THEORITICAL ANALYSIS OF MICRO CHANNEL HEAT EXCHANGER
GUIDE Dr. JAHAR SARKAR
SUBMITTED BY AMIT SHRIVASTAVA SECOND YEAR THERMAL AND FLUID ROLL NO. 07030615
MICRO CHANNEL HEAT EXCHANGER STRUCTURAL DETAILS IN THE RANGE OF MICRONS
HEAT SINK HEAT EXCHANGER
ELECTRONIC CIRCUITS CHIPS VLSI LAPTOPS
CLASSIFICATION SURFACE AREA DENSITY OR COMPACTNESS
ABOUT 10,000 m2 /m3
CHANNEL DIMENSION • Micro scale: 1-100 µm • Meso scale: 100 µm- 1 mm • Macro scale: > 6 mm
CHANNEL SIZE AND SURFACE AREA DENSITY ARE INTER RELATED
DEPARTURE FROM CONVENTIONAL THEORY
•
A CHANGE FROM CONVENTIONAL ASSUMPTION SUCH AS CONTINUUM APPROACH
•
INCREASED INFLUENCE OF SOME FORCES LIKE ELECTROKINETIC OR ELECTRO OSMOTIC FORCE
•
UNCERTAINITY REGARDING EMPERICAL FACTORS DERIVED AT LARGE SCALE. EG: ENTRANCE LOSS, EXIT LOSS
METHODS OF OPTIMIZATION EXERGY ANALYSIS
MINIMUM IRREVERSIBILITY CONCEPT
THERMOECONOMICS
ENTROPY GENERATION MINIMIZATION
MINIMUM RESISTANCE TO HEAT FLOW
IRREVERSIBILITY MINIMIZATION • Itotal = Ithermal +Ipressure Ithermal
Ipressure
DEPENDS ON
DEPENDS ON
ENTROPY
VISCOUS
GENERATION
DISSIPATION
TO ACHIEVE TOTAL MINIMUM IRREVERSIBILITY
HEAT SINK HEAT EXCHANGER Q Width W Height of channel Dd Length of channel L Thickness of metal saperating heat source from fluid t
t Dd W L
Heat rate Q Channel width Dc
tf
Dc
Fin thickness t f SKETCH DIAGRAM OF HEAT SINK
BASIC DIMENSIONS OF THE TWO HEAT EXCHANGERS HEAT EXCHANGER 1 Width 10mm Thickness of base plate 0.2mm Height of channel 0.5mm Thermal conductivity Of the heat exchanger material 170W/mC
HEAT EXCHANGER 2 Width 76.2mm Thickness of base plate 0.2mm Height of channel 12.7mm Thermal conductivity Of the heat exchanger material 170W/mC N, Dc, tf, L are variable
N, Dc, tf, L are variable
RESULTS AND DISCUSSIONS
HEAT EXCHANGER 1 WITH WATER AS THE COOLING MEDIUM
IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER RATE With increase in Q Irre_t
IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER
200
25
180
Irre_p 160
20
140 120
15
100 80
10
60 40
5
20 0 0
50
100 HEAT TRANSFER (W)
150
0 200
DEL_T (K)
IRRE_P, IRRE_T, IRRE_TOTAL (W)
flow
IRRE_P IRRE_T irre_total DEL_T
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Tf constant)
Dc decreases
Irre_t
Higher 120 del_t rise 100 IRRE_P, IRRE_T, IRRE_TOTAL (W)
flow
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES 20 18 16 14
Irre_p first reducing and then increasing 80
60
12
irre_p irre_t
10
irre_total del_t
8
Irre_p = To[m*Δ p 40]
6
Tavg*ρ 20
4 2
0 0
20
At Dc below 0.105 mm or no. of passes above 80 (optimum) irre_p rises again
40
60 NO. OF PASSES
80
100
0 120
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Dc constant) IRREVERSIBILIY VARIATION W.R.T. NO. OF PASSES
small 120 increase in del_t
Irre_p
18 16
100 14
So 80 irre_t
12 10
60 8 40
6 4
20 2 0
Overall decrease0in total irreversibility but huge pressure drop and limit to fin thickness
20
40
60
NO. OF PASSES
80
0 100
DEL_T (K)
Del_p
IRRE_P, IRRE_T, IRRE_TOTAL (W)
flow
irre_p irre_t irre_total del_t
IRREVERSIBILITY VARIATION W.R.T. LENGTH
Irre_t
slightly
120
30
100
25
80
20
60
15
40
10
20
5
0 Large length is restricted by huge 0 pressure drop
20
40
60 LENGTH (MM)
80
100
0 120
DEL_T (K)
Irre_p and del_p
IRRE_P, IRRE_T, IRRE_TOTAL (W)
As length increases mass IRREVERSIBILITY VARIATION W.R.T. LENGTH flow required reduces
irre_p irre_t irre_total del_t
HEAT EXCHANGER 2 WITH WATER AS THE COOLING MEDIUM
IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER RATE
IRRE_P, IRRE_T, IRRE_TOTAL (W)
With increase in flow rate 160 both irre_t and 140 irre_p 120 increases.
IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER 20 18 16 14
100
12
80
10 8
60
6 40 4 20
2
0 0
20
40
60
80
100
HEAT TRANSFER (W)
120
140
0 160
IRRE_P IRRE_T irre_total DEL_T
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Tf constant) Dc reduces IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES 25
But del_p increases so 100 irre_p increases.
20
80 15 60 10 40 5
20
0
0 0
2
4
6
8
10
NO. OF PASSES
12
14
16
DEL_T (K)
In this case overall effect is the reduction of total irreversibility
IRRE_P, IRRE_T, IRRE_TOTAL (W)
120 So irre_t reduces
irre_p irre_t irre_total del_t
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Dc constant) Flow Irre_t
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES 120
25
100
24 23.5
Irre_p 80
23
60
22.5 22
DEL_T (K)
IRRE_P, IRRE_T, IRRE_TOTAL (W)
24.5
irre_p irre_t irre_total del_t
40
21.5 21
20
20.5 0
20 0
10
20
30
NO. OF PASSES
40
50
60
IRREVERSIBILITY VARIATION W.R.T. LENGTH
IRRE_P, IRRE_T, IRRE_TOTAL (W)
irre_t reduces
and irre_p rises due to rise in pressure drop
IRREVERSIBILITY VARIATION W.R.T. LENGTH 120
25
100
20
80 15 60 10 40 5
20
0 0
100
200
300 LENGTH (MM)
400
500
0 600
DEL_T (K)
With increase in length,
irre_p irre_t irre_total del_t
HEAT EXCHANGER 1 WITH AIR AS COOLING MEDIUM
IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER RATE FLOW IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER 1200 Irre_t
25
IRRE_P. IRRE_T IRRE_TOTAL (W)
1000
20
Irre_p
15 600 10 400
5
200
0
0 0
2
4
6
8
HEAT TRANSFER (W)
10
12
14
DEL_T (K)
800
irre_p irre_t irre_total del_t
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Tf constant) Dc decreases IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES 50
20
Irre_t
IRRE_P, IRRE_T, IRRE_TOTAL (W)
45
18
40
16
35
14
30
12
Irre_p
25
10
20 First del_p and irre_p reduces and then15starts increasing after n10= 80
8 6 4
5
2
0
0 0
20
40
60 NO. OF PASSES
80
100
120
DEL_T (K)
Flow decreases
irre_p irre_t irre_total del_t
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Dc constant) flow IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES
Irre_p 200
14
180 160
140 Irre_t
10
slightly
120
8
100 6
80 60
4
40 2 20 0
0 0
20
40
60
NO. OF PASSES
80
100
DEL_T (K)
IRRE_P, IRRE_T, IRRE_TOTAL (W)
12
irre_p irre_t irre_total del_t
IRREVERSIBILITY VARIATION W.R.T. LENGTH With Increase in length, irre_p increases and irre_t IRREVERSIBILITY VARIATION W.R.T. LENGTH decreases 25
50
20
40 15 30 10 20 5
10
0
0 0
10
20
30 LENGTH (MM)
40
50
60
DEL_T (K)
IRRE_P, IRRE_T, IRRE_TOTAL (W)
60
irre_p irre_t irre_total del_t
HEAT EXCHANGER 2 WITH AIR AS COOLING MEDIUM
IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER RATE flow IRREVERSIBILITY VARIATION W.R.T. HEAT TRANSFER
Irre_p and irre_t IRRE_T, IRRE_P, IRRE_TOTAL (W)
300
9 8
250
7
200
6
150 100
irre_t
4
irre_total
3 2
50
1
0
0 0
20
40
60
HEAT TRANSFER (W)
80
irre_p
5
100
del_t
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (tf constant) Dc decreases IRREVERSIBILITY VARRIATION W.R.T NO. OF PASSES
IRRE_P, IRRE_T IRRE_TOTAL (W)
500
25
450 400
20
350 Irre_p first decreases and 300 then increases
15
250 200
10
150 100
In this case 21 no. of 50 passes and Dc 0.605 0 comes out to be 19 the optimum value.
5
0 20
21
22 NO. OF PASSES
23
24
25
DEL_T (K)
flow
irre_p irre_t irre_total del_t
HEAT EXCHANGER 1 WITH AIR AS THE COOLING MEDIUM Graph clearly shows that if height of channel is increased than lower length can be employed MINIMUM POSSIBLE LENGTH FOR GIVEN HEIGHT 9 8 LENGTH (MM)
7 6 5
length
4 3 2 1 0 0
0.2
0.4
0.6
0.8
1
1.2
HEIGHT (MM)
Graph a
CONCLUSION •
HIGHER “h” CAN BE OBTAINED BY REDUCING Dh up to certain limit due to rapid increase of pressure drop.
•
Large length reduces irre_t but del_p and irre_p rises. So restricted.
•
With increase in height of the channel, length of the channel can be reduced
•
When channel width is decrease then thermal irreversibility may increase or decrease depending on the extent of change in del_t but pressure irreversibility decreases and then increases. This may give rise to optimum value.6.3.2
•
With an increase in load, both thermal and viscous irreversibility increases.
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES (Dc constant)
450
8
400
7
350
6
300
5
250 4 200 3
150
2
100 50
1
0
0 0
5
10 NO. OF PASSES
15
20
DEL_T (K)
IRRE_P, IRRE_T IRRE_TOTAL (W)
IRREVERSIBILITY VARIATION W.R.T. NO. OF PASSES
irre_p irre_t irre_total del_t
IRREVERSIBILITY VARIATION W.R.T. LENGTH 160
8
140
7
120
6
100
5
80
4
60
3
40
2
20
1
0
0 0
200
400
600
LENGTH (MM)
800
1000
DEL_T (K)
IRRE_P, IRRE_T IRRE_TOTAL (W)
IRREVERSIBILITY VARIATION W.R.T. LENGTH
irre_p irre_t irre_total del_t