energy, since most of the heat energy is reclaimed nearly in a thermodynamically reversible way. This type of heat exchanger can have a thermal efficiency of over 90%, transferring almost all the relative heat energy from one flow direction to the other. Only a small amount of extra heat energy needs to be added at the hot end, and dissipated at the cold end, even to maintain very high or very low temperatures. •

History The regenerator was invented by Rev. Robert Stirling in 1816, and is commonly found as a component of his Stirling engine. The simplest Stirlings, and most models, use a less efficient but simpler to construct, displacer instead.

Types of regenerators This section contains too much jargon and may need simplification or further explanation. Please discuss this issue on the talk page, and/or remove or explain jargon terms used in the article. Editing help is available. (April 2008)

In rotary regenerators the matrix rotates continuously through two counter-flowing streams of fluid. In this way, the two streams are mostly separated but the seals are generally not perfect. Only one stream flows through each section of the matrix at a time; however, over the course of a rotation, both streams eventually flow through all sections of the matrix in succession. Each portion of the matrix will be nearly isothermal, since the rotation is perpendicular to both the temperature gradient and flow direction, and not through them. The two fluid streams flow counter-current. The fluid temperatures vary across the flow area; however the local stream temperatures are not a function of time. In a fixed matrix regenerator, a single fluid stream has cyclical, reversible flow; it is said to flow "countercurrent". This regenerator may be part of a valveless system, such as a Stirling engine. In another configuration, the fluid is ducted through valves to different matrices in alternate operating periods Ph and Pc resulting in outlet temperatures that vary with time. Another type of regenerator is called a micro scale Regenerative Heat Exchanger. It has a multilayer grating structure in which each layer is offset from the adjacent layer by half a cell which has an opening along both axes perpendicular to the flow axis. Each layer is a composite structure of two sublayers, one of a high thermal conductivity material and another of a low thermal conductivity material. When a hot fluid flows through the cell, heat from the fluid is transferred to the cell wells, and stored there. When the fluid flow reverses direction, heat is transferred from the cell walls back to the fluid. A third type of regenerator is called a "Rothemuhle" regenerator. This type has a fixed matrix in a disk shape, and streams of fluid are ducted through rotating hoods. The Rothemuhle regenerator is used as an air preheater in some power generating plants. The thermal design of this regenerator is the same as of other types of regenerators.[citation needed]

Cryogenics Regenerator heat exchangers are made up of materials with high volumetric heat capacity and low thermal conductivity in the longitudinal (flow) direction. At cryogenic (very low) temperatures around 20K, the specific heat of metals are low, and so a regenerator must be larger for a given heat load.

Advantages of regenerators The advantages of a regenerator over a recuperating (counter-flowing) heat exchanger is that it has a much higher surface area for a given volume, which provides a reduced exchanger volume for a given energy density, effectiveness and pressure drop. This makes a regenerator more economical in terms of materials and manufacturing, compared to an equivalent recuperator. The design of inlet and outlet headers used to distribute hot and cold fluids in the matrix is much simpler in counter flow regenerators than recuperators. The reason behind this is that both streams flow in different sections for a rotary regenerator and one fluid enters and leaves one matrix at a time in a fixed-matrix regenerator. Furthermore flow sectors for hot and cold fluids in rotary regenerators can be designed to optimize pressure drop in the fluids. The matrix surfaces of regenerators also have self-cleaning characteristics, reducing fluid-side fouling and corrosion. Finally properties such as small surface density and counter-flow arrangement of regenerators make it ideal for gas-gas heat exchange applications requiring effectiveness exceeding 85%. The heat transfer coefficient is much lower for gases than for liquids, thus the enormous surface area in a regenerator greatly increases heat transfer.

Disadvantages of regenerators The major disadvantage of a regenerator is that there is always some mixing of the fluid streams, and they can not be completely separated.[citation needed] There is an unavoidable carryover of a small fraction of one fluid stream into the other. In the rotary regenerator, the carryover fluid is trapped inside the radial seal and in the matrix, and in a fixed-matrix regenerator, the carryover fluid is the fluid that remains in the void volume of the matrix. This small fraction will mix with the other stream in the following half-cycle. Therefore regenerators are only used when it is acceptable for the two fluid streams to be mixed. Mixed flow is common for gas-to-gas heat and/or energy transfer applications, and less common in liquid or phase-changing fluids since fluid contamination is often prohibited with liquid flows. A recuperator is a special purpose counter-flow heat exchanger used to recover waste heat from exhaust gases. In many types of processes, combustion is used to generate heat, and the recuperator serves to recuperate, or reclaim this heat, in order to reuse or recycle it. The term recuperator refers as well to liquid-liquid counterflow heat exchangers used for heat recovery in the chemical and refinery industries and in closed processes such as ammonia-water or LiBr-water absorption refrigeration cycles. Other forms of heat or enthalpy recovery include the regenerative heat exchanger (see blast furnace), the heat wheel (see rotating recuperator, below), and the enthalpy wheel (see energy recovery ventilation). Recuperators are often used in association with the burner portion of a heat engine, to increase the overall efficiency. For example, in a gas turbine engine, air is compressed, mixed with fuel, which is then burned and used to drive a turbine. The recuperator transfers some of the waste heat in the exhaust to the compressed air, thus preheating it before entering the fuel burner stage. Since the gases have been pre-heated, less fuel is needed to heat the gases up to the turbine inlet temperature. By recovering some of the energy usually lost as waste heat, the recuperator can make a heat engine or gas turbine significantly more efficient.

Rotating recuperator During the automotive industry's interest in gas turbines for vehicle propulsion (around 1965), Chrysler invented a unique recuperator[1] that consisted of a rotary drum constructed from corrugated metal (similar in appearance to corrugated cardboard). This drum was continuously rotated by reduction gears driven by the turbine. The hot exhaust gasses were directed through a portion of the device, which would then rotate to a section that conducted the induction air, where this intake air was heated. This recovery of the heat of combustion significantly increased the efficiency of the turbine engine. This engine proved impractical for an automotive application due to its poor low-rpm torque. Even such an efficient engine, if large enough to deliver the proper performance, would have a low average fuel economy. Such an engine may at some future time be attractive when combined with an electric motor in a hybrid vehicle owing to its robust longevity and an ability to burn a wide variety of liquid fuels.

Feedwater heater A feedwater heater is a power plant component used to pre-heat water delivered to a steam generating boiler.[1][2][3] Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system.[4] This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle. In a steam power plant (usually modeled as a modified Rankine cycle), feedwater heaters allow the feedwater to be brought up to the saturation temperature very gradually. This minimizes the inevitable irreversibilities associated with heat transfer to the working fluid (water). See the article on the Second Law of Thermodynamics for a further discussion of such irreversibilities. •

Cycle discussion and explanation It should be noted that the energy used to heat the feedwater is usually derived from steam extracted between the stages of the steam turbine. Therefore, the steam that would be used to perform expansion work in the

turbine (and therefore generate power) is not utilized for that purpose. The percentage of the total cycle steam mass flow used for the feedwater heater is termed the extraction fraction[4] and must be carefully optimized for maximum power plant thermal efficiency since increasing this fraction causes a decrease in turbine power output. Feedwater heaters can also be open and closed heat exchangers. An open feedwater heater is merely a directcontact heat exchanger in which extracted steam is allowed to mix with the feedwater. This kind of heater will normally require a feed pump at both the feed inlet and outlet since the pressure in the heater is between the boiler pressure and the condenser pressure. A deaerator is a special case of the open feedwater heater which is specifically designed to remove non-condensable gases from the feedwater. Closed feedwater heaters are typically shell and tube heat exchangers where the feedwater passes throughout the tubes and is heated by turbine extraction steam. These do not require separate pumps before and after the heater to boost the feedwater to the pressure of the extracted steam as with an open heater. However, the extracted steam (which is most likely almost fully condensed after heating the feedwater) must then be throttled to the condenser pressure, an isenthalpic process that results in some entropy gain with a slight penalty on overall cycle efficiency. Many power plants incorporate a number of feedwater heaters and may use both open and closed components. Feedwater heaters are used in both fossil- and nuclear-fueled power plants. Smaller versions have also been installed on steam locomotives, portable engines and stationary engines. An economiser serves a similar purpose to a feedwater heater, but is technically different. Instead of using actual cycle steam for heating, it uses the lowest-temperature flue gas from the furnace (and therefore does not apply to nuclear plants) to heat the water before it enters the boiler proper. This allows for the heat transfer between the furnace and the feedwater to occur across a smaller average temperature gradient (for the steam generator as a whole). System efficiency is therefore further increased when viewed with respect to actual energy content of the fuel.

Deaerator A deaerator is a device that is widely used for the removal of air and other dissolved gases from the feedwater to steam generating boilers. In particular, dissolved oxygen in boiler feedwaters will cause serious corrosion damage in steam systems by attaching to the walls of metal piping and other metallic equipment and forming oxides (rust). It also combines with any dissolved carbon dioxide to form carbonic acid that causes further corrosion. Most deaerators are designed to remove oxygen down to levels of 7 ppb by weight (0.0005 cm³/L) or less.[1][2] There are two basic types of deaerators, the tray-type and the spray-type: The tray-type (also called the cascade-type) includes a vertical domed deaeration section mounted on top of a horizontal cylindrical vessel which serves as the deaerated boiler feedwater storage tank. •

The spray-type consists only of a horizontal (or vertical) cylindrical vessel which serves as both the deaeration section and the boiler feedwater storage tank.



Types of deaerators There are many different horizontal and vertical designs available from a number of manufacturers, and the actual construction details will vary from one manufacturer to another. Figures 1 and 2 are representative schematic diagrams that depict each of the two major types of deaerators.

Tray-type deaerator Figure 1: A schematic diagram of a typical tray-type deaerator.

The typical horizontal tray-type deaerator in Figure 1 has a vertical domed deaeration section mounted above a horizontal boiler feedwater storage vessel. Boiler feedwater enters the vertical dearation section above the perforated trays and flows downward through the perforations. Low-pressure dearation steam enters below the perforated trays and flows upward through the perforations. Some designs use various types of packing

material, rather than perforated trays, to provide good contact and mixing between the steam and the boiler feed water. The steam strips the dissolved gas from the boiler feedwater and exits via the vent at the top of the domed section. Some designs may include a vent condenser to trap and recover any water entrained in the vented gas. The vent line usually includes a valve and just enough steam is allowed to escape with the vented gases to provide a small and visible telltale plume of steam. The deaerated water flows down into the horizontal storage vessel from where it is pumped to the steam generating boiler system. Low-pressure heating steam, which enters the horizontal vessel through a sparger pipe in the bottom of the vessel, is provided to keep the stored boiler feedwater warm. External insulation of the vessel is typically provided to minimize heat loss.

Spray-type deaerator Figure 2: A schematic diagram of a typical spray-type deaerator.

As shown in Figure 2, the typical spray-type deaerator is a horizontal vessel which has a preheating section (E) and a deaeration section (F). The two sections are separated by a baffle(C). Low-pressure steam enters the vessel through a sparger in the bottom of the vessel. The boiler feedwater is sprayed into section (E) where it is preheated by the rising steam from the sparger. The purpose of the feedwater spray nozzle (A) and the preheat section is to heat the boiler feedwater to its saturation temperature to facilitate stripping out the dissolved gases in the following deaeration section. The preheated feedwater then flows into the dearation section (F), where it is deaerated by the steam rising from the sparger system. The gases stripped out of the water exit via the vent at the top of the vessel. Again, some designs may include a vent condenser to trap and recover any water entrained in the vented gas. Also again, the vent line usually includes a valve and just enough steam is allowed to escape with the vented gases to provide a small and visible telltale plume of steam The deaerated boiler feedwater is pumped from the bottom of the vessel to the steam generating boiler system.

Deaeration steam The deaerators in the steam generating systems of most thermal power plants use low pressure steam obtained from an extraction point in their steam turbine system. However, the steam generators in many large industrial facilities such as petroleum refineries may use whatever low-pressure steam that is available.

Oxygen scavengers Oxygen scavenging chemicals are very often added to the deaerated boiler feedwater to remove any last traces of oxygen that were not removed by the deaerator. The most commonly used oxygen scavenger is sodium sulfite (Na2SO3). It is very effective and rapidly reacts with traces of oxygen to form sodium sulfate (Na2SO4) which is non-scaling. Other scavengers include 1,3-diaminourea (also known as carbohydrazide), diethylhydroxylamine (DEHA), nitriloacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and hydroquinone

Surface condenser Surface condenser is the commonly used term for a water cooled shell and tube heat exchanger installed on the exhaust steam from a steam turbine in thermal power stations.[1][2][3] These condensers are heat exchangers which convert steam from its gaseous to its liquid state at a pressure below atmospheric pressure. Where cooling water is in short supply, an air-cooled condenser is often used. An air-cooled condenser is however significantly more expensive and cannot achieve as low a steam turbine exhaust pressure as a surface condenser. Surface condensers are also used in applications and industries other than the condensing of steam turbine exhaust in power plants. •

Purpose In thermal power plants, the primary purpose of a surface condenser is to condense the exhaust steam from a steam turbine to obtain maximum efficiency and also to convert the turbine exhaust steam into pure water (referred to as steam condensate) so that it may be reused in the steam generator or boiler as boiler feed water.

Why is it required? The steam turbine itself is a device to convert the heat in steam to mechanical power. The difference between the heat of steam per unit weight at the inlet to the turbine and the heat of steam per unit weight at the outlet to the turbine represents the heat which is converted to mechanical power. Therefore, the more the conversion of heat per pound or kilogram of steam to mechanical power in the turbine, the better is its efficiency. By condensing the exhaust steam of a turbine at a pressure below atmospheric pressure, the steam pressure drop between the inlet and exhaust of the turbine is increased, which increases the amount of heat available for conversion to mechanical power. Most of the heat liberated due to condensation of the exhaust steam is carried away by the cooling medium (water or air) used by the surface condenser.

Diagram of water-cooled surface condenser Diagram of a typical water-cooled surface condenser

The adjacent diagram depicts a typical water-cooled surface condenser as used in power stations to condense the exhaust steam from a steam turbine driving an electrical generator as well in other applications.[2][3][4][5] There are many fabrication design variations depending on the manufacturer, the size of the steam turbine, and other site-specific conditions.

Shell The shell is the condenser's outermost body and contains the heat exchanger tubes. The shell is fabricated from carbon steel plates and is stiffened as needed to provide rigidity for the shell. When required by the selected design, intermediate plates are installed to serve as baffle plates that provide the desired flow path of the condensing steam. The plates also provide support that help prevent sagging of long tube lengths. At the bottom of the shell, where the condensate collects, an outlet is installed. In some designs, a sump (often referred to as the hotwell) is provided. Condensate is pumped from the outlet or the hotwell for reuse as boiler feedwater. For most water-cooled surface condensers, the shell is under vacuum during normal operating conditions.

Vacuum system Diagram of a typical modern injector or ejector. For a steam ejector, the motive fluid is steam.

For water-cooled surface condensers, the shell's internal vacuum is most commonly supplied by and maintained by an external steam jet ejector system. Such an ejector system uses steam as the motive fluid to remove any non-condensible gases that may be present in the surface condenser. The Venturi effect, which is a particular case of Bernoulli's principle, applies to the operation of steam jet ejectors. Motor driven mechanical vacuum pumps, such as liquid ring type vacuum pumps, are also popular for this service.

Tube sheets At each end of the shell, a sheet of sufficient thickness usually made of stainless steel is provided, with holes for the tubes to be inserted and rolled. The inlet end of each tube is also bellmouthed for streamlined entry of water. This is to avoid eddies at the inlet of each tube giving rise to erosion, and to reduce flow friction. Some makers also recommend plastic inserts at the entry of tubes to avoid eddies eroding the inlet end. In smaller units some manufacturers use ferrules to seal the tube ends instead of rolling. To take care of length wise expansion of tubes some designs have expansion joint between the shell and the tube sheet allowing the latter to move longitudinally. In smaller units some sag is given to the tubes to take care of tube expansion with both end water boxes fixed rigidly to the shell.

Tubes Generally the tubes are made of stainless steel, copper alloys such as brass or bronze, cupro nickel, or titanium depending on several selection criteria. The use of copper bearing alloys such as brass or cupro nickel is rare in new plants, due to environmental concerns of toxic copper alloys. Also depending on the steam cycle water treatment for the boiler, it may be desirable to avoid tube materials containing copper. Titanium condenser tubes are usually the best technical choice, however the use of titanium condenser tubes has been virtually eliminated by the sharp increases in the costs for this material. The tube lengths range to about 55 ft (17 m) for modern power plants, depending on the size of the condenser. The size chosen is based on transportability from the manufacturers’ site and ease of erection at the installation site. The outer diameter of condenser tubes typically ranges from 3/4 inch to 1-1/4 inch, based on condenser cooling water friction considerations and overall condenser size.

Waterboxes The tube sheet at each end with tube ends rolled, for each end of the condenser is closed by a fabricated box cover known as a waterbox, with flanged connection to the tube sheet or condenser shell. The waterbox is usually provided with man holes on hinged covers to allow inspection and cleaning. These waterboxes on inlet side will also have flanged connections for cooling water inlet butterfly valves, small vent pipe with hand valve for air venting at higher level, and hand operated drain valve at bottom to drain the waterbox for maintenance. Similarly on the outlet waterbox the cooling water connection will have large flanges, butterfly valves, vent connection also at higher level and drain connections at lower level. Similarly thermometer pockets are located at inlet and outlet pipes for local measurements of cooling water temperature. In smaller units, some manufacturers make the condenser shell as well as waterboxes of cast iron.

Corrosion On the cooling water side of the condenser: The tubes, the tube sheets and the water boxes may be made up of materials having different compositions and are always in contact with circulating water. This water, depending on its chemical composition, will act as an electrolyte between the metallic composition of tubes and water boxes. This will give rise to electrolytic corrosion which will start from more anodic materials first. 'Sea water based condensers,' in particular when sea water has added chemical pollutants, have the worst corrosion characteristics. River water with pollutants are also undesirable for condenser cooling water. The corrosive effect of sea or river water has to be tolerated and remedial methods have to be adopted. On the steam (shell) side of the condenser: The concentration of undissolved gases is high over air zone tubes. Therefore these tubes are exposed to higher corrosion rates. Some times these tubes are affected by stress corrosion cracking, if originally stress is not fully relieved during manufacture. To overcome these effects of corrosion some manufacturers provide higher corrosive resistant tubes in this area.

Effects of corrosion As the tube ends get corroded there is the possibility of cooling water leakage to the steam side contaminating the condensed steam or condensate, which is harmful to steam generators. The other parts of water boxes may also get affected in the long run requiring repairs or replacements involving long duration shut-downs.

Protection from corrosion Cathodic protection is typically employed to overcome this problem. Sacrificial anodes of zinc (being cheapest) plates are mounted at suitable places inside the water boxes. These zinc plates will get corroded first being in the lowest range of anodes. Hence these zinc anodes require periodic inspection and replacements. This involves comparatively less down time. The water boxes made of steel plates are also protected inside by epoxy paint.

Cross-sectional schematic diagram of a power plant condenser for condensing exhaust steam from a steam turbine. This condenser is single-pass on both the tube and shell sides with a large opening at the top for the exhaust steam to enter and a hotwell at the bottom where condensate water drips down to and collects. Circulating water for cooling is shown in light greenish color and condensate is light blue.

Other applications of surface condensers •

Vacuum evaporation



Vacuum refrigeration



Ocean Thermal Energy (OTEC)



Replacing barometric condensers in steam-driven ejector systems



Geothermal energy recovery



Desalination systems

Related Documents


More Documents from ""