1
Contents
n
2 3 4
ve rsi o
5 6 7 8 9 10 11 12 13 14 15 16
Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gabriele Kaiser and Bharath Sriraman
17 18
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
19
22
Introduction A Synthesized and Forward-Oriented Case for Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . Bharath Sriraman, Lyn English
ix
Contributing Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
ry
21
23 24 25 26 27
Part I
28 29 30
Preface to Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jeremy Kilpatrick
3
Surveying Theories and Philosophies of Mathematics Education . . . . . Bharath Sriraman and Lyn English
9
31
Pre lim
32
ina
20
33
v
34 35 36
Part II
37 38 39 40 41 42 43 44 45 46
Preface to Part II Ernest’s Reflections on Theories of Learning . . . . . . Bharath Sriraman and Nick Haverhals
61
Reflections on Theories of Learning . . . . . . . . . . . . . . . . . . . . . Paul Ernest
69
Commentary 1 on Reflections on Theories of Learning by Paul Ernest . . Simon Goodchild
75 i
ii
48
Commentary 2 on Reflections on Theories of Learning . . . . . . . . . . . Paul Ernest
49 50
Part III
ve rsi o
51 52 53 54 55 56
Preface to Part III Theoretical, Conceptual, and Philosophical Foundations for Mathematics Education Research: Timeless Necessities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lyn D. English
57 58 59 60
On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education . . . . . . . . . . . . . . . . Frank K. Lester
61 62 63 64
79
n
47
Contents
89
93
Commentary on Mathematics Education Research, Its Nature, and Its Purpose: A Discussion of Lester’s Paper . . . . . . . . . . . . . . . . 105 Guershon Harel
65
67
Part IV
68
70 71 72 73 74 75 76 77
Theories of Mathematics Education: Is Plurality a Problem? . . . . . . . 119 Stephen Lerman Commentary to Knowledge Formation in Mathematics Education: Social Turn, Rival Discourses or Anything Goes? . . . . . . . . . . . 133 Eva Jablonka and Christer Bergsten
Pre lim
78
Preface to Part IV Theories as Lenses: A Preface on Steve Lerman’s Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Norma Presmeg
ina
69
ry
66
79 80 81 82 83 84 85 86 87 88 89 90 91 92
Part V
Preface to Part V The Increasing Importance of Mathematics Education as a Design Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Lyn D. English Re-conceptualizing Mathematics Education as a Design Science . . . . . 146 Richard Lesh and Bharath Sriraman Commentary 1 An Analysis of Lesh & Sriraman’s Paper: Mathematics Education as a Design Science . . . . . . . . . . . . . . . . . . . . . . 189 Miriam Amit
Contents
94 95
Commentary 2 A review of Lesh & Sriraman’s Mathematics Education as a Design Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Claus Michelsen
n
93
iii
96
98 99
Commentary 3 An Analysis of the Normative and Descriptive Claims Supporting Mathematics Education as Design Science . . . . . . . . 203 David N. Boote
ve rsi o
97
100 101 102 103 104 105 106 107 108 109 110
Part VI
Preface to Part VI The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks by John Pegg and David Tall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Stephen J. Hegedus The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 217 John Pegg and David Tall
111
113 114
Commentary Various Theoretical Frameworks in Concept Construction and How to Move Forward in Constructing Theory . . . . . . . . . . 231 Bettina Dahl
115 116
118 119 120 121 122 123
Part VII
ina
117
ry
112
Preface to Part VII Symbols and Mediation in Mathematics Education by Luis Moreno-Armella & Bharath Sriraman . . . . . . . . . . . . 243 Stephen J. Hegedus Symbols and Mediation in Mathematics Education . . . . . . . . . . . . . 245 Luis Moreno-Armella and Bharath Sriraman
Pre lim
124 125 126 127
Commentary on Symbols and Mediation in Mathematics Education by Moreno-Armella and Sriraman . . . . . . . . . . . . . . . . . . . . . 261 Gerald A. Goldin
128 129 130
Part VIII
131 132 133 134 135 136 137 138
Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion . . . . . . . . . . . . . . . . . . . . . . 269 Gerald A. Goldin Commentary Teaching Mathematics Through Problem Solving: A Future Direction of Problem Solving Research . . . . . . . . . . . 275 Jinfa Cai
iv
Contents
139
Part IX
n
140 141
143
Preface to Part IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Jinfa Cai
ve rsi o
142
144 145 146 147 148 149 150
Problem Solving for the 21st Century . . . . . . . . . . . . . . . . . . . . 289 Lyn English and Bharath Sriraman Commentary 1 to Problem Solving for the 21st Century . . . . . . . . . . 331 Peter Grootenboer
151 152 153 154
Commentary 2 Back to the Future or Forward to the Past: Problem Solving for the 21st Century . . . . . . . . . . . . . . . . . . . . . . . 341 Alan Zollman
155 156 157
Part X
158
160
Preface to Part X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Layne Kalbfleisch
ry
159
161
163 164
Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . 359 Stephen R. Campbell
ina
162
165 166 167 168 169
Pre lim
170
Commentary New Waves of Research on Learning and Teaching: Commentary on Stephen Campbell, ‘Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematical Education’ 405 Scott Makeig
171 172 173
Part XI
174 175 176 177
Preface to Part XI DNR-Based Instruction in Mathematics as a Conceptual Framework By Guershon Harel . . . . . . . . . . . . . . 417 Luis Moreno-Armella
178 179 180
DNR-Based Instruction in Mathematics as a Conceptual Framework . . 419 Guershon Harel
181 182 183 184
Commentary On Proof and Certainty- Some Educational Implications . 443 Bharath Sriraman, Hillary VanSpronsen, and Nick Haverhals
Contents
v
185
Part XII
n
186 187
189
Appreciating Scientificity in Qualitative Research . . . . . . . . . . . . . . 455 Stephen J. Hegedus
ve rsi o
188
190 191 192
Part XIII
193 194 195 196
Preface to Part XIII Studying Goals and Beliefs in the Context of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Gerald A. Goldin
197
199 200 201 202 203 204 205
Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Günter Türner, Katrin Rolka, Bettina Rüsken, and Bharath Sriraman Commentary The Interplay Between the General and the Specific: The Case of the Teaching-In-Context Theory . . . . . . . . . . . . . . 495 Dina Tirosh and Pessia Tsamir
206 207
Part XIV
208
210
Preface to Part XIV Feminist Pedagogy and Mathematics . . . . . . . . . 505 Gabriele Kaiser
ina
209
211 212 213
Feminist Pedagogy and Mathematics Judith E. Jacobs
214 215
. . . . . . . . . . . . . . . . . . . . 509
Commentary 1 Reflections on “Feminist Pedagogy and Mathematics” . . 515 Gilah C. Leder
Pre lim
216
ry
198
217 218 219 220 221 222 223 224
Commentary 2 Mathematics Achievement and Gender: A Case of “No Difference” from Turkey . . . . . . . . . . . . . . . . . . . . . . . . . 521 Safure Bulut, Bekir Gur, and Bharath Sriraman Commentary 3 An Attempt to Androgynse the Gender Debate in Mathematics Education: The Case of Iceland . . . . . . . . . . . . . 541 Gudbjorg Palsdottir and Bharath Sriraman
225 226
Part XV
227 228 229 230
Preface to Part XV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Tommy Dreyfus
vi
232 233
Networking of Theories – an Approach for Exploiting the Diversity of Theoretical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 561 Angelika Bikner-Ahsbahs and Susanne Prediger
n
231
Contents
234
236 237
Commentary to “Networking of Theories – an Approach for Exploiting the Diversity of Theoretical Approaches”: Some Comments . . . . . 581 Ferdinando Arzarello
ve rsi o
235
238 239 240
Part XVI
241 242 243
Preface to Part XVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 Susanne Prediger and Angelika Bikner-Ahsbahs
244 245 246 247
On Networking Strategies and Theories’ Compatibility: Learning from an Effective Combination of Theories in a Research Project . . . . . 593 Helga Jungwirth
248
251 252 253 254 255 256 257 258 259
Modalities of a Local Integration of Theories in Mathematics Education . 623 Uwe Gellert
ry
250
Commentary Harmony and Conflict in the Networking of Theories. A Commentary to ‘On Networking Strategies and Theories’ Compatibility’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Uwe Gellert Commentary Connecting Theories in Mathematics Education: From Bricoleur to Reflective Practitioner . . . . . . . . . . . . . . . . . . . 653 Tine Wedege
260 261
Part XVII
Pre lim
262
ina
249
263 264 265 266 267 268 269 270
Preface to Part XVII The Importance of Complex Systems in K-12 Mathematics Education . . . . . . . . . . . . . . . . . . . . . . . . . 665 Richard Lesh Complexity Theories and Theories of Learning: Literature Reviews and Syntheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 Andy Hurford
271 272 273 274 275 276
Part XVIII
Preface to Part XVIII Breathing New Life into Mathematics Education . 711 Bharath Sriraman
Contents
278
Knowing More Than We Can Tell . . . . . . . . . . . . . . . . . . . . . . 713 Nathalie Sinclair
n
277
vii
279
281
Commentary The Tacit, the Covert and the Compulsive Need to Know . . 733 David Pimm
ve rsi o
280
282 283 284 285 286 287 288 289 290 291 292
Part XIX
Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 Bharath Sriraman, Matt Roscoe and Lyn English Commentary Critical Mathematics for Critical Times . . . . . . . . . . . 773 Keiko Yasukawa Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
293 294
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
295
298 299 300 301 302 303 304 305 306 307
Pre lim
308
ina
297
ry
296
309 310 311 312 313 314 315 316 317 318 319 320 321 322