! " #! $ % & '( ! ) ! *! (
+ ( *! . ) & 0. & * ! ! 1 ) & . ! ( 1 ! 1 ( 1 2! & " 3 ) & , *# !
"
, / / , /
- 4 & 5) & * ! ) ! " " % ) " * ! & " ') & 3 " ') & , , % , & , &
& %# 1
& 5 ) . 1 ! & )# & 7 & %! ! 1 8.* & 7) & & 7) & ) & 7) ! & $ ! . & %! ! ! *! . & %! . ! ! $ ! . & %! ! ! 9 & & % ') ! ') ! & : ( ! ! *! &
" " 6 6 " " " "" "" ",/
- - - -" --6 -6 6 6 6 6" 6" 66 66
/ /" /6 "
') ; " : & " 0. " 7) &
&
!
+ & '! +& 0. ) & 1 < & :2=* 2## ( $ # ( :! 2 % 2 # #> & &# . ! " " 1 =* " = " * ! , ;# ! , ;'* % , ( , $ &) # , * % , ; # !
" # !
5 # 1 & > # 1 & 1 %! & 5) # 2 % Æ!> %# ¼ ) # 7 % # :2=* ) & 5) # . ! 1 ? . @ 2
" -
"
" 6 / "
" "/ "/ " " ", "-
, , , ,, - - -/ / /
1 '! 8 $ A'8$B 7 & 1 8! 7 ;! A87;B " ! , 5 ! ! A B - 7 # ¼¼ C¼¼ 6 7 # & / D # .5 .5 ! 3 ;'* ) & + ') :2=* 2%! & .( ! ;'* " * &) # ;'* =* ) & 1 =* =* ! * & # =* ) ! *!# # & =* " 5 & , =* ! # !
$ # !
" + " 5 # " 1! & > < & " *% ) & " 1 ) & 3 " 2 ) ) & 3 " 1 ) # " E ) =* " * ) " # " :2=* ) & " 2 # ( " 7 %! ! " 7) " 7 %! ! " 7 % !
/ /" /, / " 6 / 6 6 6 " " ",
%$"6 ,/ ,/ ,/ , ,-/ - -, 6/ 6 6 6" 6// /
"" 7 % ! ;'* ) & " ; '! 7 " +%! ! " ! "" =* ) & "" * & "" 2 # ) & "" * # &
, + , F & , 5 # , * ! &E , # ) ! &E , E & , =* &E , =* & & 3 , +& &E , +& &E
"
&!'!!
&!'
- + - 2 .# & - ( - 5 - G # - ; # - ; # -" ; #E # -, ; # -- 2 -6 1 G 3 -/ 2 #! ! &) - 2 # & - 2 ( A B # & - 2 ( 7. # & - 2 ! . # & - 2 < & - ; # -" 1 #! # &
/ " , ,
, / / , 6
""
" " "/ " " " ", ,/ , , ," ," ,, ,,6 - -
-
6 + 6 ! 6 1 ! 6 :# =.* ( ! 6 1 ; 0 + A;0+B 6 1 =* 8 #! ' ( 6 1 =* 8 #! =.* ( 6" '# 6 ') 6 2 & %) A*+.B 6 2 .&# & A*+.B 6 * .&# & A8 8B 6 2 &# & A8B 6 2 . A=*HB 6" 2 A2*HB 6 2 ! .# & 6 2 ! # & 6" $ ! & 6" 5! 6" 4 )E ! 6, 2 :! &
-
- * - + # & - 1 A B & - % - 4 ;# ! - + - ;'* # ! - ;'* - ;'* .) !
% ( )
+
-" -" -, -6 6/ 6 // // // / /"
*%
/6 , 6 6 " , 6 " " /
"
1 ) ( # % 1 )! # & ! 2 I ( .
# 1 # ! >
I ? .. @ ! ! ! # ! 1 # 5 3 # $ !I #! 3 ) .)
H ! ) # !
* I Æ ! # %
& ! + #I # # & 2 & #! = .# & ) # # & > & I # !I ! Æ # ( 1 ) ! #! (
1 ! )
AD I ; 4 'I H I I ; H I 8 # I 5 B . A0 8 B
+ I
> ## & I ! # . H # & +
! A B ! :
I 2 I G I 0 8 3# 5J 1 ) (
)
)
1 &# I & # A 0 8 B 1 ! (
A !B 1 ) ! > 1 # & I I ! % : # %I I # ! ! # # !
1 ) #3 >
% ( # & % = * (. . # & 1 3# *% Æ # & > I % . & I ! )
) & + ! ! #% 7 ! ! 1! # ! # I
# 3 I ! # ! ') % ) & I & & #
& %
& > ) 2 ! . ?@ & . #! &
! '! &E 2## %# 2 % A:2=*> :! 2# = * I ;'*> ;# '! * I =*> = * B & #
) & 2 . 3# & I :2=*I ;'* =* + 1 ( ! A ! =* :2=* ;'* B 3
" & 1 & ). ) & # !
)
! % 7 ! 1 #! & % :2=* ) % : % ;'* =*
, &E 1 ! 2 ! =* 7 # :2=* * & #! % ! ! I # &
-
! # 1 # ! #%! !
8 # & )# ! # & :
# # & #
;# '! * &
6 ( ! ! # & 7 ( A;'* =*B A -B ( ! ! < # 1 # ! ! & !
1 I
# # # I (! ) ! % * I . !
,- #.) /01/#
+ 7J( $7: =:*E+=5E$5* / + = 5 !( 1 E '=*''+G1
,- , 234050#3 ; '7 $5: =:* -' 5
1 ( # & ## . ( =.* ( # 1 ( I #! !
! H I D 1 (
# # 1 =.* ( ! . . # ! ( I 3 # K # ) 1 % !> K
AB
# # 1 . # & >
! K I ! % I
#! A ! BI
#
# # & ( # L D # # A # / ! BI % #% # & > (
#.. ) ) # I >
K
K
AB
I K - A B # I K ! ! # * ! . # >
K
AB
AB
( > K
# ) # !>
K
A B
# & I #! ! I 1 # % #! A BI ! A BI #! A B ! A B 1 ! M + I ! # K / # A:! 5 B ## ) / D Æ ! K 6- + I ! A #!B 1 ! # ! > K
L M
A"B
! 3 K A # ! K A K M B B I # % ! K L 1 ( > ! 3 K #! > A B K + I # ( > )I M # . K 6- 1 M A # )
B !> M K M
A,B
)I ! ", 9E# ! M ,- 9E 1 # M M ! )
*
7 # A#E B
7 ! M A9E#B
", "/ -6 -6
//" // / // //// /// //-
/ / /
7 ! M A9E B
,//- 6 / / /
!"
1 A B ! K
# > K
K
A-B
+ I # # # & ! # ! A* 5 I G!
B # A ! # B H I ! ! # 1 # ! # I ! H # ! A/// /// 9EA#DBB # A "/// 9EA#DBB 1 !>
K
A6B
) I 1 3 #! ! A# I B 1 ! % !>
K
K
L M
K
L
M
A/B
#! K # !I # '( ABI A B A6B>
K
K
LM
K
L
L M
M K
AB
7 #! A B ! A B # & I ! )I >
K
K
AB
'( AB ) ! A1B A B + ! # #%! G I ! E & I # !
Scaled molar heat capacity
7
CO2
6 H2O CO 5
4
Ideal diatomic gas
H2 N2 500
1000
1500
2000
2500
Temperature (K)
# # # 3000
Mass heat capacity
2500
H2O
2000
CO
CO2 1500
N2 1000 500
1000
1500
2000
2500
Temperature (K)
$ %&'( # #
"
)
)
* +
) ! # I # ! /// // 9EA# DB # // D /// D ! A B I ! ) I % >
K
K
AB
!> K K
2
1 ! K 1 % !> K
!
Æ L
!
L
AB
!
! ! 1 ! " K 1 ! 3 AD B Æ D ! > Æ K K # I / 4 $ % !> $ K
Æ
K Æ
Æ L !
L !
!
A B
,
6!! . 1 Æ % 1 Æ ) A I B & ! Æ A& B ( ! ## 1 A' ##B> # . # *% A ! B < ! ) 1 & Æ 3 ; % !> ' K
%
K
&
& &
A"B
& K % A B ! Æ 1 ; ' * & ' (! I # I # !
& ! # AG BI % # #! I & ' ## ! ! & 1 5 I (I > ( K
" "
K K % A B % %
A,B
* A # B A &) # B # A' ##I ##B
.! 7
! # # ) >
¼ "
* +
¼¼
"
# K , )
A-B
¼ ! I " " Æ # 7 > ¼¼
¼ " K
¼¼
"
" K /
# K , )
A6B
¼¼
" K "
"
¼
A/B
-
!I ! I -N -N ! ) >
-N K
-N K
"
-N K "
AB
# # *# -N # '( A6BI >
-N K
"
K/
# 1 # # >
K O
AB
¼
O
¼¼
AB
# K 1 # 1! ! # 2 > K .
)
K .
)
AB
') # # # ) . I ) / A (! #! K B 8 ## I !# # # # ! ) + # & I
A * B # . 2 ) . ! 7 # 1 G'7D+= AD B I I # . # I / E 1 # ( >
K
6
)
M0
M
A B
K 1 M ! # # #
# > M M0 ! ! ! # # 1 (
, $
# * *
# &
2 I I > ) I )! ! A9 B ! & I ! ! ! Æ $ ! Æ! > # ! ! (
/
# # & 5 #! A ! E !B> ) Æ # A!! "/ E B 2 # & ! ! # ( ! & ! A B
1.) ' # ! &I 3 # 1 )3 ! #% ( ! 3 & 1 ! % ( A# B # %# A) )B
Stream 1: Fuel
Fuel + Air
Stream 2: oxidizer (a) Premixed flame
(b) Diffusion flame
-. / 0 1 + ) A# BI )3 ) ! ¼ + "¼ " Æ # )3 # ( ! ¼ "¼ 1 L "
(234
A"B
A ) L L BI )3 >
K
¼ " K4 ¼ "
A,B
1 4 1 ( # )
> 5K4
K
+ > 5K4
A-B
N N
A6B
N N ! & )3 1 ( ) # > . 5 6 A ) B # 5 7 A )3 ) B 7 ! + ! E & I # I !! ," # )!# * !I > K
L
4 5
L ,"
A/B
1 ! 4 # ) A5 K B
2
3 45 " 3 45 " 3 45 3 45
4 " 3 6 ! !5 ! 6 3 45
6 77 3 53 3 "! 77
7 7"" 7 757 7 75 7 7
! * + !37 4 ! ! A1 B ) # # ! > # . # ) #%! ! # I 1 ! .
) & ! !
1.) &I )3 ! # A B & !
# ! A )3 )3 BI % % ( > 5K4
AB
1 3 & A )3B G I # ( 5 > 5 K 4
N N
AB
N N & % )3 ! 5 5 !> 5 K 5
N N
AB
N N & # ! ) I )3 ! N K N 5 K 5 ) ! I ( ! #%!
1 ( # # & >
3
L
!
K
L !
L !
8 K
$ L !
8
A B
8 # # ' # ( ) I & % ! > ! ! #! # >- >/ ! # # & ! 2 (I :! # & > # (
! !""
' ' ' (
#!$%&
I # & ! 2 ! ) < > # < ! ! # A; 4 ' B
1 ( A"B # # & A # B> 3
L
K/
!
A"B
1 ( > L 3
!
AA L B B K -N
K ,
A,B
. ! -N 8! % >
K /
-N K /
A-B
1 ! # ! >
9
K
9 9
A B L A 9 B
L
A8
8
B K , A6B
K ! Æ 9 > 9 K 1 * A
# B # 1 ! A6B ! 3 ! & 7!I Æ ! A' ##B % ! > K
&
!
A/B
) * + ,
& Æ ) 1 ( > L 3
K !
!
&
!
AB
L -N
) ;
! !# ! & > # ; ) E &
# & ; # #! # & A ! K /B # > # . ; ! ) ! &
1.4
CO2
1.2 O2 Lewis number
1.0
CH4 H2O
0.8
OH 0.6 0.4 H2 0.2 0.0 -2
-1
0
1
2
3
4
5
x [cm]
8 9: 1 + !!5 , 0 ; ; # * # !
!
7 % # # & 0 !I !> K 1 ( = ( A,B ! A B> ! + !
( A,B K /
-N K / I ( > L 3
K !
!
K/
AB
1 ( ! ( !
( A,B ( A"B ! >
Æ! ) ) G I # + I :G* B 3 ! Æ
'( AB A & ( A& K &B 0 I # I # Æ I ! #
) 1 # >
1 % # ( A"B ! ( 1 A ! B ! # K ! 1 % # *# ( # # ( # ( A"B ! > L A B K -N L 3 ! !
&
!
L
!
A&
& B !
AB
'( AB ! 1 :G* ( ! 1 #
% Æ > I .# ! 1 ## # & 2 Æ ( A B> & K & + I '( AB
+ I ! ! ( AB>
3
L
!
A L B K
!
&
!
L -N
AB
1 ! ! # + ( I (
"
> L 3
K !
!
&
!
K
K /
&
!
A B
2 I ! # %
! ( + I
A=.B I % I 1 & Æ ! I ' ## ! % . ) )
" #! 1 #! ( ( # ) = % ! A'( "BI # A ! !I #! ( B ! (! 8 > &8 K &3
8 8 L 3 !
K
8 L 3
8 !
A"B
*# ( #! AD B>
& K &3
3
L
!
A B K
: !
L
!
A$ B L N L
8A L B
A,B
N A ) I &)BI ! 8 A L B ! 8 1 #! &) : > : K
% L !
A-B
1 &) ) ! ; A% ! B % . #
,
$ # #! !> K L ! ( A"B ! >
& &3
K
& &3
& &3
!
& & K &3 &3
& &3
!
A6B
$ # '( A6B '( A,B # ( >
& K &3
L 3
!
A B K
3
: L A B L N L ! !
8A L B A /B
1 ( #! AB ! # % #! ( 7!# ( A B ! >
3
L
!
$ L !
K
A B
8
*# ( '( A,B # ( >
& K &3
L A B K 3 !
: L $ L N L ! !
8
A B
1 ( ! '( A B A6B>
& &3
K
3
L
!
A B K
&
&3
: !
L
!
L N L
8
A B
P K ! # 1 ) ! ! ! ) #! ! # A M B #! ! &) : A B * # % A K M BI # '( A B # ( A,B >
& & K -N L &3 &3
L L
!
N L
% !
!
8
L
!
A B
-
-N > -N K
1 I K #
A
M -N
A
B
:G* '( A B 1
B 3 >
) ! !>
K
K /
+ I # 3 ! ## -N 1 ( #! ! '( A B A6B>
& K &3
3
!
L
!
A B K -N L L N L !
L $
%
!
!
A "B
8
2 ! # A ? . @ #! 1 B 2# '( A "B A B ( K L >
!
& K &3
L A B K -N L 3 !
L
!
A$ B L N L
%
!
!
A ,B
8 A L B
+ !I ( K L ! # '( A B A B>
& K &3
L 3
!
L 3
!
A B K
-N L
L
!
#
/
%
!
A B L N L
-
!
8 A L B
A -B
# !$& .
& /
.
6
+ A .7 BI ( . *# K !
A ## I ## *
BI >
& K &3
& & L
&3 &3
A 6B
:# '( A B # > &
&
K -N ¼ L &3 &3
L
!
N L
L
% !
L ! !
A"/B
8
= -N ¼ ( -N I ( > N K
M -N
Q
N ¼ K
-N K
-N
M -N
A"B
1 ( 1! ! ! * ! ( ( 2 ( ! I # % >
& K &3
& & L &3 &3
A"B
# '( A "B >
& &3
K -N ¼¼ L
!
!
%
!
A B L $
!
L N L !
A"B
8
-N ¼¼ K -N A( -N (B 1 " 3 #! (
L
L
L
A% B
A
A B L N L
B L
A B L N L
A$ B L N L
M L
8
8
8A L B
8 A L B
B L L N L
8
8
8A L B
B L $ L N L
B L
A
M
K L
K L
8 A L B
L L N L
A
L $ L N L
A
A% B
A$ B L N L
K L
K
'!
+ ) / * ) < * = * 0. 1
) * 1 3 Æ Æ ) = = >
A% B
K
K
L
A% B
! K -N L " K -N L
K
K N L KN L
'#!
K K K L M K K L M L K K L K
K
1
1
* L
*
/
1 #! ( ! % 3 1 #
$
+ &# AH BI & A! 4# # / E # 2 // "// E BI # # % >
1 7 ) & 4# 2 > Æ ( ! 1 ! ! # A BI ! ! ! > L K 3 !
L ! ! !
1 ( ! > K 2
! K ! '
K
3 K 23 '
A"B
K 2
A" B
' A ) 3 B 2 +) # ( + # :! K 2 ' I '( A"B > K !
3
L , ! ! !
A) B
A)B
A""B
A) B
'( A""B I # :! ! & I # ) 1! ) ! & 7 I ## ( K ! K K 23 1 I ! # # & ! # # & > K
A",B
+ #! ( I & &3 ! 3
+ !I # P K A ! B ( # ) ! #
1 ( A"/B >
&
K -N L ¼
&3
!
% !
!
L N L
8
A"-B
%& '( ! % ! # . I # ( K K A & RBI ( A"/B K / ( >
I ( & > & &
K -N ¼ L L &3 &3
% !
!
L
L N L !
I I ( & >
&
K -N ¼ L &3
!
!
%
L N L
8
A"6B
8
A,/B
G -N ¼ -N A'( "B (>
-N K ¼
-N K
-N
M
N K
-
-N
M -N K -N
A,B
-N K / 1 #! ! ( % (>
& K &3
L
!
L 3
!
A B K -N L
A$ B L N L
!
%
!
8 A L B
' '
A,B
& K &3
L
L 3
!
!
L 3
A B K -N L
A B L N L
!
%
!
8A L B
A,B
= I ( I ( ( > K
K A
B K A; B
; K :# '( A "B # # ! ( >
;
& K &3
; ;
L -N L ! !
%
!
L
L N L !
8
A,B
&# I > '( A,BI % :G* A B H # & I ( ) + -N I )I
#I ! + ; !I $$
% '( A,B #
! # & + ! ( # & A -B
! ' !
+ ) ! A )B ) (> ). #! K D ) # ( ! # &4 &3 K & &3 ( A'( B>
& & K -N L L
&3 &3 !
L !
% !
L N L !
!
8
A, B
1 , 3 ( # & 7 %
%
L
K/
* > K
A B
H > %
L
AA L B B K -N
H > %
L
AA L B B K
B L A& N K
7
L
K L
&
L
L
A B K -N
-N K
L
&
8
'#! A B %!
A$ B L N L
L M -N : K %
8A L B
* + 0:> + + * ) !5 = . *
&# I I ! 3 A8 K /BI # ## ( ! % 1 - 7 %
%
L
K/
* > K
A B
H > %
L
AA L B B K -N
H > %
L
AA L B B K
B L A& N K
&
7
L
K L
&
'#! A B %!
L
A B K -N
-N K
0 K -N ¼ L -N ¼ K
A% B
N : K
%
M -N
L
* + # : $ 0
1 ! . & ## ) # A ) )B I ! ( =! # ) & >
+ %# ) I !
+ ! *
7! ! & I ! !
AH B ; & ! ! # & A& !> B
( I # ) & % ) %# G I ! & # ! ! > ! & 1 ! ! & # . )! ! A B H ) I ! ( A B G I ! ! %I ! .! ! # &
# )
,
-
A B 1 1! ( &
. ) & I ( % # 1 - A ) # !
B>
7
3
* K
'#!
-N ¼ K
L 3 !
3
L
L
K/
AB
AA L B B K -N
AB
> !
K -N ¼ L
!
!
%
!
!
AB
-N
1 ( ## # 4# # * #
& ) ! & ! H & !I # '( AB AB & A # 4# B > K K 4#
A"B
- ' ' ' # &.
#& ##& & #0%& ' ( ' 1 . #! & #! & #02&
3 0! ' ( ' 1 . 4 1, 1 ' "% 5 ' 6, ! 7 89 ' ' ' ( ' ' 1
!
AA L B B K -N
K -N ¼ L ! !
% !
!
6
A,B A-B
1 ( # -N A2 B A !I )B ! ) & I ! ! Æ 1! A ! K /B ) # & A# B> A! K /B K I A ! BI A! K /B K 7
STATE 1: fresh gas
6
STATE 2: burnt gas Reaction rate
5
Normalized temperature T / T 1
4 Normalized fuel mass fraction Y / Y F1
3 2 1 0 0.0
Abscissa (x)
x=l
; 1 , . 0 !> + ? > +
1 # & ! ) >
1 ! 3 + & !I ! # ! K / # # !I
(
: ! # < %! 1 ? !@ AH B
I ) ! ! #3# I > & # # & A! K B 2 ! ) &# >
/
& # 1 ! *
' & #I ! ) ! ! ( & 4# A & %) B 1 # > % I ! & 4# #
1 & %# ) & ## . + . + ! ( &
() $ * # '( A"B A-B !
! ! 1! H ! 3 % #I # ! #! ! >
A< B K /
A6B
< K A, , , , < B ! 1 ! ! = .! 1 !
! ) 5:'7+S AD I D I D I >EE # E B #
. & 1 & E A # &# ! ! # . )!# ! ! # B 1 # 1 I 5:'7+S # # 3 /// # /6 5:'7+S . & % 1 ! . & >
# I % & # % & I ! A( I I I B
: . ' ' ' ' '
0.6
x [cm]
0.6
x [cm]
0.8
0.8
H2 O2 OH H2O O H
1.0
1.0
0.0015
0.0010
0.0005
0.2
0.0000
2e+12
1e+12
0.2
0
5e+11
5e+11
0.4
0.4
0.6
x [cm]
0.6
x [cm]
0.8
1.0
1.0
HO2 H2O2
0.8
1.0
0.8
0.4
0.4
Y Heat release [erg/cm3]
0.6
0.4
0.2
0.0 0.2
0.0 0.2
1000.0
2000.0
3000.0
4000.0
Y
# % & ! # ( ! A6B % #> % # !
I # $ !I (# // I 3# // % ! # #! ) + ! I 3 . & I I # . & ! 3 ! # ! ) I ) % A '( B> . I / # K , ) I ( /// "/// H "/// & ( ) ! Æ 0 # A +BI A ++B
> 477 ( -1 #
-@$AB , . 0 !
Temperature [K]
2400
Maximum flame temperature (K)
2200 2000 1800 1600 1400 1200 1000
0
1
2 3 Equivalence ratio
4
5
: . , 0 !777 2* # * # ! ) . 0
* +*
A ) &BI # )
0 !I + 3 ++ ! A ## *
I D I ## *
B 1 . ( &! > # (! # I )I ! (# & . & ! ? &@ # # ) ) ! ( # # ) ) ! #E & # & A " %
& B 1 # & ( I ) &! + .! # # )!
* ! ! + ( I
# ! . ) & !> ! ! 8#
A B # & (!
1 ) .! * & ) ! I ! # & !> )I L L # 1 #I & # T 0 I . 2 ! # ! !
A ;3 ## *
B ! !
A ) D I 2# B # ) ! ! & # ! 2# ! #. & / ( / * ! ! # L L ! &
* 0 0 #
1 * / 0 @ * A C
1 ) 1 A Æ I !I ÆB ! . # & 1 ! ! ! 3 . A B #
! + & I I ! ! ! A ! ! ) B . & ! ! 2 )I # ! & ( E &
5:'7+S>
! # :+ A>EE!E # B
! # ;
! 1 ! A B + & ) ! # ; / / ! A # B
40
0
Laminar flame speed s L (cm/s)
50
30
20
10 Complex transport Lewis =1 for all species 0 0.6
0.8
1.0 Equivalence Ratio, φ
1.2
1.4
) / . 0 > . 1 9: !
& 0 ; ; # * # !
# # ( #% & 2 !# ! I % # ! Æ ! # ! ) # # #! ) A5 H3 B
!"
1 ) & ) !
! A )I ! & B I . ! ) & ! & %# > !
) 8# ) ( & ( % ! 1 ! )!
) ! &
1 % ( ! & # AH B>
2 # K ! K 1! Æ & K & ; ( ' K % A & B K ' ! ! ' K
! ! # > ) K '( A-B
"¼
"¼¼
A/B
1 3 > K / 1 2 > K . ' 1 -N # # ! '( AB> -N K "
N K "
(
AB
1 -N ( > -N K
M -N K
AM "B K " =
= >
=
K
M
" K "
AB
M
" K "
M
" "
AB
"
" K "¼¼ "¼ # = ! + A ! # B 1 !
% (! 1 % ! > =¼ K
=
K
M
" "
AB
1 -N -N !> -N K =¼ -N
A B
= I = =¼ # * % = > =K
=
¼
K = K
M
" "
A"B
= 1 -N -N > -N K
=-N
A,B
1 ) 1! = = . 3 1 = = ! !
1 -N A/B ! ! )3 1 ! ! & )! > K 0! A B 1 ¼ ¼¼ "¼ K "¼¼ K / " K " A-B K " K " K / I # '( AB AB>
-N K . " ' K > '
A6B
> K . "
A/B
' # ! # A ) ! BI ! ! ! & > . I !
2 " "
!
!
'%& 7 757 "" 6!
3 6 !5 !
'%&' "7!77 65577 6" 77 !7"77
,
6 77 3 53 3 "! 77
7 7"" 7 757 7 75 7 7
8 ! ! " " / * ) * + !37 1 # A K B 1 # . ( A & B>
K K K 4# 4#
K ! !
4#
!
L -N
AB
!
=-N
AB
&
K ! !
%
AB
+ ) I -N #
+ !
2 ) # '( AB AB ! K ! K L A # B 3 ( & # > 4# K 4# A
½ ½
B K =
-N ! K U ½
-N ! K =U
AB A B
½
U 1 ( ) # & '( AB # A 4# B & ! U '( A BI
-
I ! A=U B ! #! &) 4# = # U '( AB A B > A
B K =
K L =
A-B
& '( A-B ) ! ! # >
A BL
M K A BL
A B K
M
M A B
A6B K 6- 2 . '( A6B ! '( AB # >
" K / "
A B K
M
" K "
= K = ¼
A/B
# '( A-B 1 3 >
1 ! A M I B ) &
A) .I ). / B I
1 + ' , 9 ' ' Æ 3 ' , ; #!$6& ' ' 1 .
# & / #00<&
' ' ' 1 ' 1 ' 9 3 , ' , .
/
#006&
6
1 I I I )I A! # ) .B ) ( 1 I
! #. !I ) + 1 & '( A-B 1
#
(!> 1 # 1 ! % > I ! I # 1
1 ! #%! ! # &
Adiabatic flame temperature (K)
Full chemistry and variable Cp One-step chemistry and variable Cp One-step chemistry and constant Cp
2400
2200
2000
1800
1600
1400 0.5
0.6
0.7
0.8
0.9
Equivalence ratio φ
1.0
1.1
1.2
C 0 , 0 377 ( *
1 ! ! # ( I ! 3# #!I # ! # G'7D+= 8 '( A-B + I )I ( 8! 7 ;! A87;B A;! I 8! B ) & 2 )I # " & E & >
7> ! !>
/
7> *#. ! !>
7> *#. ! !>
#
1 7 7 > (. I ) # ! 7 2 # ( I &I ! / D 7 7 = K ""// 9E# K // 9EA#DB + ( // D %
+ & '( AB AB ! % # > K
CK
B K =
A
AB
1 # # / # C # / 3 1 ( C '( AB AB # '( A-B> 4# K ! ! 4#
C K ! !
& ! % C !
L -N
AB
-N
AB
*# ( # ! ; ' K % A &B K # > 4# AC L B K & AC L B ! ! !
AB
A B ( * C L # # I ! '( AB > CL K
A B
1 # ! ) & ! # ! ) ! 1 '' #= !& '' '' ' 1. = !
( > # A ! BI A ! B I ! C 1 A B C # '( A B 1 ( C > C 4# K ! !
% C !
> A L CA
BB
A
CB )
L CA
B
A"B
1 C A B # 2
+ '( A"B ! & > & ! & ! % # ! ( 1 A H H B 1 I #! ) & I A-N '( AB A"BB ) ! H >
'
CB ) / A?A CBCB ! ) A/ ?B ) > -N K > '( A
? K A
B K = A B
(
/ K ?
A,B
A-B
1 ? / ! & ! 1! & 1 K // & A B % ! . &
!
6 4
'%& !!7 34"
64 !"7
#
74" 7 5
7 ! 6
) * # . 0 1 ! C > K
L ?C A ?B
> # ; #00"&&
A6B
300x10
-9
Reduced reaction rate
(1-α)/β exp(−1−β/α)
200
100
0 0.0
1-1/(α+β)
0.5 Reduced temperature θ= (T-T1) / (T2-T1)
8 = $
# 7 4"# 7
! D
1.0
* D
-N ! > C # , -N ? K /, / K -I # / K /I # - # -N # / # -I ) > #! < -N !I & # - ! > & # & I # / A # B -N 3 # C ! ! + I ! A B % A!! / / # / 7 C 7 B ! 3 # - ! C K 1 # ! ! ! AH B> #I ) # - C
/ 1 ) ! '( A,B ) ! )! I ! # ) -N ACB # > C K A? L / B A/B
! / / # ? 1 ) A# ,B> N
-
K
>
? ) / / ?
AB
1 3 .3 ) &
# I I #! A / IB
Reduced reaction rate
α = 0.75 α = 0.75 α = 0.75 α = 0.75
0.2
β=4 β=8 β=13 β=20
0.4 0.6 Reduced temperature Θ = (T-T1) / (T2-T1)
0.8
1.0
8 = $ * D 7 * *
> / : : * ) . $ E * * 0
0
Æ K / A# 6B + ( I (! # C / A BI ! A / IB A Æ K / B 1 % ! #> ÆI # :! I # & I # # / I ! & ) & ! / ! / A/ /BI I I Æ R 2 ! ! 3 # 6 A C K / / B ! A ! .# & ## ! B 3 A C K / B ! 1 ) 3 ! ) A 3 I % 3 / B ! >
! . ! & I
. & 5:'7+S
! E 3 % # 3 E 3 * % ( ! Æ! # . & . ! &
. E ! & # Æ .
Reduced reaction rate
Zone 1: diffusion and convection: thickness = 1 in θ space
Zone 2: diffusion and reaction: thickness = 2/β in θ space
0.0
0.2
0.4 0.6 Reduced temperature θ= (T-T1) / (T2-T1)
0.8
1.0
) ' F . 0
I %# # A7 B 2 ( ) A) B A/ B % # ! . ! & ! 1 ! ! I ! 1 ! . & ! ! & ! ) ! I ! & ! . &
,! $ $ % I ) ) & & 1 ! 1 % ! V I .D D !. 2 ! !
5 ) !) 8!.9 & 7:; 7 ; <8&;=
'( A"B ! % ! # !> @K
4#
%
!
AB
'( A"B ! ## & > C C K @ @
W-
AB
- % AH B !> - K A
CB ) / A?A CBCB
AB
W 3 (! A ?& @B> WK
% > 4#
'( K
%> 4
#
'(
A B
2 > # $ I ! ) & ! W # ? / 1 & A B A%B A> B 1 & > # ! # & + ) A BI %> # 1 Æ !> ! % % K 23 '# # # > WK
> & 4#
A"B
K % ! # &
4 ! ! ( ! '( AB 1 % V I D D AVDB # ! >
W K / /
2 !
H >
W K / / L
/
A? B
A,B
A-B
+ # W // & W # ! ! % A'( A BBI & ! # > 4# K
/
> &
'
A6B
1 # $& '
"
VD A'( A,BB > 4# K
/
)
/ ?
' A > & B L
?
A /B
/
H A'( A-BB
5 !)! ! !>
2 ! 2 ) VD ! ( ! 2 ! ) ) & ! # 1 &
# 6 ## ! C K / C & 700x10
-9
Reduced reaction rate
600
Echekki Ferziger form
500 400 300 Arrhenius form
200 100 0 0.0
0.2
0.4 0.6 Reduced temperature θ= (Τ−Τ1) / (Τ2−Τ1)
0.8
θc = 1- 1/ β
1.0
C '' F . 0 C,
2 # I 2 ! # / ! ' 3# A ' B + ' I 3 C A CB C 6 C '( AB ABI ( A
B> K K 4# A B C 4# K ! !
% C !
L -N !
A B
,
CB AC C B A B K / 1 ( !
-N ! K A
G C 3 '( AB # &
@ A'( ABB> C @
K
C @
W-
A B
W K % A 4# B - K A CB AC C B 2 # ! % K % I & W '( A B 2 # '( AB> C K / I %) ! K @ K / + @ K A 4# B! % K ! Æ Æ & # !> ÆK
% & K 4# 4#
A B
! # &
A -
@ =
G Æ
D D D ! D D D
!
H
C '' F . Æ / Æ
* Æ
1 ! % ## '( A B ! K ! K / A
-N ! K /B>
CK
/
A "B
'Æ
! 6 /I # # > XK
Æ
A L
Æ ' B 4#
C
K A 1
A ,B
' ;99 3 / #! =& #= = & # 0$& , ? ' ' ' Æ. , ' 9 1 ' ? 9 0$
-
C K
A -B
/
8! I % '( A -B A "B
! K / 8! # ! K /I > K / A/
B 4Æ
#
K / A/
B &4
A 6B
#
2 ) ) & > 4# K
/ A/
% B
'
K
A/ A/
A& B' BB'
XK
/ Æ
A"/B
1 ! 3 ) & ## 4# # / 1 # / ! %
-N A > B C 2 ) ' 1 > A 2 B A ' B # & > K > / )A/ ?B A 1 B # % # % ) # '( A"B ? K /, / K - 1 # !
# ) & ' A'( A"/BB 2. A'( A /BB > 4#
A& B
A"B
'
+ I & (
Æ (
Æ 1
& # ! 1 3 C & / ! 1 ) ! K / C K C K / 1 # A ½ A/ B4# & N ! !B 4# ) A ½ '( ABB
1) !
1 # ) & ! ! 7!
1 3 ! ! ! & + & I D & > '
6
. ? 4# I I + !
3 ?
: ? K A B / K ? 4 > Æ K & #
>! ? C K
! 7 /> C K A / B Æ ! 6 /> C K / Æ !@ ? A!B K CA B L !@ !) >!? A!B K L 4 ?C A ?B K L 4 A B & ! ? > -N K A CB AC C B K / A/ B4 & 2 > -N K > > K A4 / B &
#
#
'
#
#
'(
C F . 0 1 )
/ 0 ) * 1 * + !76 1.0
Reduced temperature θ
0.8 θ= θc = 1-1/ β
0.6
0.4
0.2 Arrhenius form Echekki Ferziger model 0.0 -5
-4
-3
-2 -1 Reduced abscissa (x/ δ)
0
1
2
1 : C
% K %
&
&
'
'
A > & B'
( # .F * (
0 0 ) = ' = = ! = $ * ) . * ! : ) Æ # # # G * D > D ! ! *
CB AC C B
A
1
% K %
A
'
CB AC C B
% K %
> '
4 D
A > & B'A L ( B
% K %A B
> '
H
A > & B'
% K %A B
-N '( AB
4#
> '
1
VD
7
/
"
- ' $
7 # ) & ) 1 AH B .! ; # > ¼ "¼ 1 L "
A"B
# !> -N K "¼ >
)
)
)
A"B
¼ H ) ! ( "¼ " 1 ¼ ¼ ( 5 K 4 K A" B A" B 1 %> 1 ) % K % A B 1 + ' ' ! )3 ; I &
! % . ! & A5 7 B A # ( B>
4# K
¼ ) > ) ) ') ') %"¼ A"
"¼ B) )
'
) ) / ) ) / A , B' ) ?
% !> A , B K
½
B)
BL/
5 '
)
A"B
A" B
* B
&I 1 + #I ! ) )
2 ( ) '( A"B ! # % > ! % > >
4# K
" ¼ A" ¼ " ¼ B) > ') ') &
/ ) ) / A , B' ) ?
) )
'
A""B
K I "¼ K K / ! ; I A , B K '( A""B ) A6B
0.7 Numerical solution Experiments Asymptotic solution
0.6
Flame speed (m/s)
0.5 0.4 0.3 0.2 0.1 0.0 0.6
0.8
1.0 Equivalence ratio φ
1.2
1.4
& . +* 1 " ) ! E & # # ) & E & ! # > L L A",B 1 # > > K /- , 0C K " D
/ K /
K -"//
% K //-
K
= K /// D
K /
K / A D B
A"-B A"6B
1 ) > % & 5 K /- # ! & # / ( H ) AY 1 <BI ! #
$ : .F G !
" % " & ! "
-. $ # . # * @ . ' '
" " G /* >
.F 9: >
(
(
# ) # # +*
" $ >
¼ ¼
>
>
" % "
¼ ¼ ¼ $
# !
!
A 2 > )' * '
# !
; /* >
; > #
! ! ! 3 45
+" +
% &
!
!( "
#
' '
$
+
)' * ' $
0 ) . :
. *# ! 2 # I # # ) #
# !
& 1 #3 # ! %) ! # ) H
! & # ( I ! # ) I ! * ! Æ > # ) A ! B 1 ! ! # & K / ## # '( A,B .! > -N K > A
CB
)
)
/ A CB ?A CB
A,/B
1 ? K /, / K - 1 K / / K -I ! K / K / A # -B 1 ) !
Æ
Reduced reaction rate
40x10
n f =0.2 n f =0.4 n f =1
-3
30
20
10
0 0.0
0.2
0.4 0.6 Reduced temperature (T-T1) / (T2-T1)
0.8
1.0
8 = $ * D * * ' >
/ : ' 7
/
0 $
'( A""B ! & # )I ! & # ! I # I & 4# #! !>
4# A B K 4# A B
A,B
1 # Æ ) '( A""B ! # # ! ') ! ) ! > 4# A, B K 4# A , B
(
(
A,B
2 )I K / K " I ! H
! B E &I ) ?+ K / '( A,B ! 7# D
A1 ,B 1 , # ) '( A,B E ! A / I // // DI /- 5 B E & ! 7# D A/ / I // ,// DI /- 5 I 7# B
$ 7 $ ! $ ! - 7 ! "
& *
,
7" 7357 73!6 7 36 ! 3 ! 7
#
#
!7" ,7"76 !5! ,7346 777 ,763 ! 7 ! 7 !5 7 !
. . * + 4 & 2 & 0 $ ('
! # # ) & . . & # . ) A,B 1 ,
"
φ= 1, P=1 atm φ= 1, P=5 atm φ= 1, P=10 atm
0.8 0.6 0.4 0.2
METHANE - AIR
0.0 300
φ= 1, P=1 atm φ= 1, P=5 atm φ= 1, P=10 atm
1.0
Flame speed (m/s)
Flame speed (m/s)
1.0
350 400 450 Fresh gas temperature (K)
0.8 0.6 0.4 0.2
PROPANE - AIR
0.0
500
300
350 400 450 Fresh gas temperature (K)
500
. 1 & 2 # & 0 $ (' #
# $ "% %# # & ( ! ( .
> I & # 3 & 1 ! ! % . ) & * ( % & A ) . %# B ! # + ! # % I ! A BI # I ! A B
* ! + * I & Æ # > ÆK
% & K 4# 4#
K
Æ4# K &
A,B
A,B
K % A BI I % # ( &
! & :! 1 Æ A ? @
,
B ! ! !
& + I !
) A !
!
B 2 ! # % #>
Reduced temperature
(T-T1)/(T-T2)
Æ# K
)
A, B
1
STATE 1: fresh gas
STATE 2: burnt gas
0
δLt
δL o
Abscissa
I1 0 ' . 0 2 A? @ B Æ# ! ! %# C # // /66 A # B Æ# ! #
! > & I # Æ# # A ) # B ! # ?@ # # Æ# # Æ# #
* # I Æ# 1 Æ# ( % & 8# 1 )I 8 # & Æ#, > , Æ# A% B K Æ A% B
A,"B
+ * % A # 5 A'( A,BB
-
BI ! %> , Æ# K Æ
, Æ# K
& 4#
K Æ
A,,B
, 1 Æ# # ! '( A,,B ( & !
% 1 #
& Æ# & I ! ! ! ( '( A-B = I Æ# I 3 Æ ( 1 3 #! ! Æ K Æ# / 1 - 3 % ! !
" "& '# " ( ) ' Æ . 2 '
Æ
D 7 7! 7
; 1 J
!) # # # "" '# " (
I/* ' ; ' @ '
Æ ) Æ
-(
Æ
-(
* Æ * Æ
J #
Æ
'
' 1 F ' ! 1 & ! A1 (234B ! + & # ) ! I ! & 1
> )I # I ! ) Æ# 3 )! %# &
( ! +
. ! & I Q . & I ( ! !
6
& ' " $ I ! ! ## . ) & 2 ! . & & 1 % & % ') & % # * ,
"
1 '
1 & % ! # & . A7 7 ! I 5 B> EK
.
A,-B
. 3
2 & ## . & < # & AH B 1 # ! 2 # ) ! & A 5 B> EK
F F > F L F
A,6B
F F & # # ! & A# "B 1 AF F > B #
& ! ) >
F K FF >
G
!
A-/B
I I E > E K AÆ
B
G !
A-B
1 & # ! & A B , ) % & B 1 & ! ! # ! F >
4- A
F K F L 4 F A-B F & ! F 1 & ! . 4 F & & -
-
* # '( A-B '( A,6B ! > EK
F F > F L F
L 4- A F B
A-B
"/
n
w
R1
p
m Burnt gases
A(t) R2 Fresh gases
I1 0 0 *
I ) > E K AÆ
B
L 4!
!
A-B
1 F ! + & & !>
F K L
A- B
8 F '( A-B #> # # F % ! # & ( !
# ! # A# ,BI F
! ! # '' & 1 ' '' 3 4 ' , , #! "&@ ' , @
' '' , 4 # & .
#! !# &
$
' 4 .
!
!#
$
# #&& # # & #& "&.
#& @
#& @
! @
#! &$
"
$
"
!
A K . K /B>
F K (
A( B
F K (
A( B
K
(
'( A- B 1 4- F '( A-B #> & # & *!I & A# ,BI F A
B> (
K
Burnt gases Fresh gases
Burnt gases
Fresh gases
(a) Cylindrical flame
(b) Spherical flame
-' 0 > # * . * + 3 1 % :G* '( A-B # A 5 B>
F L 4 A F B
E K AF F L FFB >
A-"B
-
F F ## # & F F LF A# "B 1 A FB > F '( A-"B ! & A # ;B F 3 # > F F LF F K A FB > F K F F > F L F
1
A-,B
) :G* '( A-"B>
F
K
F F LF A FB > F K AÆ
K
Æ
F !
!
!
K
B
!
! !
A B K F
A--B
"
I '( A-"B . > EK
F 4 L
-
K F L 4- F
A-6B
+ '( A-6BI & >
FI & . !I I 4 F K 4 A L BI
% I
-
-
" * ! $
2 & ! # # F >
F F K /
A6/B
F 3 > ! ) 1 ! ! # & A ) # # & # /B ! & '( A-B A6/B F F K 4- >
F L 4 F K AF AF F BF B K F
EK
-
A6B
F # # ! A # ;B
" %' $ - ! # 1 ) &
#. ) )! ! < .!=
% ! ! A B &I ! ! # < A# -B 2 I & 3 %) . < 1 & 3 0 !I &
; #0A!& .
# & B# &C #Æ ! ! & B+ ! C +
!
!0 ! ! !
!
+
+ ! ! ! + +
"
3 # 2!I '( A-6B ! & !
> EK
F L 4 F K F F > F L F 4 K
-
-
(
L
A( B (
(
4 K ( 4 K / -
-
A6B
( 4- ! & 2 ! '( A6B F 3 E 3 Burnt gases
Fresh gases
Steady flame front
0 > 0 F & EK
I >
F L 4 F K
-
A( B L ( ( (
4
-
K
(
4
-
K/
A6B
#. ! . 2 & ! # 6 1
& ! ! # & > ! ! # & # & 1 ! &
# 6 . ! # 1 ! & )# ! 3 &I K /I K I K AA! B, /B '( A6B & 3 ! # & 2 & %# ! !
" %' $ # / %# ! & )! ! 1 % A# /B # & A ! ! &B # & # + I & ! & # # ! A% F '( A-6BB # & I # %# ! > K H! I K HB H & < I H ! & < < <
"
u = (u1 ( x 2 ) , 0 ) x2
n Splitter plate
Flame front
x1
. > 0 F < + # & I + &
!! A< L < B 1 # & ! A! ) !I ! ! )!B + 1 & %# A# /B > ! # # # # I & 1 & !I & ! # & # A# /B> ! F K 4- '( A-6B * ! & ! # # & (A3B> ( . K A6B EK . 3
( 3
+ ! & > & . ! # # # & I & >
& & Q &
Flame front
"
Fresh gases (U j1 )
d
Stagnation plane
(a) The single flame: fresh gas against combustion products (steady flow)
Combustion products (U j2 )
Fresh gases (U j1 ) Stagnation plane (b) The twin flames: fresh gas against fresh gas (steady flow)
Flame fronts Fresh gases (U j2 )
Fresh gases Burnt
(c) The spherical flame: unsteady stretched curved flame
gases
. . 0
""
( ' 1 ? @ & ! + ! Æ % & ! * , # % & * , % ! & * ,
& Æ %#
. 1 1 & 4# I ! % # ! & #
# . # ! 1 % ! ! & # 4# # & ; A '( ABB & !
% # # & > 4# K
½
-N !
A6 B
½
1 I & # I ! ) 1 # I ! & % A1 5 I 5 B 3 1 6 # # >
A 1
I1
C I
* 1. * 0: :
1 0 ' # % ! ( I I ! I ! % >
; % & I C K C A# B 2 !
I # C % & >
C C
F K
A6"B
",
Position of isolevel Θ f at time t+dt
FRESH GAS s d n dt
w dt n Position of isolevel Θ f at time t
u dt BURNT GAS
J 0 1 F F 1 ! # !>
C 3
F C K / L
A6,B
F F 1 ! & 4 K ! + C :# C ! CF '( A6,B > F F 4 K K C C3 A6-B
1 ! # & & # ! & 1 !
1 & F> & F
FBF K 4 FF
4- K A F
A66B
!>
FF K C
4- K F F
C 3
LF
C K &C C C &3
A//B
( C K C 1 :G* '( A6-B
A//B ! !
"-
) )I # '( ABI '( A//B ! >
&C ¼ K 4- K C &3 C -N L !
% !
!
A/B
1 ! =* & A "B ; 4 I C + Æ > & # & I #
G I (! ) ( #! & & A5 B
2 4 ! % ! '( A6 B> 4 K
½
-N
½
A/B
+ & 2 4- 4 ( . # C ! 4 (! # # C & A1 /B 1 ! ! ) > 4- AC K /B 1 # &
A 1
I1
I
C
. . )
.
). .
&
+
=
2 9 > 9 >
+ D D
1 ) . . $ 1 ! ## . & 4 # ' &I ) #
"6
& & ! ( 4 # > I & ! 1 4 ( 4 # 1 ! ) # F K F 1 F K F 2 3 ! & 4 # 8 & # ! & ) 6 4 # I & # ! 1 & ! F K A 4 # BF # > 1 4 K F F K 4 # #
8 Displacement speed of isolevel
Normalized speeds
6 Flow velocity 4 Absolute speed of isolevel 2
0
-2 0
20
40 60 80 Distance along normal to flame front
100
120
8 0:# # , 0 . # 1. "
1 & !I ! ( AB + ) I & I & # F ( & AF F BF K AF F BF A/B # !> K
FF K 4
L A L 4 B
K L 4 #
A/B
1 ! L ?C A ?B C ? ! % ! '( AB '( A-B 1 & # & # ! L 4 # ? ? 1 & & > 4- ACB K 4
FF K 4 K 4
#
#
L
?C ?
A/ B
,/
+ & # # & A # # . 4 #B + 4 # A ?B # I ( & A 4 # ! B
! C I 4- # 1 3
C D
I
+D ! #D! #
0 0: * 0 D + 3! # + 3
. $ 1 & & . # ! % + & A BI & ! Æ I )! ! 1 ! # ! & ! A8 I 8 ; I H I 5
I H I B 1 ## I I E ! # & I # > 4- A/B 4 #
'-
K E 4
#
'
4
K E 4 # 4#
A/"B
'- ' 7 # 1 % # AC K /B 1 7 # I # ! '( A/"B > 4- A/B K 4 #
)
EÆ 4 #
4 K 4 #
Æ & % ! '( A ÆK
%
4 #
K
&
4 #
EÆ
4#
)
A/,B
B> A/-B
)- K '- Æ ) K ' Æ 7 ! 1 ) EÆ 4 # D 3 H
,
!I (# )
! EÆ 4 # 77 4 ) ! 7 !I I #. & !I 9
#> )-
K
'- Æ
K
)
L / A'
K K / A' Æ '
B
A L !B !
B
/ K A B
A L !B !
!
!
A/6B
A/B
1 / # ! '( A-B> + #! 1 # 7 # '- ! & ! & & > # 7 # ! # AH B ' # ) & ! A #. !I # . #!I BI & !I ) # & ! # & # ## ! ! A'# . ;B I # 7 # Æ * ( # & > & A8! I 2# I 2# I BI # & A*! ZBI 3 4 & A1 *!BI # & A; *#B # %# 1 ! ( ! ! Æ ! & >
# & I & I &
1 *# & ! ! & A# / B & I ( '( A-6B 3 * # & & 2 ! ! A;! H I ;! H I ;! I ;! H BI A+ 3 I ; 8 D ' '' - 8 1
,
;B A I ## *
B ! # & 2 I 7 ! > & # ! # I ! I ) +! ! # & A)I !
BI & & *# & ! & 3 > F K/ 4 K / AB '( A66B & ! > 4- ACB K
FF
AB
1.0
0.8
0.6
0.4 Reduced temperature Θ
0.2
Velocity 0.0 -1.0
-0.8
-0.6 -0.4 Distance to stagnation plane
-0.2
0.0
8 1 . 0 # ! ! % # ) & A # ) &B H & # & I ! ! ! !> K H! H + ) I % ! ! & I # % Æ 7 !I & # ! 3 # + ) ) & 3
1
'( AB 4- A/B * ( A !I ; *#B> # ! 3 I ) # ! % 3 I + #I ( # # ! ! )!
,
A4# '# I '# ;B 2 # ! H I # # ) # A7 # )B 4 # ! % ! # # A'( A6 BB $ ! (! ! A B #! A1 B
C I
D + D & = 7 . . J K Æ
K K Æ
I1 > . > >
. 0 0: * ) L. M L M : &
*# & % # # A # BI
# & ! A # B 0 !I ; ' K % A &B A% A BB A&B & 2 # & A ! B # 3 ! ! # # & A . %# ! # /B ' K 2 '( A/BI & ' K 2!I # # 1 ! & Adiabatic flame
Consumption speed sc
LeF = 1
Markstein zone sc =sLo 0
Non adiabatic flame Stretch Κ Critical stretch
/ 0 7 ( !> F ( $ '
+ !!7
,
H ' 7 A# BI > ) 7 A/B ) 7 / # I A/,B 4 E ! 1 & ( #%> ! #. & A'# . ;B + I (# ! ! # H & I ) Consumption speed sc
Adiabatic flame
LeF < 1
Markstein zone sc =sLo-Lac Κ
Non adiabatic flame Stretch Κ
0
Critical stretch
/ 0 ( / !> * ( $ ' + !!7
' 6 A# "BI #
& A) 6 /B 1 ! ! # ' (# G I ' # # (# AH B H ! # 2 ! ) # A4 EB & # ! ( 1 (# 4 # Æ 1 ) ) ) . & Consumption speed sc
Adiabatic flame
Markstein zone sc =sLo-Lac Κ
LeF > 1
0
Non adiabatic flame
Stretch Κ Critical stretch
/ 0 ( 0 !> * ( $ ' + !!7
,
&! + I & & I 4 I 4- 4 ! ! # > ) A# ,B ! & A8 !I 5 B 1 4 & 3 1 4- & ) )! & * ! %) ! ! #I ! # + & I 4- ! # / 4 + # ,I # & # ) & & ( & Flame tip: The flame moves at the flow speed u: sa = 0, sd= u, sc=sL . Fresh gas u=sd
Flame front
) 0 >
2 . & ' K A5 B 3 & A# -B> I 4 ( 4 # G I 4- K & ) ( -4 # ! %) -4 # 1 ) >
! # -I & ) # ) # # &> % &
#! ! > & # A # -B 0 & ) I
2 ( A& ! ) BI & # # A! - B ! 3 A5 B , E ! ' 14' ' '4 4 E #E + &
,"
A * # 0 -
* A1 B & ! ! & 1! & # # & ! # 1 &
.> . > >
& = , J K
C I
D + D 7 . . 00 , K K K K
. , ( ! - ) L. M L M : &
1.! 2 & 7 # &# A ! I 2# I B +## & # ) A# 6B & (A3B ! & & + # & & I & ! ! & 1 ! & & ! (A3B (! (A3B 1 & . K J(A3B > . K ( A3 B AB EK . 3
( 3
7 # & ) & & * ( & & (A3B 2 %
,,
$ I & & ## & Æ# I 4 (A3B ! # ( >
+ L 3
!
Fresh gas (state 1)
R
r(t)
AB
1.0
Normalized speeds
Burnt gas (state 2)
AA L B+ B K -N +
R=0 δL0
Reduced temperature
0.8
θ
2
0.6
Yp=Yp
Products mass fraction Y
p
0.4 0.2 0.0 0
1
2
3
4
Normalized radius (R/r(t))
0 1 ( # ( K / ( K !> 3
½
+
K
½
-N +
A B
&) 3 ( K / ( K 1 :G* '( A B ! & & ! >
½
-N + K J(A3B
½
-N + ( K J(A3B + 4
A"B
# '( A,B + ! # A# 6B 0 ;G* '( A B ) # + & I ) !>
½
+ K +
J (A3B
A,B
H# ( ) # ! '( A"B % ) 4 (A3B>
,-
4 K
(A3B 3
A-B
'( A-B 4 + ( 3 ! # > ! # # ! 1 ( 3 ! # 3 & & A(B H # I 7 (A3BI A(B 3 6 (A3BI A(B ! # ! ( ( K / # 1 ( &) # > 3
J (A3B L J (A3B
AB K
K J AB
(A3B
A6B
(A3B 3
A/B
1.0
Normalized velocities u/(dr/dt)
Displacement speed 0.8 Absolute speed 0.6
0.4 Flow speed 0.2
0.0 0
1
2
3 Normalized radius (R/r(t))
4
5
6
: 0 0 F 0 ' 1 & ! AB # A# /B 2 & A K (A3BBI AB + ) A B 3A(A3BB + 4- K 4 > 4- K
(A3B K 4 3
AB
> 4- (
4
,6
.> . > >
+ + 1 2 K K
C I
D + D + ++ 12 + 1 2 K K
IÆ
IÆ
. 0 0 ' F ) L.,
M L M : & 1 & # 3 & 3 1 ' # ) I ! Æ ! 7 # A & B # 2 & & *# '( A BI ! # ) > ) ! ! # A ( K / ( K (A3BB # & A ( K (A3B
B 1 + Æ ( K (A3B L Æ# ( + A(B + #I ! # & 3 >
½
+ K +
J
(A3B L A L BÆ# J(A3B +
AB
H# A# 6B ( ) # ! '( A"B ) 4 (A3B % & > 4 K
Æ# L A L B (A3B
(A3B 3
AB
# & I ( Æ/ # 3 . A-B ! 2# :# # ) AB ! 7 # & Æ A5 B>
& :G* '( AB # 4 ! # 4 ! ')# 7 # ( # # % & # A ! I 5 B
)* + & % )3 ) ! > & I )# # 3 # + ) & I )# )3 ( ! > A % B & 1 & ) & A; I 8# I 5 I 8# B ( & # ! & %# + A ) B ) &I ! > A ! # B )3 A B # )3 3 ! # 1 ) 3 ! & )3 # >
! &I #
! # I )3 ) (! 1 )# )3 > & ! # )# )
1 & # ! ! &I )3 # # A# B + . I & 3 A# BI # ! 3I * -
-
Temperature
YO=YO0
Fuel mass fraction YF
YF=YF0
Oxidizer mass fraction YO T=TO0
T=TF0
Heat release
Diffusion zone
Reaction zone
Abscissa
Diffusion zone
I/ 0
2 & ) ? @ ) & A ,B> & # )3 # )3 2 #!I 3 #%! ! & % 8# # ?# @ & I & ! I ! I ) &
2 & ? @> & # # %! & # ! ! # 2#I ! ) & !
& & A B
+ I )# ! & 1 & # > )#I # ( I ( 1! ! . # G I # Æ! ) & )# !
7! & ! & * A) I & I )# B # & ! > % )# )3Q A & B )# * & ! %! * I # )# I ') ! & * "
Fuel mass fraction Y F at t= t1
-
Temperature at t= t1 Temperature at t= t2 > t1
Fuel mass fraction Y F at t= t2 > t1
Abscissa x
(a) the unsteady unstretched diffusion flame x2
Fuel mass fraction on the axis
Temperature on the axis
Oxidizer jet
Fuel jet axis
x1
(b) the steady stretched diffusion flame
N / 0
!"
* 7! & 3 # A ). B # ! 1 I 4! % & * " & Z!I I &
# #. A) K B >
" ¼
* +
"¼¼
AB
!3 3 & #>
G . ! 7 G . Æ & (
! I
I
-
G . ( . > K
2 '
% AB ! A1 BI )3 AB A B> " 1 L " * AB + "+
1 A1 I I B ( # !> L 3
!
A B K
!
!
L -N
AB
* -N #. -N K "
A'( B>
AB
)3 > -N K 4-N
" "
4 K
A B
4 % '( A,B 1 ! # '( A,B> -N K
=-N
A"B
$ # I ( I )3 > L 3
!
L 3 3
!
L
A B K A B K
!
A B K
! !
!
L -N
A,B
!
L 4-N
A-B
=
!
%
!
-N
A6B
# '( A,B A6B ! I # ! ; A' K % K B ( > K K 4
Q
K K
L =
Q
K K 4
L =
A/B
( I > K L 3
!
A K B K
!
K !
AB
-
K A B # 1 K ! (! L C ) & A B> K K A L CB L = + ! ) & I L C ( ! ! A '( B & K )3 ) G I K #
)# ! 1 K I K K I % '( A/B ( ! 3 1 A % # B
- *
3
* 3
O.F * 3
3
3
-
-
-
3
; * 1 + 3!7
.F .F *
= 3 % !> K
K K
K K
# K , ,
AB
2 E ( > L 3
!
A B K
!
!
AB
! > K K / )3 A1 B 2 (> K K K
AB ) E )3 ') # # ! # 1 >
4 L
K K 4 L
B L K A B L
0 1
0 1
A
0 1
B L
A B
A
0 1
A B
> ' " ' , , '' # ' , 1 ' "&, # # # '
-"
1 % '( A B ! > K 5L
5
L
A"B
( 5 > 5K4
A,B
1 ( & ( )# )3 + A # B ( I # 5 )3 & A B 1 . & ! #> ! ) & 8I ! ) & I !
8
*
O.F *
O.F ) $. 4
7
7
!
7
; # . 4 1 + 3!
Þ ) 1 ) '( A B I )I ) > K 8 A, B
K ,
A-B
' # % I # # >
G . & ) 3 ! 1 > K A, 3B
K A, 3B
A6B
-,
z gradient x2 Iso z surface y3
x1 Tangent plane to iso z surface
y2
x3
8 / 0 P
# -
1 A, 3BI A, 3B '( A6B % 1 G < % ! !I # ( AB A! I !I ! I 3B A I B I B I B B B . A# B + # ( I # # # & A# # B B B # & A# # B A H I 5 B 5! !I ! & ! . !
& A B + . & I ( & & # ' & & > & ! A "B $ ! I ( AB ! >
L 3
L A B 3 !
L 3 !
L
! !
!
K -N
!
A/B
1 ;G* '( A/B ! ) A'( B ( >
K -N L 3
! !
K -N L L
AB
--
L >
LK
!
!
AB
1 ( !>
K -N L L 3
AB
'( AB AB & ( 1! ! ! & > ( I ! # A!B L )# A # B 0 L %I & ( ! & I ) 3I 2 G> K A, 3B
K A, 3B
AB
2 # ) I 3 ! L> & . 1 L A B + .# &) & + ! & ! > & I L A B 2 )# ! L
+ ! $
1 & '( AB AB 3 ) + ! >
$ ! & 1 I # ? ! & @
*! & 1 & !I # & A ! %B + > K A B
K A B
A B
F ' ,
, ,
0 ; 1
4 E , . 7 7 , 7 7 7
-6
1 ! I ! & ) #I ) )! = 3 ! $ # '( A BI '( AB AB > -N K
L
-N K
)#
L
A"B
)#
'( A"B L ! ! L # & . 1 % 3 #
'# $ 7) & . ! & A%# A! , 3B A! , 3BB >
2 )# A B '( AB ) % A! , 3B
! 3
2 & A B & A A BI '( AB A BI '( AB B &
8 & > # ! % K K 4 I K K = L K K 4 = L I 1 I & & ) A BI A B A B * # 3 # & !
. > & )# 2 ! & ) * ! & 2 & A# !I ! B )# 0 I ! # &
3 $ 1 ) ! & # >
6/
Boundary conditions Initial conditions Geometry Flow field
Assumptions on reversibility and chemistry speed
2: Flame structure problem
1: Mixing problem determine the field of the mixture fraction
Scalar dissipation rate field
specify: - species Yk for k = 1 to N - temperature T as functions of the mixture fraction z
z(x i ,t)
T(z)
Yk (z)
Solution of the full problem: T(xi,t), Yk (x i,t)
I : > 0 . ) 4 4 '
'( A !B> # ! %! . & A & B ?(@ A ? . !@B + % # I I ! & A B 1 ! ( !
+ !> # AB ! # A '( AB 3 B %
# %! ! A(B ! 1 %! !I )3 ) 1 % !3 * 1 ?(. @ ? !@ GI A B A B # $ %! I !I I )3 ! ( > +
K A B
A,B
A B ( 1 + I )3 !
! " ! " # " $ ! %
# & ' $ ( ! )$ * " !
&
! "#" ' ( ! "#$#*
! "#$#% ) )
+ # + , " (-)
. ! ' +- /0 , " $
. 1 2
1
1 2
1 2
/3
1 2 "
$ 1 4 " ' - +- /3
$
/
1 2 # 5 # # ! " # "
! +- /3 1 2$ # 6 * " - +- /7
% ( ! ) *
1 2 ( ) $ 1
1
/
" ! $ 1 4 2
TO0 Temperature
TF0 0
YO0
0
1 Oxidizer mass fraction
Fuel mass fraction
z YF0
1
z
( , , # " " ! & 8 # "$
# "
, # - 8-
9 / # : / " $ !
# ;* :
% # 1 2 1 2 ! +- 0$
1 4 1 2 1 4
1
4
$ 1 2 1 1
4 4
/
" # 8 # " ! ' - +- & $
1
4
1
4
1
4
" 1 - - $ " # ! " < # < 22&$ #
( ( ( ( 2 2 ( (
-
- ( - /
- ( - /
- ( - /
- ( - /
* * * * $ $ * *
* %" * %" * %" * %"
* * * * * * * *
$ $ % % % % $ $
. . 0 0 0 0 " 30 " 30
. "0 . 0 *1 0 % .1 " 30 *$ .
*** %. % $0 ."" $"$ %*3 $4
+ +# "#$' +# "#*1 +# "#""# 2 5 $ 6 4$ 6#
# ;* :
0 5 ( ) " ! " " +- / - # " # " " * " $ , # , " ! * 8 # " %
, # # ' " - = # 5 " # > " " ! " #
&
Tad Equilibrium lines Temperature : possible states TO0 TF0
Mixing line 0
1
zst Equilibrium lines
Fuel mass fraction
z YF0
Mixing line
0
zst
1
z
1
z
Mixing line YO0
Equilibrium lines
Oxidizer mass fraction
0
zst
2 7 8
5 9 : ! , #
= # # , # 1 +- +- /$
1 4
4 1 4
4 4
+- " * - $ " ! ! 7 4 ' +- / ; -
$ % & '
( )*
0
4 4 +- % - ? " " @"
- Pure mixing
FUEL z
Fresh mixture T=zT F 0 +(1-z)T O 0 YF= YF0 z Y O = Y O 0 (1- z)
Pure mixing 1-z
OXIDIZER
Combustion Burnt products T=zT F 0 +(1-z)T O 0 + Q YF 0 z /Cp
if z
T=zT F 0 +(1-z)T O 0 + Q YF 0 z st /Cp (1-z)/(1-zs t) if z>zs t
+ 7 8 ;, #
% , # " # # +- //3 % ! - 1 1 , # +- $
1 4
&
6 " " ! +- / " " A +- //3 " # $ 1 4
0
" , # +- &$ , # # " " !
6 # " . ! / # " . 3 -
7
- ! # " " +- / $ . 1 7 . % # ! 1 +- $
1 4
4 1 44 4 4
3
# " - -
Stream 1: Temperature TF0 Fuel mass fraction YF0
Diffusion flame. Maximum temperature Tad
Outlet plane. Mean temperature Tm
Stream 2: Temperature TO0 Oxidizer mass fractionYO0
< 7 # 8 # " . " ! # " . $
1
. . 4 1 4 . 4 . . 4 . 4 4
! $
1
. 1 . 4 . 4
1
. 1 . 4 . 4
- 1
2
3
$
4 4
1 4 4 4 4
1
4 4 4 4 4
/
" - B , # '
" ; - 1 ? 8 , # - 8
Temperatures (K)
2000
1500 Mean burner outlet temperature Maximum temperature in burner 1000
500
0.0
0.5
1.0 1.5 2.0 Global equivalence ratio φg
2.5
3.0
< - 7
# *' %"' " # = Æ 0' *1 0# = *0 $*
> #
$ ' & & + % ( % &
%
& !
( , ' - ( - . & ( ! " * %
' ' ' & /
5 # :8 / 8 - +- $
4 1
" , B - #
: -
@ @ 6 9
! " #
' 8 , # "
# ' # / * "
5 * " C " # , % % # 1 " +- " $ 4 1
"
" # % / #
C
, # Æ # " % # +- $
4 1
&
$ ( ( 0 &( ' 1* 2 & ( & & "* * 3
22
Ignited flame started at t=0
z 1
Pure fuel
Pure oxidizer
x x=0
> 7 8# ' , # ! # " ' 1 2 ! 2 ' 8 $ 1 2 1 0
" > ; $
1
D
4 1 2
7
% # " # " ! " 8 ' , Æ 8 -
$
1
3
, - E 1 / $
4 / 12
" 0 7 $
1
F /
G
$ 1
1
"
/
¾
/
&2
&
% 1 4 1 * 0 ( 4' * ! Æ
2
" 1 @*
,
' $ H * H 1 / , "
1.0
Mass fractions
2000
Fuel Oxidizer
0.8
Temperature
1600 0.6 1200 0.4 800 0.2 400 0.0 0.0
0.2
0.4 0.6 0.8 Mixture fraction z
1.0
0.0
0.2
0.4 0.6 0.8 Mixture fraction z
1.0
- 7 8# =
" ?# = $0 = "#0#
' # 8 # 1 22& # //22 I
1 &222 *JB* / 1 22 JB*BI +- &2 1 H$ / " : * " / # $
1
1 / 1 4 /
&/
# 1 # 1 //3 + # " # . +- 7 # K " " " #
$
5 ' ( " ' * . & & 6 % & 6 0 / 7 & / 6
$ ' ' & 0 ( " ! & &
2/
1.0 Fuel YF Oxidizer Y O Mixture fraction z
0.8
2000
Temperature
1500
0.6 0.4
1000
0.2 500 0.0 -4
-2 0 2 Reduced abscissa η
4
-4
-2 0 2 Reduced abscissa η
4
- 7 8# / 3 ?' " ?# = % # K. 1
·
. 1
K. 1
·
1
1
1
/
¾
&
&
Reaction rate Fuel mass fraction
Abscissa x f-
xf
x f+
+ 7 8 , 5 #
! * $ , "
! " " # ' , # * "
% * ( ' . 8- / /
·
2
! " # Oxidizer
x1
Flame (x1=xf)
x2
Fuel
! > 7 8# , # / , # # # , # # " ' $
1
1
&&
" - 1 2 - # $
4 4 1 4 &0 + 8 8 A - - "
8 $
4 4 1 4
&7
0
( ' "* '
' & % , & & $ " 9*
' " ( ' Æ & 1* ( & ' & " & & , * , . : /
2
5 # , 8 - $
1
&3
4 /! 12 ! !
&
E ! 1
/ $
" +- " +- 7$ 4 1 2 $
1
F /
! G
! 1
"
1 02
/
6 ! # # $
! 1
1
/
/
0
" / ' # # " 1 / ' # # / . $ # K K. 1
· ½
½
. 1
. 1 K
· ½
½
1
½ ½
/
¾
0/
0
" ! # $
! 1
/
1
/ 1 4
0
2& # 2 1 2 2& 2 # ! # "
" 1 1 2& "
2&
' " : // * - , # 8 # " +- 02 $
1/
1
0&
1 2 6 +- 02 0& $
1
/ / 1
/ / 1
00
" # 8 1 2 # $
Scalar dissipation (1/s)
1
/
07
4
10 8 6
Flame position (z=z st )
4 2
Scalar dissipation at z=zst
0 -4
-2
0
2
4
Reduced abscissa eta
!
-
8 " #
& " # / ' 1 &2 - 2
$ % & & & ; : / 7 / 6
20
2 +- 07 "$ 1 2 E 0& 07 " % 8 # " 5 * # " "
- +- 07
! " # % 8 # " : 8 ,
# " 1 2 8 - &3 $
1 03 " $ 1 4 1 2 8
! ' $
1 "$
"
/
2 1
/
D
"
" 1 4 1
0
72
: +- 0 +- 03 $
" " $
" 1
" 4 " 1 2
4
7
7/
' #
27
, # " 2 222 " 22 " 22 2 # " , +- 0$ # # 1 " I " # (- ) +- 7/$ 1
" 1
4
7
' 0 " - , # 8 2 1.0
aeq / a 0.8 0.6 0.4 0.2 0.0 -1
0
1
2
3
4
5
at
& > 7 8
# / ' 8, 5 * # = +# "#1" # # - $
' , #
# &/
' , # "
- L
- # " ,
# 6 0 > "
@ * @
"#0#"
"#0#" B 8 %
"#0#% B 8 *
"#0#* ! 8
¾
@ *
*
*%
½ ½ ·½
B 8
¼
* * % %
)* +! !
A
!
<
' ! " ( !
8 # / ' # ! #
! > 7 8 , C ( # = 8 8 * , D * # = 8 %
@ * @ * *
*
* @ * @
! " # $ % &
/ 8
* * * @ @ *
+
!
!
23
2
! & ' # 6 9
1 2 1 2 1 " > %
1 4
$ # ! "
' , # " 8 < # 7
x2 z
Oxidizer
Fuel
Flame 2e0
Lf
E 7 8# / F % F , 8,# ' < < ! # " ! # " 8 $
# " $ 1 1 #$% % 8 # "$ 1 1 2 1 1
A - 0 $
1 2 1 1 1 1 #$% %
7
8 - , - $
1
7&
" $
$ ( <
9 ( = ( 9' ' & % ( * ( ' !
2
1 2
1 2 1
1 1 2 ¾
¾
(a)
x2
(b)
YO
YF, YO, z T
z
T
T
YF z
YF YO x1
L f
< ' F 7 8 # "#*1# C ' ' ' '###
- 8 = "#0# +- 7& $
1
¼
/
¼
&
&
70
" 1 " < / +- 70 $
77
> # ! +- / 9 < 3 3 # ' 1 ' 1 2 1 +- 77$
' 1
4 1 ( 4
4 ' % , & , < &
73
" ( 1 < E # " < < E (
%
& '
, # # > " 8 L ! @ 6 = 6 9
% ( 8" ) ) $
)1
7
¼
" 1 2 # 1 > " 8L ! " - = 8 # " - $
1
* 1 &
- $
1
32
3
E ) +- 7 $
) 1 1 ) )
3/
- 32 $
1 )
1
1 )
3
) 1 2 1 2
- 3 " $
) ) 1 )
)
3
$ ' "* 4 3. & ' & > ( *
"* %
/
1 $ 1 ) ) )
3&
" +- &3 " 1 4 1 2 & ) 6 9 $
1
+
)
30
> " 8L ! " # A * ( 8" ) ) +- 7 "
" , #
% (' ) = , # ! # +
# , 8 $ ! - /7 ' 8 #
# "
!
% * ' : = # # " " , , # - L *M $
, 1
-
-
$ / & ! "
37
Equilibrium lines Temperature : possible states TO0 TF0
Mixing line 0 Fuel mass fraction
z
1
zst
YF0
Equilibrium lines Mixing line
0
zst
Oxidizer mass fraction YO0
1
z
1
z
Mixing line Equilibrium lines
0
zst
2 7 8 5 >
#
" - - # " L # " - Æ # / # "8 - # L *M " # / # L *M # - # " - L *M = , * * % , ! " * * # ! 5 ! 8 ,
# /2 " " " ! "
! "
; ! # Infinitely fast chemistry Temperature
Finite rate chemistry TO0
possible states with infinitely fast irreversible chemistry
Mixing line TF0 0
1
zst
Fuel mass fraction
Mixing line
z
YF0
Finite rate chemistry
Infinitely fast chemistry 0
1
zst
Oxydizer mass fraction YO0
z
Mixing line Finite rate chemistry Infinitely fast chemistry
0
zst
1
z
+ , 5 5
#
L - ,
# " C 8
" - # " # ! ' +- / /0 * - , # +- 0& - # " - L *M $ $ - N L *M , 8 @ 6 9 N 9
# & ! " &
&
= " +- / /$
. 1 .
L *M $
, 1
.
/
33
3
" ! ! - $ 1 // / 1 / # +-
Infinitely fast chemistry
Scalar dissipation at stoichiometric point ( χ st ) or Flame strain (a) or Inverse Damkohler (Da -1 )
Finite rate chemistry
Quenching
A ' > 2:G 5 5 #
# " L *M . K @ 6 @O
P = / " "
L *M $ , # 8 ! ! . 8 & +- 0 " K * - ; Æ $ Æ * " " ! ! + " - L *M
0
, @" " - L *M 6 9 $
, 1 & "
1 /
/
Q
/ 4
/
2
' 9 - $
1
-
/
" - # # $ - 1 Æ 1 * " , # $ # - , #
% # 0 ! # - 5 - # 5 , - " " L *M
" ? - # #
% & ' +! @" " - 8 @" " " * + : 9 : 6 9 : 9 9
FINITE RATE CHEMISTRY (NON EQUILIBRIUM) Temperature
Temperature
Infinitely fast chemistry limit
Independent of strain
Finite rate chemistry (low strain) Finite rate chemistry (high strain)
IRREVERSIBLE REACTION TO0
TF0
Mixing line 0
TO0 Mixing line 0
1
zst
1
zst
Temperature
Temperature
TF0
Infinitely fast chemistry limit Finite rate chemistry (low strain)
Independent of strain
Finite rate chemistry (high strain)
REVERSIBLE REACTION TO0
TO0 Mixing line 0
zst
TF0
1
Mixing line 0
zst
TF0 1
FAST CHEMISTRY (EQUILIBRIUM)
! 7 8 ' #
7
3
, - # + ,
# # $
C *
:
: , Æ - ,
: *
> / , , , "
#
* Æ > " 8 " - 8 , # #
: / // 8 , # N 22 I 7&2 I 22 , # 8 # L 6 ; " 6 9 9
, # ? , # - > "8 - +- &
5 8 " 6 0 1 2 " $
¼¼
3 4
2 1 1
+ 5 8 # 5 1 $ 0 68 6 1 5 5 $
7 1
1
0.060 1.0 H2 O2 OH H2O
0.6
H O
0.040 Y
Y
0.8
0.4
0.020
0.2 0.0 1.0
0.5
0.0 0.5 x [cm]
0.000 1.0
1.0
Temperature [K]
2e04
Y
HO2 H2O2
1e04
0e+00 1.0
0.5
0.0 0.5 x [cm]
0.5
0.0 0.5 x [cm]
1.0
0.5
0.0 0.5 x [cm]
1.0
3000 2000 1000 0 1.0
1.0
!
> 7 8 , # ! " # H # C = *#0# " 6 8$ 8 6$ 1 * " ? " 2 $
¼¼ 1
1 2
&
C - 7 8 1 0 - 7 $
7 7 4 7 1
4 9
0
" , Æ - , 1 9 7 $
9 1
:. 1
1 ¼¼
1 2
7
/2
:. +- / & 8 B, - " 7 $
7 7 4 7 1
3
8 # // 1 2 "$ 0 0 1 0 5 1 3 +- & ! # $
4 1
4
' 7 $
7 1
/
¾
¾
4
/¾ ¾ /¾ ¾ 4 4 4 4 ¾ ¾ ¾ ¾
22
+- /$
1
7 2 ¾ ¾
/
2
$
7 1
/
¾
¾
4
¾ /¾ /¾ ¾ 4 4 4 4 ¾ ¾ ¾ ¾
2
2/
$
1
/ 2 /
7
¾
¾
¾
¾
2
' - / +- & " - "
/ # $ " # # , C ! - @" , /& " $
8 " // @"
/
0.20 Scalar defined on O element (zO) Scalar defined on O2 and H2 (z1)
Normalized scalars
0.15
0.10
0.05
0.00 0.00
0.05 0.10 0.15 Mixture fraction defined on H element (zH)
0.20
H +# "#44 +# "#*" +# "#** > 7 8 # "#%%#
1.0 Real Hydrogen Real Oxygen Ideal flame structure Hydrogen Ideal flame structure Oxygen
Mass fractions
0.8
0.6
0.4
0.2
0.0 0.00
0.05
0.10
0.15 0.20 Mixture fraction
0.25
0.30
0.35
>
7 8 # "#%% , 8 ! "#%
#
//
- /
- @" - # # +- * ; 1 4 " ' "
- " @"
" ! 7 # 8 D - / - - @" 8 Æ 8
# *
7 /& - - 5 / $ 8 #
5 > " " -
$ , " * - @" # B # " - " /
C L #
-
-
L
@" 1 @" 1
@ ? ?
'
C > 7 8
" * > 8 , % , " , #
' # // , # /0 " # B # , Æ @" >
, , # 9 9
Method 1: 1D flame (full chemistry and transport) a = 300 s Method 2: Equilibrium calculation (with single step reaction) Method 3: Equilibrium calculation (with full chemistry)
4000
Temperature (K)
/
-1
3000
2000
1000
0.0
0.2
0.4 0.6 Mixture fraction (zH)
0.8
1.0
H > 7 8 # "#%%#
Max. Temp. Sens. Coeff. [%]
5
0
-5
-10
-15
p = 1 bar a∞ = 100 s− 1 TF = TOx = 300 K
-20 N2
O2
H
OH O H2 Lewis Number
H 2 O H O2 H 2 O 2
! 8
- 8 ;, C >
& + ! ( ( #
! " # = # " # # 8 " * "
: Æ ' Æ - # " ; # " * $
6 "
: # * # - Æ 6 /
8 # 8 N 8
4 0 ( & % ? ( % % % * & & ' % '
/&
/0
- Æ *
" "
= # " # " 8 # " # * " (# 8 ) ! 5 # # -
<
" # / R 8 # E ? : * E'?: - # " & % L?: 8 0 % @+: " , 7 % - C 6 & # 6 0
$ C "
" * > ! @ 9- ! # Æ E '
" " # " $
" 1 " 4 "
/
$ '' ' ' & ' &
& "* + "* ( ' ' Æ ' ( ' . / 6 36 $
/7
! ; " " - # " " $
;1
" "
% " " # ; 2 # " " 8 # "$ # " ? Æ 8 ' " , # " " " # # " , < I ! # " # " ! ' E (= $
(= 1
==
" = ! = # " * = = < E E $
( 1 (< 1
<
&
" 22 /222 : E # " , > ! # " I I # 8 > * 8 > * = ==$
>1
= = 1 == =
0
$ ( & '
( & & & 5 & ( & 5
/3
' E (= " ( " # " I > * 8 I $
1
7
>
E $
( 1 ( 1
> 1 1
3
< I - & 0 7$
< > 1 1 ( >
' " # /0 # - 8 % # +- /3 " * $ += # ! = " == " $
+= 1
= > 1 = =
2
% " ! = $
= = - = 1 1 = >
I < $
+ 1
>
D
> + < 1
8>
/
" * 8 ? I ! $ + < 1 1 ( + <
:
/
E ruí(r)/ν uílt / ν
uí(r)
3
4 3
uí 1
1
uíK ηK
lt
r ηK
r
6
lt
: uí(r)/r uíK /η K
r/uí(r)
3
lt/ u í 3
2 2
uí/l t η K /uíK
r ηK
lt
r
ηK
lt
+ ' & ' > #
= E (= = = += 1 == = 8 % * # "$
" , "
" "8* " # < , # /
@ ' & * ! " &
2
- 6 8 # # " / Burnt gases
Turbulent fresh gases
sT
Turbulent flame brush: speed sT thickness δT
! > 8 8, 5# % ( ) # # # " " + * " # % * @ Æ 3 = = " " " # " 8 ' @ Æ ( # " " " # ) " = # '8S S$
4
" - # - * 8 " # # # + 8 " # * Æ "
# * Æ
$
"
& 4
= - 8 , , ' '
* 6 # =
* I ' ;Æ #
.
% < <
Ambiant air
d
U Flame
fuel
Lf
E 8 5 # # ' - & E ( @" N + $
( 1
?
" ? * <
/
Transition
Lf Laminar
Turbulent
Blow-off
Lift-off
; F 8 F & D D, #
Re
! #
# ' " # " E
( @" N + Æ E # " 8 # ' 8 E ( "
# < Æ < # ( # ) ( "8 ,) : # ' " E <
# " 8 $ Æ " 8 , "8 ,
6 L 6L # " $
E'?: E ' ? : *
# " # " E'?: - " - - E 8" - - - - $ " # " " 6C : - - # " , ! # " * ! # < # " E'?: 0
Temperature DNS RANS
LES
Time
= , 2)!' &/)! ;+! 8 #
@+:
" , - - 7 @+: # " ( ) # - * , < # @+: " "8- 0
L?:
" ? 8: * - "
$ ,
$ < # L?: " 0 * 8 " L " * L?: # "
E'?: @+: L?: ! 7 ' - " 8 , " 8 @+: , 8 , " 8 8 % E'?: # " % - 6L 8 # " " $ L?: " E
@+: " * "
E(k)
Modeled in RANS Computed in DNS Computed in LES
Modeled in LES
kc
k
= , # &/)!' ;+!
2)! # >7 , ;+!
> # " E - - * % 6C L?: L?: 8 # - / ! & & & 3 " L?: ! # " 9 ; ; 6C
$ 6C 2 6 ! " $ " # ! " 6C = " L?: 6C - , ! H 2 &2 L?: & 6CT L?: # "
# 3 %
! " / B # * 2 ! - % 6C # " $ " ' -
&
2)! 8 , > 9 # #
/ # = 8 # H 5'
' #
= C < =C< - 8 , ? :: ' ' %#
0
, " # # ' 8C ; 6 ; * / " / + 6C - <
# # " " # * @ 8 " L?: 6C @+:
# "
> C I '* C
# " " " = I S I S S C N 9 ' ; 8 - % ( ) # 2 @+: ? 8 # ! # : # " " " @+: " E'?:86C
0.00
0.05
0.10
0.00
0.05
0.10
; + ! - 8 , # 0#4#
, ) # @+: $
@ # "
" '
C # " 6
: 8 " " # " " 6 3 @+: "
7
* " ,
% "
@ " B
@+: $ ! " - , & & 2 @+: E'?: " *
6 " E'?: @+: L?: # !
, &/)!
;+!
2)!
,%+!
> J K > 5
%2 8,' '### > J K > >
&/)! >
- >
-.
> 8, 5 >
> > "2 > > >
5 ' >
C , &/)!' ;+! 2)! #
- % 8
# 9@% B # ! "
# ' # ! 8 " L?: ' Æ # (# ) 6 & # / ? L?:
3
2 1 0 −1 −2 0
2
4
6
8
10
12
; 8
- 8 > 8 # 0#*' , # ! ? :: ' > ' %#
2 1 0 −1 −2 0
2
4
6
8
10
12
8 - 8
> 8 ' # 0#**# ! ? :: ' ' %#
: # 8 E'?: @+: @+:
/ @+: # && ' / # @+: + # E'?: /22 % ( ) # # " # 8 # ! - * # "
# * % " ! " # 8! ' #
/ , " % - $
' E'?: - @ L E # "
L?: @+:8* - 8 # "
" 8 # " L?: " " @+: 7 : L?: @+:
- 8 8
2
2 1 0 −1 −2 0
2
4
6
8
10
12
;+! 5 - 8
> 8 ' # 0#*%# ! ? :: ' ' %#
2 1 0 −1 −2 0
2
4
6
8
10
12
/ 5'
&/)! >
% # 0#*%# / 8 # ! ? :: ' #
%&' ; - - E'?: - -
%
/' 00 )
- $
4 1 2
&
6 - 4 4 1
0
4 1
@ 4 .
A ,6 4 A 1 . 4 4 / ,
8 1 0
7
@ A 4 - 3
% # " E
- " " # " " 1 " 4 " A " - & $
4 1 4 4 1 2 4 1
" - " # - # " " "*" 6L $ # " E - # " E # "
"
- " # " Æ 8" = I $
" 1
"
/2
/
'
- " # $
" 1 " 4 "
"
" 1 2
/
A - $
12 4 6 4 1 4
4 1
!
/
4 . 8 1 0 @ 4
,6 A A 1 . 4 / 4 4 , "
//
A 4 -
/
@ A!
/&
6 6 ,6 6 6 6 1 4 1 4 4 ,
/0
- " E - # " + , Æ # " " $
" " E "
'
" " - - * " #8 " " - $
" 1 " 4 "
/7
6 " " " 8
C - E
" " , " " "
&
%
*' ' 0 )
< * " - 8 +- // /&
- E C " * 8 # " 8 > "
> , E *
" A #$ # $
1
9#B
/3
" B 9# : 8 ? ; : " " # $ 8 +- /3 " * # & &3
% & #
Æ8 E , B +- /3 , # $
@ 1 ,
,
/
" , ( ) , Æ ? , # - /& " $
/
1/
" / ,
2
. $ "
5 - 8 " - - , - 0
% 1 # ( " ; - > !
* @ E - " # +- &$
1 B 4 1
4 / 8
/ Æ
" B B 1 " * Æ I * +- * 8 $ 81 /
/
- " B $ " -
- 8- " 8- ' ( ) *
9 * $
""
"9 B 1 < " ""
" 9 $
9 1
/
< N < # " $
& '( "* * & *' > ' $ % ' "* 4 ' ' > + ' %
&
( ) * +,
' - * 8 $
B 1 < 8
&
" 1 22 < 5 - < -. ( )
8
>
% J @ $
B 1
8 >
0
" * 8 > " - $
8 4 B4 8 1 > 4 B4 > 1 5 $
5 1
B 8 4 5 > C B > > 4 5 C 8
7
>8
3
" E ; - $
1 22 D C 1 2 D
C 1 D
1 D
1 /
2
, % 8> > I " ? "8 * " " *$
+ - 8 > Æ "
+- 7 3 E
" E
# "
' " - # " " 6 7
0
N # " - # 8
8 > # "
, * C * > > > : * U
" 8 8 > ! " * 8 > I
!
A 8 > # " : * " ' : C ':C % ; - 8 E " * 8 > 9 " - E E : C E:C C " > * @
% / " ' Æ 8 6 " ! 5$
4
4 5
" . ' " $
. 1 . !½
"
" . 8 " ' 8 .
7
. $
"
1
"
# 4 5# # #
$
1 $
D
D
# 1
# 4 # # #
" 5# # $
5# 1
#
#
Q " % 8Q F8 QG 8 %
DD 4 D 4 % %Q
/
. ; $
" . 1 . 4 4 5 4 4 4 5 4 4 5 4 4 +- Æ " - # - ; !½
" " * + $
+- 6 & 0 ? " # " # " N8 " ?" C % " * ' 1 " $
" 4 . 1 . !½
&
" ! 1 2 1 -
3
%% / 0 # 02 0 ;
6 & 0 . ! " ' " " * Æ " & 8
+- ' 8 # & " 0 #
( !) # " # 8 # E'?: E'?: ' " & # " * # " # : * # E # " @ # * " 6 / 5 # , $ 0 : ! # # '
V 7 " . V . V '
V $ " # - 2 * E'?: " * ! & " # ' ; 6 ' Æ # " - 3 ' " - E'?: $
' D
E'?: * "
y Fresh gases
Limits of turbulent flame brush
A Instantaneous flame front
Burnt gases
C Flame holder
Burnt gases
Transverse cut axis
B
= 8 #
y
y
Laminar profiles
Turbulent profiles
Temperature
Reaction rates
C 5 # 0#*$#
&2
Reduced reaction rates
Laminar rate profile ω(Θ)
Turbulent rate profile ω(Θ)
0 0.0
0.2
0.4 0.6 Reduced temperature θ = (T-T1) / (T2-T1)
0.8
1.0
& 5 8 # # " !
$ - , # # , ? E " 6
8 # " & Æ *
6L * " "
" ' E'?: " 6 7
, " E'?: @+: ' @+: # * " @+: # 5 E'?: # " * #
$ 6
&
t hot T2
T
T1 Time t cold t
( 8 5 #
( % L ? : L?: 8 : # " - & 3 "
L?: , " " # B 8
S S 9 9 N 9
,
# 34
' W - # " " 8 - %
- ' B
# " * , # " # 5 * " ! L?: "
" L?: % L?: 6 8 & # 6 0
&/
, 4 # L?: # " ,
" L?: 8 " E E " " " # " - - * # " 8 " E #
8 , L?: " " $ ) / .
: # " - 6 - C L?: 8 # " 8 # " # "
L?: # " ( ,) "8C
" " # " = # # 8 # " % , * 6
# E ! - A , ' *
# ' "8C " % " 6 88@" 6@ "8 " # " ?
" # "
6 3 % - "
$ 4
+ )* * ' A
' A = ' ( A A * $ 4+) / AA
* % 0 ' * 9 * ' '
&
N% N%% +- &2 L "
"
L?: # "$ # B , # " , 6 = 6@ "8 # " ? "
% # " - " C ? # " L?: # " - : B # - " " 8 * - : # "8 " 8 " * * # 5 # - - N # * X "
Æ C # " E # " # , # * " ! # " 6 9 " " A " ; > 9 @ ; " C 5 * E ! U E - " ' , ! "
&
# " 9 @ # "
, 6 " 8 # " " ; >8 - 8 # " S 6 % Æ B - # " " - ' # - # 8 L?: % " " # " * # " ! % < "8 # " Æ $ N I N # " # " E 6 "8C S J ! -.+ + 01"
; # " 8 " 8 , 8 # " # 8 " 6 " /L # L # &&& " 8 # # " # 8 6 8 # " 8 " 8 - " " (# B ) " # " 8 &/ B
@ 6 9 ' "8 " J * E L E @ E L C 8 # N " 8 %
, " 8 " L?: ; 8 L?:
&&
" 8 L?: " 0
L # " > # - 9 * I 9 # " L - - : = " " : L< L 1
C L?: # " # L?: # " 8 , @ "
" , 8 ? + ? : 8 8 " 9 @ ! " L?: # , 8 L?: # " " " * X # " # # " - E = # " , #
, # 69A 6 62 %
8 # " ' " , # " - 22 69A ' /L L - $ !
' " > 85 #
" " 9 * ; C 8 # "
3D Tanahashi et al 1999 (TSFP)
3D
Rutland and Ferziger 1991 Poinsot, Veynante, Candel 1991
Leonard and Hill 1988 Ashurst, Peters, Smooke 1987 Rutland and TrouvÈ 1990 Cant, Rutland and TrouvÈ 1990 Laverdant and Candel 1989 ElTahry, Rutland, Ferziger 1991 Rutland and Trouve 1993
2D Barr 1990 Katta and Roquemore 1993
No chemistry
TrouvÈ and Poinsot 1994 Rutland and Cant 1994 Zhang and Rutland 1995 Swaminathan and Bilger 1999 Montgomery, Kosaly, Riley 1997
Ashurst and Barr 1983 Osher and Sethian 1987 Ashurst 1987
3D McMurtry and Givi 1989
Ashurst, Kerstein, Kerr, Gibson 1987 Yeung, Pope 1990 Cattolica, Barr, Mansour 1989
Constant density Variable density
One-step chemistry
2D
Constant density Variable density
2D Patnaik and Kailasanath 1988 Katta and Roquemore 1998 Baum et al 1994 Haworth et al 2000 Chen et al 1998 Tanahashi et al 1999
Constant density Variable density
Complex chemistry
&0
NB: Non exhaustive list
+ 2)! 8# " *
" 8 = " * " L S : * L " L?: @ 8 ENC " ! - " ? 8: * - ENC "8 @+: S I S S
, L $
# "
&7
# " I
#
" " 6 " ! ' 0 ! H 1 '0 # " ! 8 # < ! < ' 1 0 H < I $ < ( +- !$ H 6 $
< 0 $
0 ( -
0
( 0
7
- 0 -
E ( E
# 8 " # # * - , 6 0 L?: = 8 8 "
# - " /2 % " # * Æ /2 % # * ! ' 0Æ # Æ 2& 2/ " ! ' /& < "
' $
< ' 0 Æ Æ
3
&3
" , # * ' Æ Æ /& * $ Æ Æ L *M , 1 - - - - " - < 1 - 1 < - 1 Æ E L *M $
< < ( , 1 1 Æ Æ
$ Æ Æ
( ,
0
&2
E 7 L *M &2 " " ' 0 1 222 1 /2 ( 2 7 ( , /&22 &2 E ( 1 222 L *M
/& L *M E- L?: /2 " < Æ ' 022 1 /2 E ( 1 &222 ( 1 /22 L *M ( 1 /22 L *M +- &2 , 1 & " " L?: " /2 E ( 1 < Æ 1 /22 < Æ 1 0 2 " < # * Æ 7 E
< &2 # ? 0 " 8 8 ' - " " /2 %6 " L?: 5 L?: ' #
$
& '
( $
" & ' Æ B' Æ ( / * !
&
1000
RMS velocity / Flame speed
Re = 200
Da = 1
100
DNS domain
Aircraft engines
10
Re = 1
1
Piston engines
1
10
Infinitely thin flames 100
Integral scale / Flame thickness
1000
& 2)!
, 2)!# = " 3 , % 8 # = & % 2:G 0 $# = 8 # Æ $ "# = 5 8 5 Æ $ *# "
< /2 = " L?: ,
$ " & " 9 Æ *
' ( @ ' Æ ! 67 $ ' "
' 4
02
) * + < # " ! " , 7 - " 8 # " " 9 6 ! @ @ C 9 : C I !
5 +& " % @+: 8 , 8 - " - " $
" 1
"
&
" @+: @+: " /$
2 +& / $ # 8 8 1 H
8 1
&/
2 "
" 8 " * 8 , /H " H !
2 /$
1 1
# H
2 "
H/ F 1 /
&
" ! H
2 /$
1 1
0 H
H0 4 4
&
$ &( >= ) 0 >= %( ' *
'
0
F
F
1/∆
1
0
k kc
-∆ / 2
0
x
∆/2
F
−∆ / 2
0
∆/2
x
C 5 # >7 5 L 5 L 5 # ' !$
1
&&
8" $
" 1
"
&0
- " " " 1 " " 8 # " ; - 8 - & 3 $
6 E'?: @+: ! $ " 1 2 - $ " 1 " $ " 1 " 4 " " 1 2 " 1 " - - " " - 8
" " ! ! " S C
,
0/
5 * ) - " - E - &$
4 12 6 4 1 F- 4
1 @ 4
A ,6 A 1 / 4 F 4 ,
"
G
4 .
!
&7
&3
8 1 0
A A
4 -
@ A ! 4 .
&
02
,6 6 6 1 4 ,
0
% - " - $
3 -
3 # # A A & # ' E'?: 8 #
$
@ 1 ,
.
/
1/
0/
0
- 8 8 6 8 6 E * " - @+: +- &7 02 " E'?: - * ?
6 * " ,
5
' 0
< ! # " $ E 1 # # A A L 9 6 ! @ @ C : 9 C I ! # "
" 4
: * 8 A # ; - +- $
Æ 1
4
1
/ 9
0
" $
""
1 % H < "9 "
0
" < % 9 9 +- 0 +- 0 < ! < H$
""
1 % H "9 "
0&
% % 2/ A % # " C : * * "
0
"
8 " " $ 00 1
! //
E(k)
Computed in LES
Modeled in LES
: * " @
k
! # % +- 00 - * " " Æ : * : * %
5
< S S * " / : * % ' ! H @+: ! H # $
$
$
1
# $
1 %
$ $
07
03
0&
" S $
%
&
* $$ '( ) 1
0
" @+: H + E : *
$
Æ Æ
1 1
/ H ""9 "" 9 1 / "" / H$ ""9$"" 9$ 1 /
72 7
"
E(k)
Computed in LES
Modeled in LES
I " $ $
k
M M 0#34 # = : , & 5 5
, ;+! & #
" $
Æ 1 / *
7/
00
- * " ( ) ! Æ
" C %
Æ
" @ C : "
L @ " * @ C @ + L R ? C * +LR?C @ $
H H H 1 22& &
7
" & 1 I $
H 1 F 4
G
"
1 H
7
% ' " L @ C @ " +- 7 8
" $
H H H 1 222 &
7&
" 3
' E'?: @+: # $
1 9#
70
" 9# : E : * S
"*( ( ( + + + " $" / 7 /
5
07
"
< @+: . " , # 7 E'?: & " 7 ? - Æ
- 6 & # 6 0 #
2 . (
# $
. 1 .
!
½
"
77
- - - - % " # " ?" C
' * +- E'?: $
. 1 .
!½
"
4
73
" 1 1 2 " ! 1 - C ?" : < " # #
"
S " E # " " . ' "
= ( > ( 36 *' + ( 3#
03
$
" " " $
$ $ 1 8 %
7
" S 8
E A L?: $ 8 ! L *M ' L *M
! - 5 ! " +- 7 # " , " # * # " * ! LJ * . 8 ' L?: : : E E C ::EEC
$
$
$
. 1 . # 4 . #
&
. # '(
)
'
32
8 +- 32 $
. 1 . # 4 . #
&
. # 4. %(% '(
)
3
* $
. %(% 1 G
'
3/
" G : ' " . # , ! 8 ? , G
5% + # 0
A @+: L?: 0/ 0 $ <
0
# " " - * $ , , ' " " @ - L?: : 0 < 0 H " H @+: ! C 8 # - 8 , <)*
"
$ < <)*
' <)*
1 H " H ( <)*
- <)*
H $
H0 ( " H
3
6 L?: 7 3 %
/2 E " 6 - Æ % #
/2
6 E'?: @+: A E'?: " 8 # "
@+:$ - 8 ' - 8 -
! ,+ @ # B # /2 22 B 2 6 / % * Æ # " 8* " B ! " " # * : # -
#
%
# # 2 ! 0
L *M 2 " * # ' # @ & * # 8 # " -
/ # O 1 $
1
4 . @ 4
7
&
7/
Volume V
Turbulent flame propagating against the mean flow at speed sT
Flame front Cross section A: premixed flow entering at speed sT x1
Fresh gas
Burnt gas
Locally laminar flame front propagating at speed sL
, : # % - 1 " # $
1 ,
. 1
+
. @
&/
" . "
. +- &/ " # & # " # +- // # 6 " EC: # +- > * S '8S X * L 9
" &/$ " , ( ,) - L *M 2 # # $
7
% . # @ $
+
. @ 1 .
&
A +- &/ $
. 1
.
&
Turbulent flame speed (sT)
sL0
Turbulent RMS velocity in the fresh gas (uí) Low turbulence zone s T = a uí
Bending zone
Quenching limit
H 8 , &
'
8 . . " > "
Æ - 0 - C
8 I " 8 " > " * - #
S $ 6 : ' - "
-
7
% # # C " , # > " # # " " # * E * , # " 1 3 E 2 , ! # " ' , # # " # +- /2 " # " # 4 1 4 $ # , #
B 1 3 1 2& B # * 2 # " , 8 (# 8 ) - I 1 I/ * $ 6
I 6 4 I
6I 1
I I 6 I I 6 6 I 4 6 & '( ) & '( ) & '( ) & '( ) -
--
---
&&
-+
" E>: % %% %%% - %N " , # : # " ( ! ) " @" N + " C # ' # " 8 " 8 # 8 " & 5 " # , ! & C # - : # " " " 8 # "$ ( ) ( ) " , ; " # , # ) $ &&
+ "*( / 7
7&
H 5 ,: , 8' ' ' # / > 8> MH , 8 & C # + ! < #
. ( )
EC: ) % " " * J > " ! " " $ " " : EC: < $ ) # - " A ( )
, - & EC: ! $
70
= N N , 8# C / ,: ' 8 > ## N
, # C 9 ' 8 # ' 7 8 C C# & + ! C # < #
Velocity
Velocity ub
uí uíu
uu
uu
Fresh gases
t
t
Velocity
C
A
ub
Burnt gases
B
25 8#
uíb
t
77
- * ) % E'?: " L " E'?: # - - - >8
E'?: & ? E'?: ( ) # " - : & & ' " # " # , " ' , " " &0 S " # " 8 ; # 8 8 " # +- /3 &3 , &7 " # " " # % # #
%
" #
' ! #
# " ; C 8 ;C@ ; 8C 8@ 7 ++% 7%
5 ;C@ $ : && # V " $ V 1 2 V 1
6V V " * " $
6 V 1 Æ V 4 Æ
V
&0
% 2 ( (
'
73
&
# ! 8 , : ' > # B 8 , : ' #
! 5' 2)! 8 H ( , C B > ( 8' L
#
7
" Æ L 8Æ ' 4 1 "
- " $
"1 )
)
" V6V V 1 " 4 "
$
&7
$
" " " " $ V1
V6V V 1 V 1 2 4 V 1 1
&3
1 $ 1 $V V 1 V
&
" $ $
1 ) 4 $ 1
) 4 $
&2
" ) $
1 ) 1 $ 4 - 4 -V
&
" - $
-1
) $
1 )$
&/
" ) $ 6 +- & & $
1 ' $
1
V
4 -V
D
1
) ) $ 4 $ 1
4 -V
4 - V
V
4V )
&
$
&
"
- " " " Æ V - "
32
.
A # +- &3 &
" E V V $
V1
4 -V
4 - V
&&
" +- /7 : & # $
V 1 V
V 1
-V
V
&0
4 -V
E && &0 &3 & - , " V V - & 7
1.0
Reynolds average
0.8
τ
0.6
0 1 2 4 6 10
0.4 0.2 0.0 0.0
0.2
0.4 0.6 Favre (mass-weighted) average
0.8
1.0
& O O
% ' O O *
O +# $#*$# - #
A ;C@ # V $
V 1
V
V
V $ )
1 V
&7
3
0.6
τ
0.5
1 2 4 6 10
0.4 0.3 0.2 0.1 0.0 0.0
0.2
0.4
0.6
0.8
1.0
C
& O & O
% ' O O * O +# $#*3# " ) $ ! 8 $ 8 8 # 8 " ; $ ) # +- &7 5 $
V 1
9#B V
&3
# 8 8 , , &0 @ ; : N
&7 "
N &3 ' 8 N B # ! &2 ' # *" *" " # N IP P = ; "
*" *" ' +- &7
3/
& ' 2 2 # V 2 V 2 V 2 ' 2 # V 2 V V 2 ' & # V " ; " 8 " # V ? # # " # !
- 4
A ;C@ +- & " $
1
D
1 ) )
) )
D
1 $ $
$ $
&
E $
) 4 V $ 4 V V $ ) $ ) V '( ) & '( ) & '( ) &
1
&/2
" E " +- &/2 "
( ) * 8$
1 V 8) 4 V 8$ 8 1 / & '( ) &'()
)
V $ ) & '( )
4 V /
&/
$
" 8 8 * 5 " ; 8 # " 6 : 6 & @ L 8 N8 # ! N &2 % 8 # " EC:
3
x2
Propane + air
x1
A
B
C - 8 8 H # # E
' ;
$
)
2 2
V
V
2 2
E E
$
)
' 2 2
V
' 2 2
V E E
! ' +# $#*1' 8 > # $#*# ( ( > #
H H> 8 # H ' H # #
3
% ; ! " * 8 " EC: +- &/ +- &/ ' 8 / &2 &
$ , + ' : &
' "
- " # 8 8 8 (8 ) "
8 L ; ; ; 9 = '8S ; ; L 9
I " *
" # " # ! * ! ' # "
" # " *
* " *
8 " : &/ : &// E 8 L?: " : &/
% / " Æ 2 "0 C 8 $
" * ! EC: <
3&
' E'?: A EC: * 8O - # # # +- &/ " 8O " # % 8O EC: " " EC: % 8 " 8O - % # A
%
1 0
% 8 " # * Æ () ! I 8 < I EC: % = ! =
* +- 0$ = 1> &//
=
" > * " # " " " = +- ! = $
= = - = 1 1 = >
&/
6 # - - 1 Æ , = 1 - =- # B $ , = , #
" 5 " , = # $
*
9 ! " & = 3#( " 9 Æ / & ' 9 Æ & C" > D Æ / 6 $ & "
' * 9 Æ 0 * ! / Æ / Æ = '
0 "( ' &
30
L *M , = " = I ! 8 < = = " # T -
6 " 8 =$
L *M , - 0$ , 1 , < 1
- - < < < 1 1 - - Æ
&/
I ! G I I $
G 1
- - 1 1 1 , - -
Æ
&/&
A +- 0 7 /7 $
G 1
< Æ >
Æ
1
1
Æ
&/0
E ( $
< ( 1 1
$
<
( 1 , G
Æ
&/7
&/3
L *M , ' ,
# " # " * (# ) %
# # 5 " L *M " ,
&
' $
' ' & + % ( % &
? ( & & %
' * * &
% & ' *
37
" 8 ( ) - $
*
$ * ' *
' * ' *
*
= : 8 I
! / 8
C # A L *M I ! < Æ &/$
= G
# * I %
#
# " * ( # ) (# ) " $
$ " " * #
# (" * # ) $ # " * # # 8 * ( # " *) ( # )
- - - G ,
I # *
# # # " * # * " (* # ) ( ! ) ' +- &/0 I (# )
Æ # - "
, - $ ("8 )
# G 1 * " I 8=
33
< Æ &/ 8 9
" *8
$ # * Æ ! * Æ Æ Æ $
= Æ
Æ ( # ) '
& L?:
= Æ I * #
! - "$ I ! T " * Æ I ! " I ! G Æ 1 $
G 1
Æ Æ Æ Æ
# ÆÆ " $
1
Æ
1
Æ
&/
2 G 22
G G # ! ! " " * 8
! (* 8" * # $) L?: # &
=
G G , ! , ? (* # )
& ; L &&
% " 0 8 " " * "
, $
' ! ,
6
I 8= I # I !
G 1 2 G 1 2 G 1
3
D
a=
1
RMS velocity / flame speed (uí/s 0 )
Well stirred reactor Distributed reaction zones
L
Re t= 1
Klim
ov
Wil
lia
lim ms
Ka
it:
=1
Corrugated flamelets 1 Laminar combustion
1
Wrinkled flamelets
Integral length scale / flame thickness
(lt / δ )
C 5 # Æ ) > ( #
Thickened flame
Ka RMS velocity /flame speed (uí/s 0 )
00 = 1
Da= 1 Thickened-wrinkled flame
L
Re t= 1
Klim
1
ov
Wil
s liam
lim
it:
Ka
=1
Wrinkled flamelets Laminar combustion
1
Integral length scale / flame thickness
(lt / δ )
< 5 ( 5 # Æ ) > #
2
BURNT GAS
FRESH GAS
BURNT GAS
FRESH GAS
2)! , : 8 : >, : 8 #
H 5 # H : # ! 5 # = 8 : $ # , 8 > :# 5 # T = 300 K T = 300 K T = 300 K
flamelet preheat zone
flamelet reaction zone
(c)
turbulent flame thickness
T = 2000 K
(b)
turbulent flame thickness
(a)
T = 2000 K
T = 300 K
mean reaction zone
mean preheat zone
T = 2000 K
T = 2000 K
T = 300 K
T = 300 K
turbulent flame thickness
T = 2000 K
T = 2000 K
mean preheat zone mean reaction zone
= 9 2
, " % ? , : 8 , : 8' : >, : 8' : 8#
Æ ! Æ " Æ Æ #$ % & "
""
Æ " " " "
" ' ( "" " $" )
" " "
" " " " " (
" " ( (
" ' " * " +
$" ( "
' $" " " ( " "
"Æ
" "
"
' ( " " " ," ' - . -
" - $" " - " * " " / 0 " " * " ( 1 2 ) 2 ) ( " 3 +" - ) - ) 4 5 6 ' 4 4% 4 47 " "
! " "
"
" "" . $" " "" ( + 8 9 + "" " " * ' : 7/
4
Fresh gases
Burnt gases
A
Instantaneous flame front
B
Laminar strained flamelet (curved and unsteady)
. " "" "Æ $" " " " " " 3 " " ( $" "" ( " "" " ' " "
" $" "" , "" 4 7
" ;" * < . < ="
"
" "" " " ' ( * #$ 4 / 0
: 6>
?
" (" : 6> * #$ 4 5&/ 0
: 6
. > 8 9 ( !" # $
6
" ) 4 7 ? " "" " " ' $" ( 0 Æ + " 0 Æ 0 " . > 8
9 ! (
" ," " ' 4 45 #(
: 6>
" " "
<" " "
*/ " " 3 " " " " "Æ " @ ( ( " " " A" " Æ"
" " / ' : 6>
" " 3 ( " " " " " "" "" ' : 5 Æ "/ "" ( "
" " ) "" " " $"
Curved flamelet
Fresh gases
Burnt gases
Stretched flamelet
2 "
"
Æ " ! " "
%
3 "
3 "" "" " " " " ! ? " " " " ' " ( "" " $" "
' @ ( "" / ( " "" ( ? "" " " ( "
! ) % 4 + " " ' % A @"" "Æ/ $" " 8 9 " ' : & A "" % 4 "" * 8"" 9 " # "" ) $" "
" "" 3 "" " / " ( +
+ " ' : & / 0 "" ""
!
" ( + " / 0 Æ
Æ
: 64
B "
+ " #$ : 47 0 !
$" "
Vortex velocity / flame speed (u’(r)/sL 0 )
Po(r) = 1
:
Ka(r) = 1
u’RMS
Turbulence line u ’ ( r ) 3 /r = ε
Vr(r) = 1
1 Kolmogorov line Re(r) = 1 Vortex size / flame thickness (r/ δ )
η /δ Kolmogorov scale
1
l/ δ Integral scale
( " ( Æ / 0 : 66 Æ Æ " ( "
"
C "
" " " " ( +
Æ . / $" 3 ' : & 0 Æ 0 .
Æ 0 (
89 D Æ ( " ""
" 3 " $" < ( " ( + " " " (
7
$" " "" * ' @ ( " " " $" + ? - < ! " ??" B" '+ E ? ) ? ( = B 1 B ?" ) ? ) + " " " * ! @ ( * " ' : ! " " 0 > ( " $" " " ( * "
" Æ " " Computation domain
Vortex pair Max speed u'(r) Flame front (speed sL )
Symmetry axis r D
!" # ! $" " 1F) "
"
" - "
$" 4 5 6 3 1F) "
1F) " " / E
" @ ( 1F) " $" D
" 1F) ! " " *
"( G #$ %5 / G 0
89 " * E 3 Æ"
5
? " 1F) E " "
) " E " " $" " ) " " " " % - " 4 " + + " " ( ( ' : * ( " " ( <" " >& Æ >>
$ % & ' ( ! ( " '
: 4> : 4 ( + " " $" Æ 0 %& 0 4& ' " : 4> : 4 " H G * " " 0 "
&
0 Æ
$ % & ' (
! 0 >& ( " "
"" $" + " 0 Æ " ( " . $" ( 0 " + " " ! 0 7 $" " ( " " "
' : 4> " ( " ! 0 4> 0 4% " " " " ( 3 $" ( "" ("
! " @ ( " E ' : 44 ( - " 4 "
" @ ( ( '" * $" 4 " " $" 6 % "
" ' : 44/ $" " " $" " 2" ) " " : I ! * "
1F)/
0 >4 J :: Æ
Æ
: 6%
" ""
" Æ " " ( "
) " ( B - " ( ( " " 1F) E K" ( " " 1F) ' : 46
! "" ( " " ' : 44 "
" / ! ( "" 4 ! "" "" $" + $" " "
4>>
! "
) & Æ * ' $ + $ ,
Vortex velocity / flame speed (u’(r)/sL 0 ) u’RMS
4>
Cutoff limit
No effect zone
C
Quenching limit
Kolmogorov line A
D B
1
Vortex size / flame thickness (r/ δ ) 1 Kolmogorov
100 Integral
Cut off
C Distributed reaction zones ? RMS velocity /flame speed (u’/sL 0 ) A Klim
D
ov
Wil
im s l liam
it:
Ka
=1
B Corrugated flamelets
1
Pseudo laminar flames
Wrinkled flamelets
1
100
Integral length scale / flame thickness (l/δ )
!" #
4>4
" " ' ( "" $" + $"
" 4 * L 8 9 $" F
" 1F) " A "
" " "" " ' : 44 ! "" * , ' : 4% Æ " " " $" E , 3 * ! "Æ " "" * < $" " " < "" ""
" < ' : 4%
' : 4 " + ( " " "" " "
" " ( E " $" ' : 4% " 0 >> ' : 6
E "" " " " " "" " " " " B F ) B!F) $" " % : ' ( $" % 44 % 4: *
* "
! " "
" "" ( "
) 4 %/
"
" G (
#$ 4 65 / G 0
! (
: 6:
: 67
" ( " ( > (
4>6
"
! + "
! / ! 0 ! ! !
> " ? "" "
"
" 4 " - " 4 % 6 A
" " " H 0 #! "
! #$ 4 6: "" / HJ! 0
: 65
H ! $" H H 0 > H 0 " " "" ( " / $ $ J 0 > $ $% J $ J $& 0 $ $ $ $% $% $%
$ $ H J H 0 $%$ $ $%
$H H $%
J G
: 6& : 6 : %>
G 0 G ! " " H 3 #$ : %> " #$ % 4: /
$H $H 0 $% $%
: %
$" * H " ," " % : 4 $" " $" / ""
G "" H L " "
" "" "
)" $" "
" (
" $" H " $" / % &'( ) * + , - ) * + ,
4>%
B
" $" "
) % : 6 ""
" "
" "" ,"
$
"
" * " " F ) $" / G "" H ! " "" " " G "
) : 6 4 : 6 5 ?
"" "( "
" #$ % 4& ) : 6 &
"" "" " * % %% ) % : % (
/
0 H ( G 0 G H
J H
: %4
$" " " " H
"" 1 M "
8 9 ' : 4 ( "
" " " * " " " " % : % 3 " $"/ ' % 5 G H #
G H $" " " " "
!" # $ !#%
E ) ) ) " # , A #,A "" "
" B 1 M ' " ! !" : 6 4 ( "" / + " " "" ¼¼ "" " "" H (
/
G 0
¼¼ H
: %6
4>:
" "" "" (
/ 0
(
: %%
"" * % 4 < % *
" " ) ( $" #$ : %% # , A " " ( "" % : 6 ¼¼ ! *
" #$ : %6 $" "" H * "/
¼¼ H 0 HH
H 0 H H 0 H
: %:
" " " H 0 > H 0 " " H 0 H * #,A /
G 0 H H (
: %7
" " $" " $" #,A " 1 "
: %7 " / " ( " #$ : %7 L #,A
" !" ' : 4: #,A !" / #,A " > + " H ( ' % 5 !" " 0 > + ' : 4: " H ) ;" " ) , 3 #,A " !" : 6 4 " " # ,A ( F " . !/'($ !/'0$ "
. !/'/$
. !/'0$ . !/'($
1 2 3## % /(,45 * + 4 * + , 7* !, * $8 ¾½
6 * !, * $ !9 ,:::$ *
4>7
Mean reaction rates
Arrhenius model ω(Θ)
EBU model ω(Θ)
0 0.0
0.2
0.4
0.6
0.8
1.0
Reduced temperature Θ = (T-T1) / (T2-T1)
' - +.( $" "
) : 6 " "
" " ' ( 3F') ? " E #,A " ,
& ' ( "" ( "" ) % 6 ' ( !2 !2 , 2" B + 2" N "" / 0 J)
: %5
) * " "" B?) 8+$"9 / $+ $+ J 0 +
: %& $ $% .9; < !% % $
4>5
"" "
+ + * ' + + +* "
A" "" * $" 2" #( ( " "" #$ : %& " " Æ" $" " 8 " 9
" + $" ," * " +$"
$" " / +$" $" "" $" " " ! 4 5 $" $" . " " " ' $" ( " : % )" " " " " + $" $" "
" " +* $" ) ; ! * +$" E E E 4 ) : 6 7
! ' ) $!')%
" " , ?
- * 55 "; , ?
- , < - < " " ,?- " "" ( " " " "" "" ) : 6 ! " " A "
" " "/
" - " "
H (
" " " " " ' : 47/
&H 0 ) ÆH J " Æ H J , -H
"
: %
"
) " , "
(" ÆH Æ H 1 " H 0 > " " H 0 %
!3 = > $ !
4>&
pdf( Θ )
Θ
0
1
+ " &H H 0 / ) J " J , 0
-H % H 0
: :>
-> 0 - 0 > ,?-
" B 1 M " ) " , ! H 0 > " H 0 #$ : % " /
&H 0 ) ÆH J " Æ H
: :
! + H ' : 45 ! ) : 6
" " ) " B ' (
"" "( "
A" G " /
G 0
H&H G H 0 ,
H-H G H >
: :4
! , " (
) ,?- "
G * "
$" "
" ) : 6 7 $
4>
Θ 1
0 time
, & ) / 0 1 / 0 2
) " $" H/ $ $ $ H J H 0 $ $% $%
$H $%
J G
: :6
, ?
$" H H 0 H H / $ $ $ O H HP J O H HP 0 $ $% $%
$ $H $H OH HP J 4 4H G J G $% $% $% : :% A ,?-
" " " H $" + " H H 0 > $" : :% " / 4 /
$H $H 0 4HG G $% $%
$H $H 4 G 0 4H $% $%
H * /
0
. 4H
: ::
: :7
H 0
HG -HH HG 0 G G -HH
: :5
" " H . 0 . G
. "" ( H + ! $"
4>
( ? , !
" " ( "" / . 0
¼¼ H
: :&
"" ( " ! $" ¼¼
H ) : 6 5 "
" " H 0 > H 0 H 0 H #$ : %:/ G 0 H H : : 4H ( "" (
0 ( #$ : %% (
: %7 ) #,A ,?- #,A #,A < #,A ,?- " " H
! , , - +
$" "
' : 4& " "" E ! " , (
E , * ! ' 4 & !" (
" " 3 "
" <
"
(
"
$" -
G / G 0 G -
: 7>
$" $" " ' : 45 /
- 0 4
H H
: 7
"" (
/
4
T2
T2
T T1
T T1 time
time Fresh gas Limits of turbulent flame brush
A Flame front
u=s d
C
B
T2 T
Burnt gas
T1 time
% 4
" " " ""
$" (
B " " H ' " " #$ : :
/ H J H : 74 - 0 4 J H
$" - " ( $" " " ( "
" ? B
#$ : 7 ""
G #$ : 7> " " / G 0 Æ
: 76
"" Æ " $"
H 0 > H 0 " " ' : 4
44
Θ 1
0 Time
tt
! 3 .45 /
G 0 4 H H Æ (
: 7%
0 ( ! #,A (
Æ 0 Æ #
Æ" (
: 7> " : 6 7 F ,?- " (
G " " "" "
" "
" "" ) : 6 " $" "" "( H B
* + , 3 " "" $"*
$" ! "
" " "
" " " " " " / ? , < E , / G 0 /Q
: 7:
/ "
" " Q "/ 0 0 " "
46
! " "" ( " / ""@ " " Q
Fresh
Fresh
Burnt
Flame
Burnt Flame
LOCAL LEVEL (library): Flamelet consumption : wL
Flame “stretch”
GLOBAL LEVEL: Flame surface density
Mean reaction rate:
Σ
ω = ρ0 w L Σ
' : 6> " " "" " "" " " " / " " ( "
2 ) " " " " / " " $" "
, " 8 9 1 " / " "
$" / / 0 1
: 77
#( C C #$ 7 74
( 1
4%
* / 1 0
&
: 75
" & " 3 1
" / 1
: 7&
* "" ( " Q " (
$"
" # Instantaneous flame front α
mean surface Θ
Ly
.45 3 & 0 & / / 6 , #$ : 7> " / Q0
*
: 5
9 " ? 5 4,,@
+ !/0:$ , ) 3 < 5 ¼ ¼ ¼ + 4,/@
+ 4 ,/@
!/@4$
4:
* " "
" $"
H " H " ' : 6
" " >: #$ : 7 /
H 2 H H 2 J H Q0 0 J H
: 54
2 " / 0
: 56
* " ? / / 0
"
* 0 / 2 G 0 H H : 5%
! 0 ( (
#$ : %7 : : : 7% ! " "" (
: 5% " 3F') " ? " E , ' " Q Æ" "
$" - " "+ $" Q C C ," / " " 2" / Q0
: 5:
" "
"
" " " "" <" 1F) " (
: 6% " "
$ ! # C" $" " Q " " $" " " ? , 1 " " E <
47
E " E C ! E "
" H " /
Q 0 H ÆH H 0 H H 0 H &H
: 57
Æ H 1 Æ " H H 0 H H H 0 H &H * H 0 H ! $" ) % : : " Q " " H H 0 H " &H * ! ( $" " * H 0 H
" * $" " " H " E C $" / $Q $ $ J Q J O * QP 0 $ $% $%
$ $* Æ * * Q J Q $% $%
: 55
* " 3 3 0 H H " " 3 0 $* $% "
" * /
# 0
# H ÆH H
H ÆH H
: 5&
-L) Q $" : 55 " " * * BL) (
" @" " " " " ( #$ 4 &% < 4 ( $" / ? E
" H " " * ," " ( " " * * ( " H
" 3 H " "
45
" $" " $" "" "( " " " A ' 0 J "" " / Q 0 Q J Q
: 5
$ $ $ 0 Æ * * Æ * * J Æ * * $% $% $%
: &>
" " * "" A #$ : 5 : &> " $" : 55 /
$Q $ Q 0 $ Q J Q J Q J $* Q J $ $% $% $%
: &
C" " " " #$ : & " + : 6 Q $" /
$Q $ Q 0 $ J $ $% $%
$Q
$%
J Q J Q
: &4
" 3 (
"" "( " (
"
" ""
" "" ) " " " " " " ) : : 6 ." " " $" " * " " . " " " " BL) #$ : & " " ( $" ! " ? , 1 ' "" 0 ( " " "
" A ! $ ! $
A +
4&
47!+5 '.
' '42 '46 '46 !
4. 4
.
'! ' ! '<2 '<6 '
8
8
8
6 9 8 :
0 8 Ô 8 ¼ 9 8
8
8 8 8
8 ; 8 ; 8
¼¼ ¼¼
8
8
¼¼ ¼¼
9
8 Æ
2= 8
9
8 2
¼
¼
8
2 2 9 Ô
¼
¼
¼ 8
8
2 8
¼
¼
2 8
¼
¼
<
8 3 =>6
$ ? ? ? ? ? ? ? ? ? Æ +3 =>1 ' @ ; Æ ," =:A +3 =22B , '< ? ¼ $4 - ? * 8? 4. & - +3 =>1? 3 !
Q " " H $" Q /
Q 0 $ $Q $ J $ $% $%
$Q
$%
4
Q J ) Q " / ( H
: &6
) " #$ : &6 F
" $"" " $" / G 0
) H " (
: &%
#,A #,A * " #$" : 7: : &4 " $" : 6& : %> " < "" / " " " ( " $" : 7: : &4 3 " " "
) 4 6 ' " "" ( + " ? " " < 1 ," 1" < L" ( " $" "" " F " " Q " " ," C ' " $" " " ? , $"
#$ : :7 " " " : 6 < " " " 1" < L"
"
% E +$" " E E /
: &:
>BC, /( + 4 .9; !% $ = $ A * !, * $ !>BC& * !, * /($ .9; !/'0$
$+ $+ J 0 +
$ $%
44>
* " + 0 + (
" " ? " E (
" " 3 " #$ : &: " +
+ ! $" 0 +
" C C 3 " " +*
" " H " "
" " " 1 " E - , $,% " &H " " " " H H J H / &H H 0 45'566 H H H J H
: &7
' * + /
&H H 0
: &5
" ' ( " ( / H0
H &H H
H 0 ¼¼
H H
&H H
: &&
' " - " / G 0
G H &H H
: &
9 *
*
44
!
" & " &H 0 &H ! ' $" - / - 0 - 0
-H&H H 0
-H&H H
: >
(
(
" " ( - " " ( " ; &R R R / E R ! R J R R ! R J R 0 &R R R R
:
+ /
½ ¾
&R R R R R R 0
: 4
R R R "
" ! $" - (
G / -0
½ ¾
- R R &R R R R R R
: 6
E " * "" * $" " * " ( ( " " " #$ : & : 6 ( K" " G H - R R " Æ" * E E 1+/ " $"
&
3 " ( " ( 3 " " * ' " " B
D !# # E < $ ! D $
444
" "
" " " !
. " *( + " ( " / $" @ * ,?- : 6 : " /
H
" /
H 0 > " H 0 ? " " " " ( " , , " ""/ &H 0
S' J 5 H H 0 H H ' 5 S'S5
' 5 + / ' 5 0
S " * /
H H H
: %
: :
S% 0
: 7
" " " " * ' 5 " " " ¼¼ H H /
'0H
H H H ¼¼
T
50
'
' H
: 5
"" " " "" "
' : 64 A " " H 0 > " H 0 " " ( " > H " (" * " " " D ¼¼ " $"
H # B F ! $
G !$ ! $ "
446
-
0.0
0.2
0.4
0.6
0.8
' > 4> :> >4 > >4
5 > 4> :> >4 6> 4>
H >:> >:> >:> >:> >55 >>
H 7 >4> >4: >>5 >7 >>
1.0
+ " #
¼¼ # * / / ¼¼ +3 =AC / / 3 B!F) $" " H ?" " H $" #$ : :6 H $" H/
$ $ H $ J H 0 $ $% $%
$H $%
4
$H $H J 4HG $% $%
: &
" ) $" $" " H #$ : %> H/ $ $ $ H J H 0 4H $% $ $%
$H G J 4H H $%
:
)" #$ : #$ : & $"
H / " " H 0H $ H $
J
$ 0 $ H $% $%
$H $%
$ J 4H $%
""
$H $%
" "
$H $H 4 H 4 $% $%
$ H $%
"
$H J 4HG $%
: >>
44%
$" "
( ) 7 % 6 A " " / ?" " "" B!F)
" B " "" " "
" / H
0
$H $%
0
H
$ H 7½ $%
$ H $ H 7¾ $% $%
: > : >4
7½ 7¾ "" ) "
H "" "" ( " (
" /
$H $H H 08 08 H $% $% (
: >6
8 " " " " "" "/
G 0 HG 0 H H
G H & H H H H
: >%
" : :5 : : " / ( " "" "
" #$ : > : >4 "
" / "
) 7 % 6 (
" : >6 ( " " H " " " " "
H $" . ( " " " " Æ" - F " E 2" F
" "/ "
; " " " / &R R R &R &R &R : >:
44:
(
" "" ,"
" " "
"
$ ! # # ! ( $" " " ( E 1+ C " " ' "
&R R R $" /
$ & $ & J 0 $ $%
$ ! 0 R & $%
""
$ $ $R $R
$!
$!
$% $%
!
?" (
0 R &
: >7
$ G R R R & $R
<
# ! 0 R $" # " R * $" : >7 " " * " "" " * " ( " R " ( " $" #$ : >7 $" ! $" ( A" " ( (
" Æ" * " / $" " " ,"
D
H !# $ ! I I $
447
" ( $" E $" / ?< " 8" 9 " E E 1+ !" " " ( " Æ" "
. ' , !
" G " " " " "" "( H <
" " "" " 1 ? < < / H 0 H 0
$ H 78 $%
: >5
"" "" 78 "" ) "
" " / #(
: >5 "" ' " #$ : >5 " $""
" " H $" ' " "" " F Æ" "" " " " D " ( " " G ' " #$ : >5 <'1 " " "
" /
$ $ H H 0 $%$ J $ $%
J 78
$ H $%
J G
: >&
#$ : >& ( " " "" " / " " " "" " 78 B!F) L ( , ) - , , , " ( "
"" #$ : >5 "
445
#$ : 5 ) : 6 " " " ' : 7 1 " "" B 1F) " C C E B" < " "" ' ' : 66 "( 1F) "" " H " ?
"" " ' : 6% 1F) " / D 1F) B" "" 0 / " " "" (
: 5 D 1F) <B " "" 0 6/ " !" " " ( " ( " (
: 5 ""
@ /
$ ¼¼ /¼¼
& !" /
? - * $ ' $ '$? ? & 'D $ & @ & ' ( 3 ,?
- ,?- " #$ : 5 "" "( " 3 " $" " ! ' : 6% "
(
44&
'
$ '$ / ? ? ? ? ? @ ) ! @ & ' ( $% > " * <" " H $ H " " $% > " * "" H$ H C ' "" * "" (
D "" " ( " * "" " " < ,?
- 1F) "
" " "" " "" #$ : 4 C " 8, " 9 * / 9 0
4)
: >
) " " " ) 2 . Æ " "" " " 9 9 ( J < EG% K
(E EG%
44
' ( " : 5 ! : > " " ( 6 F " " "
" C E <" "" "
"
" " <" "" " "
' : 5 ( " "" "" ( " "
" " 3 ,?
- " ( $" "" "( H $" "
$" / $ H $ 1
J
$ H $%
0
11
H
$ $%
$ $%
111
111
$ H $%
H
$& $%
H
$ $%
1:
$H $%
1
1 J
H
$& $%
: >
11 J
G :
" " "( H "
3 #$ : > 3 " " 33 * 333 "" * 3C C " "
C3
" C33 ""
" C333 3U
U " #$ : > Æ" " ( 1 " " " + " " ! 1F) " #$ : > ' : 6: #$ : > " " ' ' : 6:
C333 3U " $% >
" C3 C33 H $ H
46>
$% > U " " H$ H 1.5
1.0
0.5
0
-0.5
-1.0
-3.0
(I) (III) (V) (VII) (IX) unbalanced
0.0
0.2
0.4 0.6 mean progress variable
0.8
(II) (IV) (VI) (VIII) (X)
1.0
@ % /
$ !" & ? - * , ? @
' " : 6: " #$ : > "( " : > " + " " H " " "
3 " "
1F) " + )" " <'1 ( , " 3 ( " ;" L " "" " "" -
" -#) "" / ) : % 7 ' : %& " " -#)
¼¼ *¼¼ ! $
¼¼ ¼¼ ! $ G K ¼¼ ¼¼ !J$ ¼¼ *¼¼ !/,,4$ %
/
46
' , (
! B!F) $" "" (
""
$" - $"
" " ) #,A ,?- <'? ?, : 6
" "" / 0
0 - 0 (
:
D <E,
" " % 4/ 0 0 - " 0 !
: 4
(
#$ % 6 / : 6 0 0 , (
$" " " " " " " /
" "" "" "" ! ' " (
""@ " ! "" " " ! $" ""@ " ( ? ,
$" C
9 5 * * !+"
!/,,'$
" % /(/ ! . !//0$ !. !//L$$ !C9 /($
464
! $" 3F')/ 3 "" F ' ) ? " E " 1F) @ ( E
: 4 6 " ? " ) ? " ) " " +
""
" "" / 0 ) S"
Æ
(
: :
"" B?) "
Æ
) Æ " S" * 1F) /
S" 0 ( J >% J ( J >% J >% 0
Æ
4 0 6
( 4
>
: 7 : 5
Æ " " " . Æ + S" " ' : 67 S F Æ " Æ " Æ "" B " * " #,A ,?- " <'?4 <'?4 : 6 1" ' ( 3F')#,A " " / G 0 S"
Æ
H H (
: &
" #,A "" #,A #(
: & "
" " , -;
0 12 2" " 2 + "" " " "
" " + "" ""
466
1000
Γk
u’ / sL0
100 10 1 0.1 0.01 0.001 10
0
10
1
10
2
10
3
10
4
lt / δL0
," Æ ; +3 =22B Æ ¼ ! 12E 21E 21E 211
* " " 3 Æ " E E " EE " " ( ? " L 2 ' 1" !
" #,A : 6 6 " / G 0
H H
:
"" $"
"" /
$ H $H 0 J
H H $% $%
: 4>
"" ) " ! "" "(
" "" + "" EE ( " #$ : 4> H 0 > * H H #$ : 4> " / $H $ H 0 J H : 4 $% $% " V $" +/ V 0 %
>
: 44
46%
"" " "" /
4
: 46
EE " " #$ : 4> "" /
0 4
: 4%
(
" "" ""
' ( : % "" "" " ( 0 # ( % : 6 (
"" 3F') : 6 B ) % 4 "
""
""
$$
S
¼ ¼ Æ ¼
%¢
4
$$
4
%¢
$$
(
3 3F')
(
4
4
%¢
$$ %¢ S
¼ ¼ Æ ¼
4
¼
¼ Æ
¼
$$
4
¼ %¢ ¼
$$ %¢ S
¼ ¼ ¼ Æ
¼
¼
! %
&F G +3 =26H 0 ? ¼ ¼ 0 5 ! * Æ * Æ ! 2 "" A "" "" D 3F') G ! ¼ + 4$5 K
46:
14 12
8
sT
/
sL0
10
6 4 2 0 0
2
4
u'
/
sL0
6
! !
8
10
¼ ! ?
G ? ," +.( * G ) 0 H'? 0 1'1A Æ 0 H' (
"" Æ " "" Æ " ' : 65
D "
"
" + "" "" " "" " " $" ( " F
EE 3 ( $" 1" "
+ 3
) "" $" + ;
Æ" "" " " ! "
"" < 5 + "" ( /
'( )
<
+ , < 3 " "" " + ;
" " " + ' : 6&
C GB%
! E $
467
*
3 "" " " "
" ' : 6 F " " + 8 9
premixed reactants
u = sT
Flame
) & ) ) ) &
Fresh gases
Hot burnt gases
!
&
Flame
heat fluxes
) 3 5 + 4
F ( "" ( " "" ( : 6 >
" ( $"" L B!F) "
+ " " + ," ( + " " " ( " ' : 6& : 6 ! ( Æ" ' : %> ( "" C ( @ +
465
C ' " " * ;
< + " Q $" 3 " * " " " " !
" " " "
$"" " " " " / #$ : 7:
" $"" ) " #,A ,? ' : %> "" +
( @ # ) & ? & % ? :1 C1 & @ ) " $" Q " + " ' : 6 )" + " ""
+ + " ? Q $" "
"
! " $" Q Q : 6 4& $" " " ?
" G Æ <
A
46&
D " #,A : 6 6 : 6 > + " ( H + + "" H
' : 6 ; F
+ 3 + Æ" " " " " / ' + ( " " 3 " "" " " ( ; ' ( "" ," " "
( " " "" " "" 3 + ; " " + . "
+ < 5 5 6 4 ' 5 :
B!F) "" ( " "
" ? " -#)
& 4 1 B!F) " " 6>
) # , A ) D " " * " ! -#) " + ! Æ" " " ( /
Æ ( " > " -#) + V ' : %
H + "
" " " 3 "
46
" " "
-#) "
E
flame front
LES computational mesh size (∆x)
Fresh gases Θ=0
Burnt gases
Θ=1
' & * Æ 5+ ) I
/ 0 1 / 0 2
Æ" / " * " $" +$" *
"
* + 3 -#) " * "
" "" " " " " E " " : 6 5 " ( -#) " ( " < 7
&
, 567
! * (
B!F) " " ' ( #,A : 6 6 /
G 0 &'& H H
: 4:
&'& " "" / &'&
V
&'& (&'&
: 47
EG% C
GB% ! /(:$ =.% !" > $
4%>
" "" * * + V &'&
" "" (&'& " "" "" (&'& (
$" 3
"/ -#)#,A " " " H * " " " ( '" -M M '" ?M "
/ # , " * B!F) ( + 3 -#) ( "
+ ! "
) % 5 % -#) * +
" "
& 8 " ( ! " ( ," DWB" ' ( . "
Æ (
4 : 4 &/
(
T
Æ
( 0
(
: 45
( " ( 3 " < ( <
Æ " < ' "Æ < " -#) " ' : %4 ) (
" !" " " " $" " ( + @ " (
" " "
" < & < Æ " A" Æ " * " 1 M " ""
#
H H
$ ,E 5 *
+ " * ) 6
4%
Fresh gases LES computational mesh size (∆x)
real flame front
Θ=1
sL Θ=0 thickened flame front
Burnt gases
* *
: 4 4/ 0
0 Æ
: 4&
< < ! "
) : 6 ""
Æ "" < " 1F) ! < ' : %6 ! Æ " = " " Æ " ( 3F') -#) V< Æ 3 " 1" / E( /
(
! #$ : 45 / 0 =
< ( <
= < ( = <
Æ
Æ 0 < Æ
: 4
" ""
&&
9
+$" /
+ "
4%4
!" $
E * 0 = .
Æ ? # *
& * % )
' : %% 3 -#) "
" * + 0 + + *
+ H " -#) +$" / $ + $ + J 0 + $ $%
: 6>
! " 8""9 " #$ : %5/ 0 J) : 6
G > G*
4%6
G < G*
LES mesh size
flame front (G = G*) Fresh gases
sd Burnt gases
) ) 0 )£ )
?
" "" /
V 7 0 V 47 7
: 64
7
) * * 3 ) * 0 3 ( " B!F) " -#) " " ;" * "" " "" #$" : 6> " F
" : 6 % "" * $" " #$ : 6> " " Æ" / " * " " " E 1 +$" " $"
" "" ( "
&
+ , ) 7 ,
! * H
" $"/ $ $ H $ H J 0 $ $% $%
$H $%
J G 0 H
: 66
4%%
$H $%
J G 0 H
: 6%
#$ 4 " H /
$ $ H $ $ H J J 0 H H $ $% $% $%
-2
-1
0
x/∆
1
2
! "
H -#) " F
" 2"
, *
H * < (
#$ % :% * + V " + V ' : %: ! * " " 4 VV < +* +$"
H / H $" " " * ( 1F) ( " 1.0
0.8
0.6
0.4
0.2
0.0
: 6:
G . !/,(($ !/,(4$
* =.% . !/,('$ =.% EG%
Q " " " " "
" X " " " ; ?
H Q 0 X H
#$ : 6% H , /
+% J +3 H=H ) I ) I I 0 H I ( / / I & / & / & 6 II 0 >
.
progress variable
4%:
$" Q X E B!F) ( ! (
, , C $" , . L < Q X ! ' % 6 " ( (
&*
7 ( ) 7
A "(
" #$ % 57/ H 0 H
$ H 78 $%
: 67
L ," " 1F) ' % & , " " "( -#) B!F) : 6 & "" ' : %7 ," " -#) "( B!F) "
$" -#) B!F) ) " ( " " ! " "( * + V ' : %5 " " " ( " " " " " ' : %&/ , C " C "" ( @ + " " * ' : %& '
H * ' : %& B!F) " "" " ( " H " -#) * -#) ( " " 3 " B!F) " * -#) " "" ' : % < "" " " " " ' : > * " "" -#) " " )" " Æ" B!F) " $" " , ! + " "( ' ( 4 % :
" $" / 0 0 84*'*
: 65
4%7
H H
0.20
0.00
0.10
−0.10
−0.20
−0.30 0.0
0.2
0.4
0.6
0.8
1.0
+ ( / ? $ / / / ? % % 0 1'= E % 0 6 % 0 B $-" ) $ ! !" . ?2AA>? K H> ! .
H H
0.15
0.10
0.05
0.00
−0.05 0.0
0.2
0.4
0.6
0.8
1.0
+ ( / ? $ / / / ? % ) I E 6I E :I HI % 0 B' =HB 5+ ) I $ ! , !" . !" H> ! .
4%5
$%: 8 , 2 2
8 $%: 2
5 # ) +"4- , ='C= *!E 3 + 0 1'B=E * =1 L . @
0
"
/
H 0 H H 0 H H H
: 6&
'
" " - " " " H / 0
J H
: 6
" " 0 /
H 0 H
H J H
H J H
>
: %>
% " " H 0 #$ : %> *
" " " "( )" " " (
: 67 " " " " ! " " B
/
0 0
: %
" " " B
4%&
0.020
0.010
0.000
−0.010
−0.020
−0.030 −0.015
−0.005
0.005
0.015
¼¼ /¼¼ $
=H> 6 ? B 21 ¼¼ /¼¼ , 1 . @ $
," ( "
"" ( + ! $" " ( " "" ( " " "" 1 $"
" " "" <
" "
" "" ( Æ" "
"Æ 1 " " 1F) " + "
K"G% G K < =.% < M
4%
, ;67
F" $" 1F) * " "
) % 7 4 ""
"" B!F) #( "
) : 6 7 '
" "" " "" $" *
" 1F)/ .
" Y $" "
1F) " "" " : 4 6 4 !
" * "" " "" : : 6Y 6 . " " * " " " " : : :Y 3 "
" + "" " B!F) -#) 1F) " / )
" " 1F) "
B!F) -#) " 8 9 ' (
"
" " " " " $" " " " " 1F) " D 1F) " " 8 9 " 1F) B!F) -#) ' ( $" "" 1F)
;67
#
B!F) -#) "
" "" "" Æ" ( 1F) " $"
" " 1F) " *
" * $" ( 1F) !
4:>
_ Θ=0
_ Θ=1
Fresh premixed gas + Turbulence
Burnt gas
N
n Instantaneous flame front
Θ=0 Θ=1 x Mean flame front <sc>(x)
Θ(x)
x
!" 1 - / - 2 & . / * "" ( 3 " " ' : :>/
- >/ $" - + " " ( " " "
$" " 1F) ( " " 3
- / * + C " - 4/ $" ( 1F) " / "
4:
" " H - 6/ " "
" " < ( " " * #$ 4 >4/ 0 !
G
: %4
" " + "" + F / 1F) % ( " > " % ' % $" " 1F) " $" / 0 : %6
) " "
" @"" : :
5+@+5 57'-5 +"+4.5+ -@+$-J+! $-" -,-5 ,5+$,"J 5+ -'+ -@+$-J+!
M ! - ! , - ! ,
5 !" D
" " " "" 3
" 3 " " ; ' ( G " " "
" " " / G 0 !
: %%
4:4
F #$ : %% 3 (
$" " " L $"
" " " ""
" "Æ 1F) " " * : : 6 " * ( "" "
" #) ? "" "
" "Æ "" "" ? " * ( ,?- : 6 A" 1F) " "" " " " % 7 6 ! 1F) " " " ' : : "
Θ=0+
sd1
Burnt gases
Burnt gases
Θ=1−
Θ=0+ sd 0
Θ=1− sd
Fresh gases Fresh gases 0<Θ<1
DNS flame (resolved front)
Modeled flame (infinitely thin front)
!" !" & ) *
.
" * * H
" 2 " H 0 H ( " "
4:6
H >&
" F
" ' ( H ( " ! 4 5
"" H 0 > $" Æ" ( 1F)/ " H " " #$ 4 >
$" " " +
3
0 H 0 > H 0 H A "" " ( " " H F
+ " H 3
H " / ' : :4 " " H ( @"" 1F) L ' H 0 >4 " "
" " D H 0 > " " 3
"
Æ" * ( L " " / 0
: %:
8 9 " " ' : :4
7 , ( ;67
, - '
"
" : 6 1F) "
"" ( " " " "" + L E B" " Z E * " "
4:%
! ? $ /£ 0 1'6E ! /£ 0 1'AE ! ? ! ? +3 =2H= < *
" " ' : :>/ 0 > 8 9 "" F" " " " * ! " < " " ( ( - " - " " ' 0 >:
" " < ," -" ' ( "" (" " " " "" ( " "" * " " " 1F) <" " L E B" " Z B" " Z " E B" < ," " 3 " " " ' : :6 " " " - "
" B" " Z < " " - " / " " - " - " " . " "
" ( ! " B" " Z
4::
' & 2
! 5& $ N 5& 02? 5& 026 5& 0 1>
" >
1F) "
( N" < "
! " B!F) : 4 6 * 4 7 " " "" " / " " " "" L " 1F)
' ( L E ? $" Æ" " " " $" " A
"" " (
4:7
L "" " " "Æ */ ""
? " E * " " "" $"* N"
& K" " ( 1F) ' : :>
H 9 *
H " 9
+ - ! , )
/ :! !" & % 5&
!
& ' (
C ' : :% ' : :: H " " H 0 > H 0 - " " E ! * " 0 , " 0 >& ' : :% " "
L ' : :: "
3 - " " 0 >6 ' : ::
" * " " ' : :7 " E
4:5
+ - ! , )
/ :! !" & % 5&
!
& ' (
' " H " " $" "
" $" B ' $" ' (
" : : " : 7 " - ( - - ) K" < . " " " ( 2 ) B
? " " " " $" - " ;" *
"
5+@+5 57'-5 +"+4.5+ -@+$-J+! -'+ -@+$-J+!
! - ! , - ! ,
$ ! 0 / - ! , 0 0 - ! , 0 1
% ! " : : % " " 0 - *
* " "" " ? "
L $" ' ( #$ : %%
4:&
? ? 5& :! !" & ' (
" $" $" " " / " "" " $" ' ( B" " Z " E L E ( " "" " " + " ) " " " " " " ( * " " , , . " "" + "
' : :6 ; + " " . " " + / " - " " " - " - .
" B" " Z " E " B " L E < " " * "" " "" " " L " " + " " "
4:
. ! $" "" ( "" ! " " " " ? ! * ( " ?
" ? " - " $" E
" ? " " , < L E F
"
" L " $" / " " ! " B" " Z L E > 6> " " "" " " * 3 " Q 0 " "" * " "
"" L " " < ? E < 1" : : :
&
<
E " 1F) "
" ) 1F)
"
" " ( " B
" LD ," @ L L # < < @ L ( " '" "
1F) $" ( 1F) ( $" " " 3 ( $" * * * : J @ $" @ "
> >> " Æ " " Æ " "
F" $" " ( E E E
" ," ," # < < "" 3 " "
47>
" " * <EA )
! Æ" " ) "
* " * " L E - ," ( <
' # ' " : :5 ( 1F) " L @D ? @ " 3 "" 0 > C Z Z E " ," "" B " 4& 6> % $" >6: Æ
" 6>> @ ( + 4: * " " " <" ," " + / ' " ( F $" ' " ( ( " " + " ! " (
" " " L ( " < 1F) 1F) "
," " "
! C" ( ( ( 1F) ' ( DL
" " DL
( " " "
$"
47
!" < #7 & A #2A 4 .
& ' ( ? ? 7<
474
' & ( 2 # 3 0 21E 3 0 6A> G < *
$" $" , ) ) ? ' L@D ( " DL ," DL " "" $" > : %>> ' @ L DL " " 5 %: " ;A " ' : :& 3 1F) *
" " " ( #
L
1F) " ( ( L ? " 1F) " " ) ? (
7 , ( ;67 1F) ( " " " "" " + * "" ' 1F)
476
"" (
" ( 6//% ! " N" ! " ! " 1F) " "
' " + " "" 8 9 ) B" ?( C ? "++ = + ( ( ( "
4!5 ? 5 &
E E !" & ? ? - * $ + ' , $ N 1 ; " "" " * + + D ; 1F) "" * " " !
' : : "
" " !
! " " B" " Z !
" $" "
47%
" " " " ; L ; * " " " " . ; 0 "
T ; 0 > " " T ; 0
" " ! 1F) " ' : 7> " +/
" E ! " < B" " Z " " " " " @ ( *
? ( !"
& ? ? - * ' , $ + $ N
* , ( , 3 * "
"" ( * "" " " " "" 3 " " " Q " " ( " $" " Q $" E < E " E C
47:
: 6 7 #$ : 55/ $Q $ Q $ Q $ * Q J J J 0 Q $ $% $% $%
: %7
$" * ) : 6 7 #$ : %7 "" $" * "" * " " ( Q$" " " " #$ : %7 1" < " $" $" " "" " "" 1F) " $" " ! #$ : %7 " 3 " T " (
" $" #$ 4 &/ 0 3 : %5 3 " " " / 0 3 3 ' 4 4> " +/ + " " + 3 "" ( 1F) " " " " " /
0 3
!
: %&
! 3 " "" " " " 3 " 1F) " /
" "" N" T
" * "" 2 ; E T
" * "" < B" " Z T " *
"" " E ' " 3 " " " 3 ( /
3 >4&
: %
477
G ?
? & & E & & 3E $ ? ? !" $ ' , + O
0 N" ' : 7 " 3 "
4> I ) " " " " * * < 2 ; E B" " Z ! "
" ' : 7 + 2 ; E " " (
" ( "" ? " E
< 1F) " " ( ' " $" $"
" "
" ( $" 3 ,?
- #$ : 5 "
$" * , ,
"
" *
" Q * 6 (
$" * " ( " ? B
$"
" 0 84*'* ' : 74
"" " " 1F) (
" >5 " ,?
- "
475
!" ?
& & % . 45 & ' (
" ( " "
$"
-
;67 ,
1F) " " " -#) < B!F) " ! : : * % 5 ) 1F) ( " "" " ' % & *
H $" : 6% ( " ' : 76 3 " * " "(
" B!F)
" "( )" " * #$ : 6: ( 1F) ' : 7% ,?- " " #$ : 54 ,
47&
0.30
0.20
0.10
0.00
−0.10 0.0
0.2
0.4
0.6
0.8
1.0
+ / 3 =2:H $ '$/ ? K ? % '$ / 'P$ / / / $/ &F +3 =2:H - 3 ) $ ! Æ .
0.50
/ 0.25
0.00 0.0
0.2
0.4
0.6
0.8
1.0
+ +3 =2:= / ) 2Æ .
"" ( " " " ' ( " " " ( $" F ( ( ! "" ( " "
" " ? "" ( < : " ( / " ," *
( Æ" " "" ( ' " " L ( " 1" ( "" " * "" " "
" *
) 7 4 " * " "" ( "
) 7 6 B!F) ( ) 7 % ) 7 : -#) $" ' 1F) " ) 7 7
47
45>
! "#$ * ( : = ( ! ( "" ( ' 7 " -#) " " * @ ; 8) 1 9 ( " " " " / + ; * " " ) ( " + ; ( ' 7 " 1 ' 7 4 #( B!F) " ' 7 4 A " ; "
* 7 8 , , ( < ( "" ( ( * " " Æ" " "
" + " ' ( / " (+ " " " " $" @ ""/ " ( " * "" 1" "" ( / " ( " " ( ! " $" "" ""
" ;" * "" ( " 3 " " ," "" ( : 4 " ( /
" " " (+ " " " ( ' ( " @ " $" ?" " " " " ; 3 " (+ + " " ' 7 6 )"
" " Æ" " > K B !>KB$ % G = != > ;%"$
! 5HH H $ #
- C > G # B % ! 5HH H H- $
45
Computational domain
Turbulent diffusion flame brush
Pilot flames
Air
Air
Main fuel: CH4+air Premixed gases for pilot flame
! % Q ! 5 + < ? ? 2AAA
" F ( + ( " " "
(
*
( 3
' " " " * ( ! * " "" ( " "
+ " / "Æ + " " " Æ 5
454
! ! & $-" 6
6 + $ < ? ? 2AAA
Burnt gases entrainment
Ambient air
Ambient air Mean Flame
Air entrainment
Air entrainment
Fuel
- Q $ ) )
456
" < & E + " " " ? "
" ' (
" *
" "" 7 % " " (+
" " " " " " " " " " "/ " $" " (+ " " + " " $" " 7 " + "
? / " +
,
)
)
@ & - ! 5& - =!
" " - R S < ' ) &
$ ) ) - ) &
5 , 21!
) & !
. ) .
( " +
" (+ '+ ' 7 % " " " (
" " "
" " '+
45%
Diffusion flame
Fuel Oxidizer
! % )
' ( E + " 3 " ( " (+ " ( " ' 7 : " ( E
1 " B" 1 C 2 C Premixing zone Fuel
Rich premixed flame
Diffusion flame
Oxidizer Lean premixed flame
! % ) & ' 7 7 * "" D " "
" " *
) & G . + "" ( "
" F
" " " " 1 C ( " ?"[ + ?" "" " +
45:
"" " " " ?"[ + ?" ; " " " " "" L " ?M " < "" " + ( +$" : 6 %
& - " " ) 81 9 ' 7 4 + " / ( " ; ( " + " ' 7 5 $" Æ " $" " ( " ' " " ; " Fuel
Premixed jet
non premixed flame Oxidizer
pilot flame (premixed)
) - )
" . " (+ "Æ + " "
( ' 7 & " " " " ; / " ; "Æ "
" Æ "
!" " 1
" ; ' " " Æ" " ( "
457
mixing layer Fuel
flame auto-ignition point
Oxidizer
δi
) 7 Æ
+ 3 " " + " " D " " + " " + / (a)
Oxidizer Diffusion flame Ignition point
Fuel
(b)
Oxidizer Fuel Burnt
Diffusion flame Ignition point
) ) " ( " " + " / " " * " "" " " * " " " ( 1 * " " " " " + ' 7 3 8"9 ' 7 " (+ " + ( " (+ B" + " (+ ; 3 " (+ ; " " " " + " ' 7
455
" " " " 3 " ( " " + " (+ (+ " "
"" ' * " ' 7 (+
" " " + D " " "Æ "
Oxidizer Fuel
Diffusion flame Immediate ignition
)
BA 3 )
F
" $""
"" ( " "
" (+ ' 7 >
( ) ' " + " ( "Æ " + +
"
' " + " " " "" ( , < 2" ) " " " ; ) " ( ' 7 ." " + + / ( ( ! + " + " " " ( + " + " + " + * ( " + %
- C > G # B ! 5HH H H- $
45&
(a)
(b)
(c)
" & & ) & ' & ; 3 / " + ; " )"
" " / " " " F " $" " ; " + $" * " " "" " ( " " "
*& , ( 3 ! ( ( " + ' 7 4 * " "" ( " ; ; " + "" 1 " "" " + ' 7 6
air propane propane air
& & Q Q
& . @3 N? ? 6111
45
120
100
Air flow rate (g/s)
Extinction 80
60
Lifted flame
40
Anchored flame
20
Instability Laminar rim stabilized flame
0 0
1
2
3
4
5
Propane flow rate (g/s)
B26 & . @3 N? ? 6111
, 2( ? )
? R S B2: )
Q 7 . @3 N? ? 6111
4&>
' " + " ! " E-3' "+ A; ' 7 %
" ; ( " / " " " ; " " ( "" E-3' ( " / ; "" ! ' 7 : ;
89 ) " ; 3 '
; + " + " ' 7 7 -
" ( + 8 9 "" " < ' 7 : 7 7 + / * 8 9 "" ' 7 %
; 8 9 + " " B " " "" ( " " " ' + " A" " " " ( *
' ( ' 7 5 " * " ? "
#1< *
" 7 % %
" " (+ " ! ; " (+ " ( " " *
" " ? * $"
% $ ! "" ( : 4 " *
" " !" ( % : % ," ( Æ" "" ( " ' ( ( D ( ( " Æ" ( ( * / " "
< 6 , "" ( " * + @ ( " 1F)
4&
4 ( R S B2: ) Q . @3 N? ? 6111
4 ( ? R S B2: ) ) & *& . @3 N? ? 6111
4&4
4 $-" + ! ' 4 BHH . @3 N? ? 6111
* +>2 ;67 ) ( " : 4 6 "" " $" " " " " " " " " <" E B ; " " @"" "" ( "
5 % & Flame
Oxidizer
r
Fuel
diagnostic axis
! " ) 6 % " ( *
" "
" D
L @ ( * " "" ! ( @ ( " <" E
4&6
+ 1F) ' 7 & <" E " /
* " "
Æ / Æ 0
0
> **
"
4 .
7
.
> 0 > 0 > " " " Æ !
* - <" E C E / 0 7 4 . + + 1 M " #$ 6 & ! 8 9 * + 0 Æ
(
( + * ' 7 & "
! * " 7 4/ ! / Æ ! / +
@ $
5 Æ 0 2 6 !! 0 6 7 8 8Æ
@ Æ %
¼
¼ % Æ
' ) !" # ? % +3 B6
' @ ( * Æ Æ ( : 4 6 / EN
4&%
! 1 M " ( / 0 0 Æ
Æ
7 6
J Æ Æ L 1 M " ! ( B " * / , 0
0
Æ
Æ
7 %
" 0 Æ '
Æ ( B " "
!" & %
- B61 B62 5 $ '
<" E " " " ( " " * !" ! ' 7 C" " + ' 7 4> * + ( " " " ' 7 4 1 M " ( & '" " 1 M " ) * 1F) " & /
4&:
u’ δi/τ 10000
CASE D
Curvature effects + Unsteady effects
1000
CASE C Quenching Da=
100
Da ext No quenching
Da= 10
Da LFA
3
4
5 6 7 89
0.1 LFA applies
No unsteady effects CASE A
LFA
CASE B Re vort ex =Re crit. 2
Unsteady effects
2
3
4
5 6 7 8
1 Quenching with Unsteady effects
Curvature effects with Unsteady effects
Unsteady effects without quenching
r δi
5 % # $ B6 '
' "Æ 1 M " )
" -'!
3 " "Æ " , ( " " ' 7 4! ) 0 4& 3 , " " " " / ( " " ' 7 4, ' < ) ! 1 M " ( ( "Æ " 89 -'! 3 " " ' 7 4< "
"
"
4&7
. " ( $" " 1 ," ' 7 41 " $" " 1 M " ( / $" 1 M " " 1F)/ 0 >%& < !
< ,
< <
< 1
4 3 6 ? B2> ' - !
B61 ' - 5- , .? %? % ? % ' 3 ! '
4&5
)"
* " ( " * " " " @ (
" -'!
"" ( * " " 3 " ( " " 6 % 6 1 A" * " ( + " "" ( " ( " ) : 4 6 ' : 4% ! " Æ" " * !
* ""
$" 3
* 1 M " ) " ( ""
" " .
*
7
- "" ( " "" + " % 4 ' "
" ( ' 7 44 " / "
*
+ (" ( > > 3 " (+ ( * " " 3 ("
* V> 0 +
+ 3 ("
V> "
> 0 > "
( / ' ( * 0 > > 0 > * ( ' 6 & 6 % %
" !
< 6 6 : 4 " + 1 M " + #$ 6 &5/ + 0
+
.
7 :
4&&
Fuel z=1
z = zst
lt
ld Oxidizer z=0
ηk
lr
' . ("
" > 0 > . " (" #$ 6 44 " "
/
"
.
7 7
" " " " ( "" ( "
("
" > 0 > . / " 7 5 .
. * /
. 0 4 > >
7 &
# > # " > 0 > . " $" "
" !
" "" " " " " " #$ 6 77 /
#
$
. 0 . ( 4 4>
0 . < > 0 .
< > < >
7
0& & E
>
+ " +
! " + ,! Æ
/
¼¼ > . 0 . > &> > 0 . <<>> &> > 0 . >
4&
7 >
. . > > ¼¼
" ¼¼ " &> > > "" F . " "
. " ' ( * " . J " . " (+ > 0 > " " > 0 . > 3 < > 0 > 0 < > 0 0 > ¼¼
> > > "
. " " + / + 1 M " / + 0
.
+
.
7
7 4
! 8 9 B " "
/ B 0 ' " ' (+ D/ < J - A
7 6
! - "
" 1 M " + /
+
7 %
' 0 J - J ! ( 1 M " + + " + 7 6 ," $" K !0,4$ ! ! ! Æ ¼¼ ¼¼ ! !% %
%
$$ % 0'(5
!
¼¼ %
¼¼ & %
!% + ,$
< !% + 4$ G '
% > # ! 0(,$
4>
*
! % $
7 " $
#
0
%" 27 0 % 0 2 " $ 7
R S
'
" $
0 %7
%" # %
" $
!*T
* < ; "" ( "
"" ," "" ( ! " $"
" "" B
* * "" * 3 "" " " "" !
" " "" ( " "" " % 4 ' % * "
.
" + /
+ 0
.
7 :
F * " " B " "" / 0 0 0 +
7 7
( +
* (" / *
>
7 5
"" " ' " 1 M " * 8 9 ' "
3 ! $ 3
! " # ! $! % & & Æ ' # "
# " " " !
! ( ! # ) #!* " ! + # ! " # ! ! !, $! ! ! " ", " " ! ! " & !
) - * #! # # #! & ! . )/% 0 * ! ! " 1 " $! ) ! ! "* + -
-
)2 3*
4 ! " #,# ) * # Æ ! ! !& )5* . # 4 6 ) 2 * ! " / # ! ! 1 ! " ' " # ) # 2 *
Da
D fl = Da
Laminar
Flamelet
U
ea nst
dy
e
ct ffe
s
A LF a
D fl = Da
ext a
Extinction
1
Ret
! " " # ! " ! # $! ! ! ! " " ) ! ' 0 * (
# & " ! # ! , " ! 7 !
" , # " # !& "
! & ! ! " " ! 8#& #! $! " & + 8#& #! ! ! #! " !& ! " & ) 4! 0* 9# & ) * !& " # ( : " " # & "7 # # & ! & " ! );#! ; 6 5 "" < 6 *
$! # ! 1.9 # " ! " " 4! 0 ) 0 * 4 " ! " ! ! & " )/% 2* 4 &# ! &
% 2 0 = # : ! ! 2 0 + ! % : ! ! 2 0 2 0 0 2 0 2 " " : ! " "
4 " & ! # +
> , $! ! =! " ) * > , ! % ) - * > , = ? & % ) - * >0 , 5 " %
! "
> , ' ! " !" ! ) * ) * ' @ ! # , ! " ) ! * ) * ' ) * ) * !#! ! )/% *+ -
A
A
-
) * A
) * A
-
) * A
) *
)2 *
! > >0 : ) , ! ! * & " " ) 2 * $! : % ) /% 0 0 *+
* )
A
A
A
* A )
) * -
A
) * -
) * - B -
)2 B*
)2 *
A C
-
)2 *
)2 *
# ) & " & "* ! " ' " ' ! !#! /% )2 * $! " % !
! = ' ! $! % + " !
C 1 ) * # "
) 0 * $" ) * # # )/% 0 3* )> * 9 )5 ; 5* !& & ,# " " ) 3* ! = # ! C ! Æ " "
( 0 ! ! " "+
0
. # " & # ! : ) * . " !
C ! $! " ! ! # &
" ! ! "
( ! ! " & + . # " & # ! &# : ) * ! #! ) * . " !
C ! $! ) * " $! " " ! &# # $ &# & ! & Æ + ! #! "
)C * # & "+
) *
-
D
) *
)2 0*
C -
C ) *
)2 *
! ) * ! &# % # & & ! - # & % ! ! ) * ! ,"" )* /% )2 0* )2 * ## ! & & " "
+ $! " /% )2 0* .
! & % ) * ) * ) * " !#! " % )4=4 # 2 0 * )/% 2 * " %
# % C + 1.9 & & " ) * & " ) * ! "" ) * $! ! " 2 0 2 0
( ! " % )/% 2 * & & . # C !& " " " $! " "
/% )2 * " )C * $! ! # : ! 2 0 0 : ! 2 0 2 $! & & " ! # ! ! , ! " " % # , % D " & & E ! ! ! !
! " & ! " ! 7 ! )C * " 9&! ! " ! & ! ! ! , % & % ( ! & & " !
) * ) * # /% )2 0* (
! ! C : )C * ) * ! /% )2 * /% )2 * ( ! " ! !
! & & " ! . # # # " # ! ! # " "! !
! ! & & " ! )F& ! BBB & * $" 2 0 ' ! ! !
& & £ '
! "#$
! "#%
! "##
! "#"
( )*! + # $ $ % # & $ '
2
. ! 4! ) * : & " ! ! 5 " " " ) ! * ! !#! ) * ) * # &
/% ) * ) * & " : ! ! % " ) G* ! ) # 2* (
: ! & " &# ) * ) * /% )2 0* +
- ) * ) *
D
- ) * ) *
)2 2*
= ! "
) *) *
-
D
) *) *
)2 G*
$! ! ! ! "" ) * ! $! ! " : ! )E?; 6 4! '* 5 " " ) G* ! "" " ! " % # # " ! ! ! # $! " ) G* ! ! & # + H ) A * ) * ) * ) * )2 3* ) * H )* H )* ! ! ' ) * ! H !& " : " /% ) * ) 2* $! & + -
) *
D
-
)2 *
$ ! , # 4! , % & 9&! ! " " " " ! # - B - ! # B )6 * ( " ! ' ! # # ) *
MEAN VARIABLES USED IN RANS CODE
YO0
G
T(z)
YF0
Y F (z)
TF0
Dynamic pressure
~U ~V ~ W ~z
TO0 Y O (z)
ρ
~ Τ
0
1
zst
z
LOCAL FLAME STRUCTURE
~
z”2 p(z)
TURBULENCE VARIABLES k
ε
~
z
PRESUMED PDF OF z: function of~z and z”2
, & ! ! ! " ! " " " . " # " ! " ! : & " ! # 2 0 ! ! " " 1 " E ! # 2 0 ! 1.9 & # ! &,&# " % $! % ) 6 & =! " * ! ! % : ! &# & !
% % ! & $! ! % # ! ! : " ! ! $! ! & $! % " & " ! 1.9 ) " %
& ! * $! % # " & ) ! % * " & ) ! % * ! ! " ) " % 0 * ! " # " $! # ! "
! '
( ) *+," % '
3
: ( ! ! # ! ! E " & ! ! & " % ! "" ) * )6 '* $! " % /% ) B2* !
. ! & % , )/% 2 * ( 1.9 # # & " % $! "
% & ! " % I " ) BB* ! ) & *+
A
-
A
"
A
)2 B*
!+ -
)2 *
! ! ! : $! ! & ! !# ) # * ( ! /% )2 B* +
-
-
)2 *
( ! !& " ! ! # # ! ! ! ! ; : " " ! : ) /% * ! $! " +
-
-
A0
A
)2 *
% )-" *." '
! ! 1> & ! /% )2 * + - A
)2 0*
! ! ! : ! ! ! " ) :* 9# #
# # # 1.9 /% )2 * + -
-
)2 *
$! : ! ' $" 2
*
-
$ / + 0' 1$$ ¼¼ ¼¼ 0' "12 , $ -
)*! 3
$ .
4 ! !& " ! & " % )2 B*+
$! : 1> /% )2 B* " " # # + -
!½
)2 G*
! ! " & & " ! " ) 0 * !½ " ! " # ! = /% )2 B* # # " # Æ # 1 " $! " #
/% )2 G* # ! " & " ! &
) */0" 1 2 + */*" '
BB
$! " ! # # +
-
)2 3*
!¾
! !¾ " ! " . & /% )2 * ! ! ! " ! & ( ! , ! ! ! ! # ! ! & : $! # ! ! " # - + - "
-"
)2 *
! " $! ! " +
-
)2 0B*
"
$! % 1.9 !+
A
-
!½
A
!¾
"
)2 0*
$! % " & ! /% )2 B* )2 * )2 * . # : ! ! ( ! ! # 2 0 ! " ! ! )! " ! * . # ! : " ! ) # 2 * ! " $! , # # & J K )L ' * $! + : , # " ! ! ); #*
$! & ! ( !
C & & " ! & & " )
MEAN VARIABLES USED IN RANS CODE
B
YF0
T(z)
YO0
Dynamic pressure TO0
U
Y O (z)
Τ
V
0
Yk
W
Y F (z)
TF0 1
zst
z
LOCAL FLAME STRUCTURE
z z”2 p(z) TURBULENCE k
ε
z PRESUMED PDF OF z
, 4
+ 5 +6 * ! >& ! ! "+ ! & # ! ) " * ! ! !& " ) ! * " ! " & ! ) 2 0 * $ ! !& " "
# : ! $! : ! /,;,@ ) * ! ' ! !
$! / 4 & " =# =7# ! /,;,@ )/;@ * " $! " # C ) * ' ) * ) * " # # #! + C -
) A *
) A *
)2 0*
! ( /% )2 0* ! " ! :
B
$! " ! /;@ ) * ! =#
+ /4 # " ! ! " " 7 " " /4 ! " ! /4
" # ! ' " !
= " /% ) 2* # + )2 0* C - # &# #+
#C -
) *
)2 00*
! ) * ! 7 M # ! ", " ! !& # & & ! ! : ! , ! ! , & - ! ( ! # $" +
-
$ ) *
-
Æ ) *
)2 0 *
! $ Æ & ! >& ! , /% )2 00* !
+ #C -
) *
) * -
) *
) *
)2 02*
! ) * - ! - ) * ! "" !& - . " ! " & ) * $! ) * . : " ! # /
)2 02* ! " & ! )2 B* )2 *
! . # : ! % , # ! " " . : ! ! " & " # % ! ! " ) # B* $! , # 2 2 ! ! ! # ' #
Ignition point Fuel
B
Stoichiometric line B
A
Ignited zone
C
Oxidizer Mixing zone
Quenched zone
7 + 4 8
# & " % ! ' ) " ! #! " * ( # 2 2 # ! # & Æ ! : + ! # ) . # 2 2* # )6 ;* % ! )6 4*D . ; 4 !& ! " & . % ! ! ! " $ ) * ! " "
" & & " ) * " ! & # $! ! ! " !#! )4=4* "" " %
$! " # ! " " ! ! + ! , # " ! ! " $! % ' " ! " # ! " ! # 2 )6 * # 2 G ! ! ! JK " & " # $! : ! Æ E"& ! ! ! ! " ! " $! ! " ! ! : ) ) * ) ** ! " & : ! )6 ! 6 ; ! !* ; ! : + & J#K " D # ! $ ! ! ! ) % &, ! !* ! ! " ! " @ # !
B0
Fuel
YF0 TF0
Instantaneous stoichiometric isocontour
Instantaneous flamelet
Stagnation point laminar flame
FUEL
YO0 Oxidizer
OXIDIZER
TO0 YF0
YO0
TF0
TO0
+ ! + & !#! ! ! % ! #
" " ' ( !& : ! ! " ! " @ ! ! # & " ) * ) * /% ) * . ) * ) * " # ! " J " K $! ! " +
) * ) *
)2 0G*
) * ) *
)2 03*
! ! # & "+ -
! # + ) * - ) * )* )2 0* 6"" ! $! ) * # # ,
' % ' $
1
3 & ( # 4 & " '
B
" : ! ) 2 0 * . " % . , " )6 ! 6 * ! # # ! +
)* - Æ ) *
)2 B*
" ! ! # " )/"#
) '* ) * % % &
! ! ' ! & + -
) * -
% ! & )* !+
)% * - % " + % - #
'A
6 *+ )2 *
%
)2 *
)2 *
- ( )/"#
Probability distribution function
6 *
0.0
0.5
1.0
1.5
Scalar dissipation/mean scalar dissipation
2.0
2.5
( χst / χst )
¼¼ $ / 6 2$%9 22"9 ¼¼ :9 $ :;9 0' "%: . ¼¼ $ 2
6 5
% ! " 1 " " ! * " 5 ; % ! ! "" )* : # 2 3 ! # " & %+ % - # & # & ) - (G* ! - B(B2* % - B( & ) % - B( )B(
B2
! "#$" "%! ! ! $&" ! + ! !" '( ! ( 0 9 0 ( ½ (
(
)*!
, + Y O (z, χ st )
MEAN VARIABLES USED IN RANS CODE
T(z, χ st )
YO0
Dynamic pressure
Y F (z, χ st )
TO0
~
U
YF0
~
TF0
V
~
W
~ Τ
ρ
~z
0
1
zst
z
LOCAL FLAME STRUCTURE: function of scalar dissipation
~ z”2 p(z) TURBULENCE VARIABLES k z
ε
~
PRESUMED PDF OF z: ~ function of z and z”2
k,
ε
~
~χ as a function of ~ χ = c~ z”2 ε / k
Model for
and z”2:
PRESUMED PDF OF χst: function of
~st χ
Model for mean stoichiometric scalar dissipation rate
~ χ st as a function of ~ χ and p(z) (use shape function f(z) for χ=χ st f(z) )
) < 8 5+ 4 0' "#; '
BG
( ! # " 2 # ! ) 0 * " + ) ) * - ) * - )2 0* ) ) * !
) ) * -
) *
)2
*
$! " )/% 2 *+ -"
)2 2*
$! # ' , " & & " '
$" 2 2 # 2 $! ! : ! $! 1.9 & & " ) # 2 * = ! " ! ! ) " * & " ) * : " ! 1.9 4 # : ! ) 2 0 * % + : ! !#! ! ! $! !& " & " , & % ) " " * " 2 0
( ! 4 = 4 )4=4* ! & " 8 ; # : " " $! " & & " % # ! & # & & ! - $! ! # & "+
) *
)2 G*
$! ! % )8 ; #*+
; % ! . %
! & $! % & & ! , # % Æ # " # & " ! Æ
B3
. ! "" ) * # $! ! & " & , ) - ,* 9&! " % !& " % # " # & ! " # & ! #!
$! ! Æ & # " % "" ) * /% )2 G* )2 G* ) * /% )2 0G* 9&! ! ! #
" % ! ) * & ) * ) * . # " %
! ) 2 0 2*
. 2 0 0 # ! & & " & ! " " C ( ! % & " & ! &# C $! &
" # !
( " # " # ! " & & " ) * !
2 0 C ) * " ! " $! C ! # # + C -
C ) *) *
)2 3*
$! 7 # , + ) * - ) *) *
)2 *
, ) * #, " # ) 2 0 * $! ' # 2 B $" 2 G $! 1.9 & & $! ! "" " ! ! " )/% 2 3*
! $& ! "%! ! ! $&" ! ! !" '( ! ( 5 0 9 0 ( ( & +
B
"#$"
&
&
&
, 5+ MEAN VARIABLES USED IN RANS CODE
ω k ( z ,χ st)
ρ U V 0
W Yk
ωk
T
ωT
1
zst
z
LOCAL FLAME STRUCTURE: function of stoichiometric scalar dissipation
z z”2 p(z) TURBULENCE VARIABLES k
z PRESUMED PDF OF χst:
ε PRESUMED PDF OF z: function of z and z”2
χ as a function of and z”2: χ = c z”2 ε / k Model for k,
ε
function of
χ st
Model for mean stoichiometric scalar dissipation χ st as a function of χ and p(z) (use shape function f(z) for
χ=χ st f(z) )
* < 8 5+
B
" #! ! E !
# # ! ) ! * NC ) * ! " $! C ! ! ! O " ! NC ) *+ C )* O C - N )2 2B* $! O : )6 F& ! F 8! F *+ )2 2* O - - ) * ! ) - * ! &# ! ! - C ) * ! # &# # ! ! N F& ! F !& ! ! + C -
C ) *) * -
N)*) * O
)2 2*
! ! ! ! " # !+ NC )* NC ) * )2 2* ! ! % & , - )* ! C ) "" ! N * ! " . ! % ! &# " % & " ! 1.9 . ! & " % ! O !& " : " =" ; ! !& & O,% & # $! " % # " )* ' )E*+ O
A
O
-
O
%
A *+O
,
A
,
O
)2 20*
5 (
# ( 6' # ' - /7/ 8 5 " % :9
&
# ) /*."
! + ! # ! " * , , & ! ' , . # /% ) 2* , # & " , - NC , - , ! ! ! Æ $! +O ! /% ) 3* & , ' # " " : $! ) /% )2 20** " ! # # ! ! ! ), O , O* & & " ) O O* $! ! J
! K )=" ;* 1 !& & " ! , "" & # ! # % O % & & # % ! ! )6 F& ! F 8! F F& ! F * $! ' $" 2 3 # 2 ; % ! & # % " % " & $! !& & & #+ , # ! ! " " " " )F = 4 F > $&* # , NC )* % ! # " >& &
% " & # ! !
$! ! & " " + ! , ( ! # % $! + C -
½
¾
(((
C ) ( ( ( * ) ( ( ( * ( ( (
)2 2 * ! ) ( ( ( * ! 7 "" 1 C & " ).! * ! $" 0 $! & # ! ! " " ! ! ! ) C * " ! ! 7 "" ) ( ( ( * ! ! # ! ! $ " +
% & ; ! ' ( 4 ' ' ' 3 & '
! '& # $& ! "%! ! ! $&" ! =& =& ! !" '( ! + 0 < ( & 4 ( & 4 ) & &
"#$" =& 9 =& >
=& & =& > & =& >
, + + MEAN VARIABLES USED IN RANS CODE
ρ
Ω k ( χ st )
~
Ω T (χ st)
U
~
LOCAL FLAME STRUCTURE: function of scalar dissipation
V
~
W
~ ~ ω T = Ω T (χ st) Σ
~
ω k = Ω k ( χ st ) Σ
Yk
~ T
Model for stoichiometric scalar dissipation ~ χst as a function of k and ε
~z TURBULENCE VARIABLES k
FLAME SURFACE DENSITY
Σ
ε
+ < 8 + +
. # & ! ! "" # , #, " & " !
& @ ! ! & Æ ! ! 7 # ! & " ( ! # #! !
! ( ! " % & ! 7 $! % ! " )/% B2* . " !
" % E ! ! ! ! # ) #* F !& " ! ) 6 '* 6 " Æ " #& " # !
" , "
9 " #& " " # " ! # ! " . # # "
" " # !#! "" ! . # ! ! " & # , ! " # )J K*
!
" #
$! 5 / = )5/=* ! & " 8 )8 8 8 8 8 ==! * " , ! " # ( 5/ 5/= & # # ! "# & "# ! " # ' , " $ "% # &&+
! " #
, : $! , "
$ ' 1
" 2 " "
" " ***"
' " " 6' & 5 $
0
(b)
(a)
l x
x
x0
?. @ / 0 3 A 5 B 8 ) # 2 * # # & # ' # # 2 " )J K* $! " & ! # " ' $! ! " # !
! & & ' ) P ! ! 8#& #! P ! 5/ : '* & % - : # # & "
" " " , ", % +
-
A C
)2 2G*
4 ! " /% )2 2G* 5/= & : ! " % ! % 9&! " 7 ! !& " " 9 ! , % ! )/% 2 2G* # !& 5/= " # )==! * " )==! = 4! = =! 4! )= 8 = ! = * " " : Æ & & M" )6 1" * ! ! 5/=
! $ 6"" 1.9 5/ "!
: ) 0 G *+
)# * )# *
-
C )# *
-
)# * )# * ) )# # * #
)2 23*
C )# * ) )# # * #
)2 2*
! ) ! 5/ : . " % " ! ! $! /% )2 2* " +
C
-
C ) * ) )# # * #
-
C ) * Æ ) )# * * ) )# # * #
)2 GB*
! Æ ! , $! + C )# * -
C ) *
Æ ) )# * * ) )# # * #
"# ) # *
C ) * ) # *
! ! "# "" ) # * ! " )Q* $! "" " ! " " & # " % ! ," % 1.9 4 1 ! , ! # , ) 2 0 * " ! : & + H)* A * ) * - ) * )2 G* H)**H) * ! * -
) *
- ) *
) *
)2 G*
. )" * " % " & - ) * " # # & % # +
- ) * -
) *
)2 G*
! . : # ! ! 5/ : " ( " )4 1 * " )4 4 ;! * & !#! # # # ! = & )1& F& ! 1& *
2
! % $! "# , "" " : ! ! ) * "! !
)4 1 ; 8 * $! + -
) * ) *
)2 G0*
( # , & " ! )4! 0 /% 22*+ - ) ) * - ) * )2 G * ! ! & ! " ) * ! " + -
) * ) *
)2 G2*
. # ! ! ! # & "+
)# *
) * ) # * ) # *
)2 GG*
¼ ¼
) *
)2 G3*
( # ! /% )2 GG* +
)# *
) * ) # *
)2 G*
! ) * # " % ) 2* $! ) " & " # *
!#!+ )# * -
) ) * ) # *
G
)2 3B*
. , ! ) # * # ! : . ! % ! ) Q 7 R! ; 8 6 = 4 ;! * . % " !! # & ) ; 8 *+
-
/
A
!"
) *
)2 3*
! ! : & / ! 6 " ! "# " & & " ! "# " !" " !
"
M& !& " " " " # ) 2 * ( ! # ! & # ) 2 2 * 1 #
2 2 $! ! ! #" " ) 2 2 *
& '
. & , " # 9 # & " ; $! #, ! ! ! ! Q1( ! ) ! * ! " # & " , "! )* ) * . )9* " ) * # !# " : $! ! " " : # 2 9 ' # JK ) # 2 0*+ ! : " - : : ! ! ) * )* ! " ! ! ) /% 3* $!
<=% '
1>>&> >
3
C + . %22 D E F 0 ! G (
Flame front
z = zst
Fuel n z=z s t
T
. ω
Oxidizer
cut along normal to the flame front n Statistics over flame cuts: - Tst vs Da . - ∫ ω dn vs Da - Da histogram
. - Integrated reaction rate ∫ ω dn - Temperature at the stoichiometric level Tst - Local Damkohler number Da
*! G ( +
9 ) : 9 6 9 ' .
Extinction in flame / vortex interaction
Extinction in steady stagnation point flames
Limit of LFA domain
Steady laminar flamelet assumption (LFA) holds D a ext
DaLFA
DaSE
Da
Increasing stretch and scalar dissipation rate
5 *!
χf [s ] −1
50
10
5
2
1
1.0
200
0.8
150 2
∫ωhrdn [W/cm ]
(a)
T /Tfast
0.6
Da
Da
LFA
ext
Da
100
initial
0.4 50
0.2 0.0
1.00
0 100.00
10.00 Da/DaSE
C 7 +
¼ :$ 9 :H 5 4 I
*! . *! / . /
9 6 + . 8 6 0 ! EG 9:JJJ9 F (
Æ
B
! # C 0 # ! ! ! ! " "!& ) * C 0) * 9 ! " ! ! # % # )! , J " K* $! " # ! ! ! 9 $! & ! ! " !& # ; ! ! " " 4 6 ) 2 # 2 *+ !" ! ! " : ! ! ! ! ! " ! ) 2 * . # 4 6 ) 2 * ! ! " + - !" - B(0!" 1 # 2 2 " & ) - ( 1 " 1 " - 3* # 2 G " ! #! " & ) - 2(B 1 " 1 " - * χf [s ] −1
50
10
5
2
1
1.0
200
0.8
150 2
∫ωhrdn [W/cm ]
(c) T /Tfast
0.6
100 0.4 50
0.2 0.0
1.00
10.00
0 100.00
Da/DaSE
C 7 + ¼ "2 9 J$ / "1" 0 ! G (
! : ) # 2 2* # ! " & ! # ! ! ! ! " # ! ! !
- ! & + "! # !
! ! # ! " . ! " & ) # 2 G* ! " ! ! & ! ! ! ! " " ! ! & $! ! # & ! # : " ! !& ! " ! ! & !" ! " $! " % ! ! )' ! * $! ! ) # 2 G* & !#! ! " ! % ! " >& & " - B(0!" ! ! ! & : # ! ! " ! !" =& # 2 G ! " ! ! ! ) # 2 2* & !#! ! " : $! " # ! '
' = !& 9 & # # ! " & " ! ) :# # 2 3* $! # ! # " # " ( "! 7 ! " $! "7 & ! # ! &
Fuel
Air
z=1
z=0
T = 300 K
T = 1000 K
Non-reflecting
Non-reflecting
Periodic
Periodic
* 3 5 6 )
5 7
. # # &# ! ! )C * , # ! # & & ! . !
# 2 )* # JK & ! # $ - B( )! = 1 & * # ! & !
C + C - 2
)2 3*
! ! ! & - B(B
; # ) #* C ) * ) * ' , ! ! # $ - B(
) / 4
&
4
2:: 2:# 2:$ 6 4 2%$B 4 2"; 4 22;H9 6 ) ? @ 9 2:$ 6 22%% 0 ! 3 (
Æ
$! # & ! & ! J &K # $ . # 2 ) #!* # & ! $ ' # " ! J &K ) - # $ # * !& # ! $! !& " " = & # " : " 4=4 )4 = 4 2 0 * # 2 0B :#
* . . +6 "1H 6
A
# 2 3 ! : : ! " ! " < ! : ) % " * ! ! ! # & 0 $! ! " E ! ! ! ! : ! !
% ' ! & 7 ! # ! & ! : ! $! ! " ! " & $! :# ! ! # ( ! ! : ! # ! ! ! ' & E ! ! ! ! # ! : ! ! $! = " ! !& "
& " & 8! # # :# $ ! ' 7 ! "
# 2 0 . ! # 2 0 )* ! ! # $ ! & ! & ! ! & ! " ! ! , $! : # : " ! : & ! ) # 2 0 #!* 9 ! ! # ! : && ! : ! ) # 2*
0
Oxidizer (z=0, hot) Computational domain
Fuel (z=1, cold)
+ *! 6 8 A
*! 6 8 .
6
A
& ' F 8! F !& & # ! " & # , # . ,: !# " : 7 ! " # & ! # 2 0 $! : " ! ! , - " " = ) &# # * # # & , ! & " 1 " # 2 00 1 ' $" 2 . ! ! " 1 " ! #
; ! : # " ! )$" 2 *+ ! & " ! # ! " "
K L M A M
2.1
8.0
1.9 6.0
1.7 1.5
4.0
1.3 2.0
1.1 0.9 1.5
3.5
5.5
7.5
9.5
11.5
X
0.0 −0.6
−0.4
−0.2
0.0 y
0.2
0.4
K + 6 4 9 & 9 8 + 6 9 + :: 4 :2% 9 $2: 1:2 M A M
C " ! N ! ! #
! : " 9 # $" 2 - B ! " ! $! " " GB S ! ! ! ! ! 9 ! ! " "! ! ! ! " & ! # 2 00" $! # # " ! & & " $! " ! ! ! ! ! )/% 2 2B* # 2 0 & :
2
&
>
2 :2% :2 :: :2 :2H :2 :$
$2: :# :1 :;
1:2 $: :; $%
) K + 6 9 8 + 2 65 :: 6 M A M
! C ! O ! NC - C O $! % " ! # ! ! ) ! " ' &# #* ! " # ! & " ! !# " $! : # & ! ! # F
8! F 8! F F 8! F !& ! & # ! " % ! O " ! $! " ! ! " ! ! # "
.6 4 & 9 + > M A M =& & >
$ " & ! ! & ! & ! ! M ! ! & ! & Æ ! " ! " !" $!
" " " ! # # M $! !& & # ( " ! # :
Æ ! # " = M !& " " + ! ! ! " & !#! & " ! ( " & " # ! "
BB BB 8 ! " 0BB 2BB 8 " # $! " # & & , ! ! ! ! # & # # # ! " Æ & " # ! & ! ' ! + ! " % ! ! !#! ! ! ! J K ! # ! # ! =& ! # " $! ! + ! % ! " " ! ! " ! . ! ! # , # & ! #! ! $! ! ! ! ' Æ )5 /' *
! " ! ! ! # ! "
G
3
WALLS
Wall quenches flame
Wall modifies turbulence length scales and creates turbulence
Flame heats wall Turbulence changes friction and heat transfer to wall
Flame modifies turbulence FLAME
TURBULENCE Turbulence wrinkles the flame and strains flamelets
+ 6 6
9 + ! ! " ! " ! " ! ! ! ! " . ! & M
" ! ! # ! ! # /& !#! M ! ! " 4 $! !& " 4 # " # G ( ! # # " " "
) 2* ! , ! " ! + $! : ! % ! ! ! ! $! ! ! ! ! ! " ) * + # ) /% ) G** " "
" . ! !
" !" ! ! % ! $!
" ! # M ! ! ! ! ! & . " " ! # ! O ; % ! # & # ! ! = ! # ! & !#! ! & ! " # #
WALLS (1) Wall: - quenches flamelets - decreases flame surface - creates unburnt hydrocarbons
(3) Turbulence model must be modified near walls (k and ε )
(2) Flame touches wall: - large instantaneous heat flux Φ m
(4) Turbulence controls: - Φ : mean heat flux to wall - τ w : mean wall friction
(5) Flame changes turbulence: variable density effects + increased viscosity FLAME
TURBULENCE (6) Turbulence controls: - the flame surface density Σ - the flamelet speed wL
3 6
$! ! : " , " , " $! ! & ! " ,,!, ) # ! ! & 8 4* 1 " & " 4" , # & # " " && # $! "& " ! " #! + ! " !
! ! ! ! " ! /;@ ! )/% ) 02**+ C - "%&
I* I)
)G *
9 , ! # ' " " " ! ! C # : ( # /;@ ) * ! ! # ! ) : * ! ! # ! 0 = ! ! T ! ' 5# ! ! "! % ! # ! " 6 # ! !#! !
# / # # M ! + ! ! ! !
B
! ,,!, )8 4* # # ! ! E ! " # ! =& ,,!, # & " : ! # # "
$! " ! ! "
& 2 $! " ! + " # )! O * )! # *
! "#$ $ ( ) $! : M % ! # )L > # ; ;! < ! ; 8 ! 5 4 # <" * $! " ! ' " + ! 3 " ! ! T !#! ! $! 3 ' " ! ! ! Æ - - ) " * ) * : 6 "+ / -
3
)G *
Æ
Premixed flame front Wall
y Fresh reactants
Burnt gases
6 + 6
$! ! T : "+ T - -
3
'
)G *
! - ! # ! & ! 4 # % ) # G * ; & ! 3 ! ! ! # !
T # & ! ! ! $! ! T " ! J K )! ! - " ) * * + ) -
T
)G 0*
! # ! !U# ! ! ! ! ): " - " ) * ! ! ! # ! " * 9 !
$" G 4! + ! " JK ! ! # " J K & % ! #
*
C6
! Æ "
D
N # N $
+ * +C6
$! M 3 ! ! T ! # ! 4 ! # G 0 ! , # ! ! ) - * ! # ! :
! #! ! # ) - * $! # ! )!#! ! * # ! + ! " ! . M
! % ! #+ 3 ! % ! ) - # G 0* Q ! ! T ! . % ! # ! " # " ! # !
$! % ! # 3 " ! % ! # 6 " / + / - 3 Æ )> # F 5 * . ! % ! # !
' ! ) ! 6 " / " + # ! ! ! % ! # T ! ! # ! 3 + T -
( 3
)G *
! ( ! 9 ! /% )G * ! ! ! " # 1 & # M " ! ! ! " ! ! ! !
WALL
T=T1=TW
t=t1 sc=sLo
t=t3
y(t2)
t=t2 sc<sLo
WALL
WALL
WALL
T=T2 y(t1)
yQ
t=t4
/ + 6 6
. . ' 6
O
/% )G * " ! ! ) % ! #+ ) -
(
/
)G 2*
# ! : Æ - - ) " * # ! " - A M "& & :# # G 0 , " " ! ) # G *+ >U % ! # )>EV*+ ! ! )( - *
# !U % ! # ) # G 0 G * $! ! " ! )< ! ; * )<" 6 6 ; * )> # L F
* 1 ## ! % ! # 6 " / ! ! > & ) ! B(0 ! ! ! ! & " /% )G 2* ! / + # # ! ! ! ! ! % " U! !
4! ) % & * # % ! # )L
# 8 ; ;! ; ;! * >& ! ! ) )> # * ## ! ! " ! ! " ! " $! " " <" " # ! ! U % ! # )
y (wall distance) Cold premixed gas
Flame front
Burnt gas abscissa (a): Head On Quenching (HOQ)
yQ Cold premixed gas
Flame front
Burnt gas (b): Side Wall Quenching (SWQ)
Cold premixed gas
2R
Flame front
Burnt gas
(c): Tube Quenching
. +C6
+6 ! " & 8W W = =!& ' = & " 5 4 # V ! # 6 " / ! ! G ## # & ) " B(2 )/% )G 2** . ! U " " % ! # )< * # & ! # / $" % ! #+ % ! # " Æ )5 F /" L ! * ) # G * $! !,
! " " " & & ! " ! # + ! " " ! ! ! % ! # !
# !#! ! . : ! " #! " # ! # ! ) # G 2* 6 " ! ). > * " ! " )* !
B
(
& '*
. : # G G # ! >EV :# )6 * $!
0
Grid with holes such that Pe = r/d < 50
Flame front
Reactants
3 + ' 6
! + #, & " & $! , ' ! ! ! !D ! " $! ! ! ) # G * . & ' ! ! % ! ! # # G G & ! 6 " / - 3Æ )! ' ! * ! " ) * ) ! ! ' ! # ! ! & ! * !
' ! ) - T ) " ) ** $ ! " ' " ! )Æ ! ! : ! #
- Æ
/% G * $! ! " ! ! I - B( ! < ! ! : ! : & % ! # ! $! JK # # ! # G G $! & " 9 # ! I - B( ! / - (0 ) - B( $! & # # ! )5 F * ! ! # & " /% )G 2* $! ! )! & #* ! % ! # ! )6 * /& # ! # % ! # % ! # " ! S : # ! ! " !
( + '* 4 # M ! ! ! ! ! ! & "+ & !#! ! ! " G !
% ' & Æ & Æ $
1 Flame power ρ 1 sc Cp (T2 -T 1 )
FQ=3.4
F (Heat flux/flame power)
0 0
2
tQ
4
6
8
Time
Peclet number P = y/d
12 Flame moves towards the wall
After quenching, isotherms move away from the wall
PQ =3.4
0 0
2
4
6
8
Time
! I O I
" ! # ! $! Æ ! " # : ! # + = ! ! & :# + # # # EV % ! # ! ! M # ! ! ! , ) # G 3* ! ! & !
2
$! ! & !
! & ! ! & ! , ! M # ! ! ! & ! $ # ! & ! ) # G 3* " 6 ! ! # ! &
I O I
, G ( 9 / 9 08
M & ! #! & ! + & ! ! ! 5 41 !" ! $! & # ! ! & # BB 5 41 $ M6 # ! ! #! >& ! & ! ! ! ) * ! ! ! # $" G ' ! " # )< ! ; * ! # , ) A E ' 6* )6 * ! ! M )6 ; * ! !# M# )F* !
M )> * /& !#! ! & ! # " ! ! ) ## #
G
! ! # % !# M# (
E&
< ! X ;
.!
4!
T
1
%
)
) A6 /
$!
B(
6
) A6 /
9
B(0
6 X ; G
$M , "
9
4
B(
B(0
F
$M6 , "
9
4
0(3
B(
> BBB
$M B "
9
4
B
B(0
0 +56
% "&$ $ /& !#! M & &" ! & # ! ! ! "
! $! " " && ! " G . # G ! ! ! ! ! " ! " !" . & " ! " ! " ! " # # # ! + ! ! ! ! )! # G * !
" ! % #+ $! ! T ! " & ! 6 # ! & ! ! # $! % ! 1.9 $! 9 " ! ! ! T ! ! ! " % ! # T # ! M % ! # ! " " 1.9
! " ! " " ! ! ! 9 % ! # ) G * ! !
3
Instantaneous wall heat flux Φ Phase 3 Flux detector
Fresh gases
Burnt gases
Phase 2
Φm Φ
Phase 1
Phase 1
Instantaneous flame front
Time
) 07 +C6
6
+ ! & ! ! ! T ! &# # ! ; # &# # Æ+ & : & # ! .&# # ! # ,,!, Æ =& # ! ! ! # ! ' " # 2 ) # BB 8 ! ! " # ! GBB 8* # !
" 4 ! " G ! + 4 " ! # ! # % ! #Y ( " "! ! !& ! #! "" % ! # ! ! ! ! $! "
$! ! # ! " "! ' $! ! ! " ' ! , # $! # ! " ! !" ! = ! !& " & F !& ! " " ! Æ ! 9 !& " )6 * ! )9 ; ; .! 1 * & % & ! "!& ! ! ! " "
+* *! +56
6 M . 9 8 + Æ 9
0 ! , (
(
,-& '*
# G B 9 , )6 * > & " & F : ! ! ! ! ! ! : ! #!,! ! # " ! ! ) # * " # ! ! ! $! $! $! ! ! # % ! $! " ! ! ! - (0 $! # ! # & - 2( Æ
% ! & ) # G B *
0B
Maximum distance of flame to wall 80
Flame brush thickness
P = y/δ
100
60
40
Minimum distance of flame to wall
P = PQ = 3.4
20
0 0
2
4
6
t /t F
8
++ *! +56
4 +C6
0 ! , (
F (Heat flux/Flame power)
HOQ 0.3
Head On Quenching (HOQ) Maximum flux to wall
0.2 Mean flux to wall
Minimum flux to wall
0.1
0.0
2
4
6
8
t/tF
+ *! +56
4 6
+ 0 ! , (
6, # 9 ! # ! ! & ! " ! & ! ! " "!& ! ! ! ! # ! ! " ! ! % ! # 3 ! + # G & ! " ! $! 6 " / - (0 " ! & " ! >EV :# ) # G G* $! ! !
! " & ! " !, % ! # )>EV* ) # G * $!, 9 !& " "! ); * & " ).! 1 * $! :# ! ; # G + !
0
Upper wall y
COLD
BURNT
Lower wall
COLD
+ ( *! + 6
6
G .6
+9 9
6 6
! " !
! ! " ! ! ; " " ! # ! : )8 * $! ! ! , )!! & * !& # ! ! ! E ! ! ! ! ! ! ' % ! # E ! ! ! ! & ! ! ! " # ) # G 0* # J #K ! # ! " ' )! # !& " : * $! # ! # & ' " ! ! :# " !! & ! # ! # ! . ! ! ! # ! " !
)& ' " # & ! * & ! = ! T
! ! & # ! ! ! T )" * $! # : " !, 9 ! & ! ! ! !U " U >& ! # ! ! ## ! ! & " ! "
( ,-& ' ' . ( ! ! ! " !" !& # ! "!& " 4" !" ! " ", " )4! 3* " Æ " ' )9* " & ! " ' ! $ # " ' # " ' "! ,! )", # * & # " F 6 ( ! : ! " # " " ! ! ! ,! (
0
+ *! +C6
6 G
6 ( - , . +6 ;:1
! ! ! ,! ( % ! ! # ( ! !
! ! ( ! ,! " # ! ! " " # & " ! " # $! # # !& " ! ! ! " ' $! ! ! !
! ! " ! !
# " )& * " ! ! . 4! 3 ! # " " ! # G ! ! "! & ! ! & ! !" >& ! & ! & ! ,
(a)
(a)
(b)
(b)
(c)
(c)
(d)
(d)
0
+ . + 8 65
L *! / 4 6
4 6
9 6
' M ,
" + ! " ' "! ! " # # G 2 & ! ! ! ! ! ! ! ! . # " ' ! " " , " ! " & " 1& " ' ! ) # , # * Æ " ! #
(
$ ' '*
9 ! ! " " ( # ! # 1.9 ! # = # # "
+ " !#! ! ,,!, ! $! : !
>& ! # # ! " " " , " "
00
Total reaction rate
2.0
Adiabatic flame holder Cold flame holder
1.8 1.6 1.4 1.2 1.0
0
20
40
60
80
Reduced time (Uo t/l)
+ . +
( 6 +5 M ,
" 7 : . ! " " # ! # 1 9 !& " & " ) JUU!UK # " * E ! & 6 ! ( ! #" & 9 ! " % ! : ! $! ! " )% ! # #* . ! ! ; + ! , & % ! O & !
# G 0 " ! $! ! ! ! # " $! ! : % ! ! & $! % /% ) 3* & ! " $! " % + O
A
O
-
O
%
A * H)
A
Æ
O #
7(
O
O
)G G*
! ! ! # ! ) - ! # - B " #* $! ! 7( 9 7( - B( % ! # ! ! ! ! ! ' % !
? # 2 0" @5;+( ./ '
$
0
9 ! ! " ! ! 8* " ! + -
!
A * 8* - )I
)G 3*
$! % ! " # ). #"# *
(
$ ' '*
= ! ! & M " ! ! ; #
# ! # ! 1.9
" ! !& ! ! % ! " & ! ! # G >& ! " # : " $! ! + ! ,,!, ! & ! ! & ) ! # ' " * ( " ! ! ' ! 0 2 $! & # ! ( ! ! ,, !, ! : " ! ! ! ! ' $! " ! ' # $! " " ! ! " ! ! # 8 4 ! " " E ! ! ! #
$% %%$
( 1.9 " ! " & $! ! % & ! " ! " ! & !& # & 5,,!, & ! $! " ! ! : # " " ! ! !& ! & ! 3 ! ) # G G* ; & )8 4*+ ! # ! ! & # & " % # ! & ! 3 ! "
5 A
& A B 2 C 2 0 ./C" A B C" = ' ((( " ' 5 (((
5 ' ' @ 7"
02
& ! + ' - '
3
- +
)G *
! + ! & * ! ! T ( ! ! ! # 3 & ' T ! % Æ ! ! # ! "
First grid point near wall: velocity u1 , temperature T1
τW
Φ
y1
WALL
+ , 655 56
& % $% %%$
$! ,,!, # & " . ! " , ! #! 3+ - ' + + ' ! & ! $! & ! " ! " + - T) + *+ 3 -
3 3+
-
+ 3 '
-
+
-
' +
-
)' * + T
. " & ! ,,!, + >+ # # " # # >+ " ! >+ # # " # >0+ =! "
' D '
)G B*
0G
> + ! >2+ # >G+ & >3+ D ' " ) , ! * ! " ! " $! & >3 ( " " # ! 9 + 9-
+ '
-
T
)G *
' + '
; & ! ! & ! ! !
# & & & )$" G *
I + N & 2 '2 '2 2
( ( 6
I 6
'
! 6
+ @ # 9 ! " +
- ' A 9
"+
)G *
: # & ' ! Æ - ' -
' ''
- -
''
-
'
)G *
# ! ! & " + ' - '' ) ' * ! ! ' - ) A 9 *
- -
' /,
-
A 9
)G 0*
& ! ! 9 " !! >3 /% )G 0* ! ! ! # !& ! & ! Æ ! ! " ) *+ ' -
- -
/,
-
)G *
03
! # ! ! "!& , ! ! , & ! " ! @ ! ! & : & ! # & $" G 0 )! ! # 8 4*+
P M :2H M ' :2H / $## Q %
,-
P . . :1$ M ! ' :1$ / $2;% Q 1J ! 5 655 56
! ,
+6
4 ! ' ! J& "K ! & , : ! 3 $! " # ! ! ! )J# ' K* # G 3 14
14
+
Velocity (u )
12
12
10
10
8
8
6
6
+
4
Velocity (u )
4 +
2
+
Temperature (T )
2
Temperature (T )
0
0 6 8
2
4
6 8
2
1 10 Wall distance in wall units (y
4
6 8
0 +
)
20 40 60 + Wall distance in wall units (y )
+ /655 56
5 +6
+
-
-
+ :3
)G 2*
! - : + - - B(B : - B(0 $! : )# & # * "& ! # ! ! +
0
" );! ;! * $! )# & # * " " # ! )/% )0 ** ! & +
/ -
+
+
)G G*
:3
# ! / % ! ! : # + -
+ :3
-
-
)G 3*
:3
% $% %%$
9 ( ! ,,!, # ! ' ! + ' ),& , * ! ): : & : * ' ) * ,,!, $! " ,,!, & # " ! # & , ,!, ! !" # ! # ! ! & . !& ! ! ! ! # : & ! & " # ) # G G $" G *+ . # & ! ! ! & ! , + ! ! . ! ! $" G 0 ! & + ! ! T /& !#! ! & " & # ! 3 # ! B(3 ! & +
+
- (00
+ 3 '
A
)G *
! ! + . ! !! 3 # ! B(3 ( /% )G * " " ! - 3 ( 3 # ) ! BBB * ! : # ! ! ! " : >& # + ! ! : # 3 - + 3 ! : $" G 0+
+ 3
- (BG
A ( '
3 # ! (
'
! )G B*
B
0 T " # /% )G B*+ T-
)' *' +
)G *
$! " # ! : # " " # ! & % ! : " ! % " & ! % ! " " + -
+
-
-
+
)G *
:3
2 $! & ! & ! ' - ' + ! T ! & $! #! : & # ! % "& ! , # " & ! & !
! : ! $ ! 1 ! # ! % ! "
4 0' ;:J4 ( ( 0' ;$2 I 9 + N ) 4 ) * ) +6 ' ! :
- ' 655 56
5 & : $! ! " ! : # # ' & # /% )G * " + & !#! # ' + # & ! !
" " /% )G * ( " ! % " ! " & ! " 4! # 5 ) L! 5 4 4 * ! ! ! ,,!, )$" G 2*+ $! ! & ! ! : " ! " # ( # /% )G * ! & " ! # ! & # ! % " + - -
>& # + ! ! : " " 3 - + 3 ' ! ! # & " /% )G B* 0 $! ! T & + # /% )G B*+
T - )' * + $! & # /% )G 2* " # ! " % ) /% 0 G* ! ! ( ! % ! / & # + + / - ' + 3 ! & " ! % " - + ):3 * 2 . % ) # ! % ! : ! *
" ,& !
! : ! $ ! 1 ! # ! %
4 9 9 ½ ( 4 ¾ ) ( ( 0' ;$2 I 9 + N )
' 4
! * ) +6 ' '
! "
! :
- ( / 655 56
5 & : ' % $! & ! & ,,!, ! & ! ! ! ! /% )G * ! ' ( " !
: ( # ! 5 41
B " & ! M # 9 & # ! B( ). #"# * @ ! & ! Æ ! # # : ! ! $ & % " " & ) /% G 0* . ! ! " ,,!, " & $!
! ! " ! " : + ! #!, " # ! " " ! ! ! );! * $! # ! ) " * ! & ! 4 & # 9 " 1 " " # # " !& & # ,,!, ! !
" # 4 ) 8 4 > . #"# . #"# * E ! " > . #"# " !+ ! ! ! ,,!, "
& & " # ! # $! & " + ! ! & ; ! I ! ! ! 3 ! ! "+ -
'
3
; -
'
I -
'
)G *
= # % ! ! ! & " + ! ! ! ! % ! # 3 " " ; " I ! $" G G )>
. #"# * $! ! , ! $" G 0 ! 9 # '
+ P M , + + :2H M + ' :2H / , $## + Q %
,-
+ P . R ! + + :1$ M + ' :1$ / R $2;% + Q 1J
.
! 655 56
+6 &
@ ! ,,!, " & # # $ & : 3 ; ! : # +
-
· .½
'
3 -
'
3 -
'
+ 3 '
-
+ 3
)G 0*
;
·
/½
'
-
' ' +
)G *
! # ! " ! & ! 3 " ! & ' $! I " ! # +
I -
·
A 9
-
9
A 9
-
9
'
)G 2*
# ! : $! # ! # ! #+ -
+
)G G*
-
$ " ! , % " ! %
)0 G*+ / -
!+ -
+
+ '
:3
-
+ '
)G 3*
)G *
:3
4 ! ! )/% )G 3** ! ! : # " ' < $! % " & ! ,,!, ! " " $" G 3+ . # & ! & ! $! & ! " . ! ! $" G G ! & + ! ! T & # # ! B(3 + "+
' +
- (00
+ 3
A
)G B*
! + ! . ! !! # ! B(3 ( /% )G B* " " ! ; - &
0
>& # + ! ! : # - + 3 ! ! : $" )G G*+
I - (BG A (
)G *
0 I T " # /% )G * )G 2*+ T-
' + '
I
)G *
'
$! " # ! : # " " # ! & % " ! % " & ! % ! " " + -
+
-
-
+ '
)G *
:3
2 $! & ! & ! ' - ' + ! T ! & % " # "& ! , # # & & ! & !
! : ! $ ! 1 ! # ! % ! "
4 0' ;124 ( + ( R 0' ;1: I R 9 + N · ½ ½ 4 ) *
) +6 ' ! :
. 6 ' 655 56
& $! ! ! % ,% " ! 4! # 5 #!
' $! # " & # # $! , # , + )!* & ! ; ! # "! " " & # , $! : ! ! " " $! " !& " # )1 #! 6 < * . & ! #+ ! " 1 7 ! #' " #! J # #K " " ! # " ! ! ! ! " ! #' >& ! ! ! ! # " 7 ! ! " " " +
# ) & * ! ! ! & ! & ! D ! ! " ! . ! " " " !& ! #! Æ + " ! ! # !& ! #! " # ! ! ! ! " ! ) 8 8* $! " " " " " ! ! " " " ! " " ! )8 * >& " # ! # " " ! ! = " " ! # " "
& # # ! ! " /&
! " # " " &
; $
2
! " " " # : " + & ! & " & " ! " & =& & #! " !" ! B " !& ! ! ! ! & ! " !" )! " #! ! * . % !
" " " "! # : & ! " ## # ! " " !" , & 9 ! & ! ' ! " + # " ! ! ! ! ! & " " )4! * " " )4 6 ;Z < >7 1 ! =# # [ # 4 4 #!
4 * # # )1 #!* $! ! # ! M $! ! " , # ) 3 * , ! ! ! : $! "7 & "
)5 5 ! ' = ( # 6 8 * " & . & % # ! & 3 3 0 " " 3 ! ! 4 5# / " "
"
'! ( ) $ ( ! : ! # & ! " " $ : " !
/ % . ! , # . " ! # ! & " & $! " # # " /% & ! & % + # 4 : : + >B , " > , ' & ). - B* > , ' & ! )C - B*
G
> , # # " & + & ! & =&
! & # ' )J K* >0 , + & " JK " % JB?+ " 9 ! ! ! " ! " > , & + ! & ) ! & * ! !# ! - B $! # % ! " " ! +
- 0
1
- 1 ¼
)3 *
! ! ) * ! >2 , , + = - B @ ! ! % # +
=
A (= -B
)3 *
A = = -
)3 *
- 1 ¼
)3 0*
! = ! & & . " ) =* ! ) = * + - A
= - = A =
D
D
- A
)3 *
" # = ! & % & # : # &+
A (= - B
=
)3 2*
A - B
)3 G*
$! & " ", 5 ' # /% )3 *+
"
!
"
-
¼
)3 3*
3
! " ! # " + " -
7
-
7
4
)3 *
& " # /% )3 3* & " )
= * Æ " &+
"
A (= - B
=
A - B
)3 B* )3 *
$! % " " " ! , & % + - B "
)3 *
& # ! & % % /% )3 * "
/ ) ( , ) & # # # * ! & : = - )B B * /% )3 B* )3 * +
"
# ! & % +
A
A
-B
-B
-B "
)3 * )3 0*
)3 *
$! /% )3 * ! & # & ) # 3 *+ - 2 ) "* A 2 ) A " *
)3 2*
@ # /% )3 * ! !+ -
2 ) " * 2 ) A "*
"
)3 G*
A + (t-z/c o ) A - (t+z/c o )
z
+ <5 6 $! & " # ! #! ) - A * & # & 2 ! ! - " ! 2 & & # ! - & " !& # + - " $! # " & " && % " ! ! # ! ! & # ( !" ! # " # ) - B( >1 " - 3 B 1 * &
BBB 6 # 0 ; & # & " BBB)" * 2 M ! ! # " $! ! ' & # & + ! ! " " ? : "+ ? -
)3 3*
"
$! ! Æ : ! ! & # & - + -
2 ) " *
)3 *
2 ) A "*
! # /% )3 2* )3 G*+ -
? A
)3 B*
?
$! Æ : # & " ! : )$" 3 * - & ! #! & & ! - A ! + ! 2 ' - ? - ( ! : - )$" 3 * & & - ! 2 ' - B ? - ( !
& # & ! ) - B* !
Æ - ' ? )$" 3 *
E ' $ =;- ¼ " 2 +0 ¼ ¼ " ¼ 2 + C0
2B
) * ! & # ' ! Æ - ! ! ? : )$" 3 0* ( # Æ ! " ! # ! % ); 6 *
G
(
z
+ Æ -
* +
* +
2
:
(1): Infinite duct on the right side
z
:
(2): Infinite duct on the left side p1=0 z
2
:
2
(3): Duct terminating in large vessel
u1=0 z
2
:
(4): Duct terminating on a rigid wall
+ + Æ - 5 / 0 . # ! & & " " #+ - )2 2*
)3 *
= - )=2 2 *
)3 *
2
- )2
*
)3 *
! @ - 2 2 " = 2 & )* # ! " @ # & &
& ! & % " 1= ), ,%* & ! & " "
2
! + 2 " 2 - 23 $! &# & ! % " "+
-
)3 0*
" 2 + -
2 - 2 2
)3 *
! 2 ! 7# 2 ( ! ! &# ! : & + - )2 2 * )3 2* ! # ! 7# ! & ! & % )3 * )3 0* "+
$! +
@2 A " (= 2 - B
)3 G*
@= 2 A 2 - B
)3 3*
2 - " 2
)3 *
! ! & % " ! >!' % + 2 A 2 - B
)3 B*
! ! & " - "
) # 3 * ! J# &K $! # & " ! # & # & # # & # ! " !" ! # !
$! ! ! ! &+ ) 3 * - 2 ) 3 *2 & " # ! # ! ! $! # + # ) 3 0* # & " ) 3 * # M & # ) 3 2* # ) 3 G*
2
y n x
z
K 6 / " ( , ) # 3 * ! & ! >!' %
)3 B*+ 2 A 2 - B )3 * E ! ! & & ! @ # /% )3 3*+ = (2 - B
)3 *
! = ! 6 # & # # ! # ! " ! ! + 2 ) 3 * - 2
)3 *
" # 2 ! >!' % )3 B* ! ! - ! " " +
& & # ! & 2 - 2 & & # ! # & 2 - 2
$! # " ! + ) * - 2
2
A 2
2
)3 0*
! ! & + ) * -
2
"
2
2
2
)3 *
$! !& " : , & # , 3
/!
2
"
$! & " # & # # & " ! ) * ) # 3 * ( ! /% )3 * )3 * # ! & , " + A ) ! * - B )3 2* ! A -
)3 G* y
dz x S(z) z
dV = S(z) dz
/ 6 ( ! % & )&# & ! ! *+ -
!
3 !
D
-
3
!
!
-
!
3 !
)3 3*
$! % " ' B " #+ - A
- A
- A
)3 *
" !# ! + - - $! & ! # ! 3 , " ! & " " !# ! 1 # ! : /% )3 2* )3 G* # # # " ) - B* +
"
A
!
A
)! * - B
)3 0B*
-B
)3 0*
. # ) A A A *
" " ! # ) # 3 0* ( # # ! ' % )3 0B* ! , % )3 0* " !& # # B & ! 7 !#! ! # ! ! +
!
- !
-
)3 0*
20
Section Sj+1
Section Sj
: integration volume
z
0 z-
z+
S ! # ! ! & !#! ! ! ! & ! # " ! ! + ! & ! & . /% )3 0* " ! - B ) # 3 *+ " " & $ ) " ! & ! " * ! 7 )3 0* "+
!
- ! A $
-
)3 0*
Loudspeaker Section Sj+1 Section Sj
S / " * # ! & " # ) # * " !& # & ) # 3 * $! ! ) # 3 2*+ 2 ) 3 * - 2) 3*
)3 00*
! ! ! ' ! # # ! ! 2) 3* " ! & ! # " # 2 ! >!' % )3 B* # &+ 2
A
2 3
A ) * 2 - B
)3 0 *
2
y x
a b
0 z
K 6 - $! ( & ! & & " ! ! ! >!' % " 2) 3* - B )* )3* ! !+
B B
A
-B A
)3 02*
$! ! % + B B
! . & +
-
- .
)3 0G*
A . - -
)3 03*
; " ' & )/% 3 * ) # 3 2*+ B )B* - B )* - B
)B* - )* - B
)3 0*
$! /% )3 0G* ! " )3 0* + B )* - )*
)3* - ). 3*
)3 B*
). * - B
)3 *
! ! & " . + ) * - B
E & ) . * )! J K & "* " . + & & - 1 . - 0 )3 *
! 1 0 & # )1 0 B* ! & # # & )1 0* + & & )3 * 2) 3* - 4 1 0 3
! # ) 3 * - 2 ) 3 *
2
! )1 0* +
& & ) 3 * - 4 1 0 3
2
)3 0*
22
!
- "
& & - )1 * )0 *
)3
*
$! " + " ) % . - &* & # # # ' " ! " ) 3 * # & " /% )3 0* $! 3 ! & & #! 1 ) 0* ! ) 3* 6 . # ! # ! - )1&* )0&* $! & " ) 1 0 * # & ) 1 M 0 #*+ ( & ) )1&* A )0&* * ! # ! 1 0 " +
) 3 * - 4 1
&
& 0 3
2
)3 2*
$! # # ! # ! $! ! ! )B B* ! ! ) 3 * - 2 !
: 3 0 ( 1 0 ' ! ) 3* ! & " # # ! !
E ! ! ! # & ) )1&* A )0&* * # " + - @ $! # ! +
& & ) 3 * - 4 1 0 3 2
)3 G*
! # ! ! # # & ! #! ! $! J,K 4, % ) & " - " - &. " * ! ! #! % , # $! , & " 4 )1 0* # & ! & ' ! " ( ! ! - B +
)4 * - 1
&
A 0
&
)3 3*
$! , % .4 ! & " 4 "+
.4
-
4
"
&
-
"
1
A
0 ¾½
)3 *
2G
Mode (m,n) with a frequency higher than fcm,n propagates in the duct
Mode (m,n) is cut-off when its frequency is smaller than fcm,n
fcm,n
0
Frequency f
, 9 6 57 ' . > #! % & ! . < .4 # ! ! ) # 3 G* 5 % ! ! . .4 , . # : ! ! # ) - 0B M* ! - B( - B( , % $" 3 . % ! # " !" ! # & " # !#! ! " !" ! % ! #! ! 3 B >' ! )B * GBB >' ! ) B* . # )B B* # $! # # !#! ! # % ! 3 B >' " ! #
/
I8 ( 57 ' .
2 2 2 : : 2 : : 2 H%2 :;22 :J22
2: 2$ ( 57 ' .
/(
"
= " !"
! & " . ! "& # ) ! 1 - 0 - B* # !#! ! ! ! # ! " 6 # & # ! " " $! " + C
! #! - ) # 3 3* $!
" C ( ! # ! & & # ) * & # #! ) * . # /% )3 0* )3 * ! ! ! & # A + ) * - 2
2
A 2
2
)3 2B*
! 2 ! ' $
23
Duct 1
Duct
....
z1
j-1
Duct j
Duct j+1
Length = lj - 1
Length = lj
Length = lj + 1
Section = Sj-1
Section = Sj
Section = Sj+1
A j-1 +
A j+
A j+1 +
A j-1 -
A j-
A j+1 -
z2
zj
Interface 1
Duct J
....
z j+1
Interface
(j-1)
zJ
Interface j
z J+1
Interface (J-1)
, 6 ! ! & + 2
) * -
"
2
2
2
)3 2*
. A - 7 " " # ! ! " /% )3 0*+
) * -
!
) *
! ) * - !
) *
)3 2*
2 A 2 - 2 A 2
)3 2*
! )2 2 * - ! )2 2 *
)3 20*
! ! ! ! & A A ! A !#! +
2
2
-
2
2
!
) A H *
) H *
) H *
) A H *
)3 2 *
! H ! " A A A + H - ! ! . #" D ! & ! : )A - * )A - C * +
5
D-
2 5
-D
2 5
2
2
)3 22*
2
$ ! " " " : "! ! # . ! % ) $" 3 * ! ! #! C +
2
2
-
25 - 5 2 5
)3 2G*
/% )3 22* " )3 2G* ! ! ! ' + D A D 5 )3 23* D A D
! + Æ
0 : 1 :4 5 0
T" ·½ # : Q T" # : T" ! " :$ # : T" # : Q T" 2 $
5 "
3 2 ! + Æ
"
$
$
"
$
3 3 % # $ % 2# 3 $ 3 3 3 3$ 3 $ # $ 3$ 3 3 $ 3 0 : 1
! 4
6 4 A6 9 6 4
, 1 1 : . + Æ $ 6 . . 6
& # /% )3 23* & ! # % ! >& # ! , % ! ! & ! ! " )6 6 * $! #" ' $" 3
GB
// . : ! ! " " ! # ! ! ! #! & & $! ! # ! & ! " ! # & " " 2 ) # * # " " & # ! >!' % )3 B*+ 2 A 2 - B
)3 2*
E & & ' ! # " ' )/% 3 3*+ = (2 - B 2 )3 GB* z A
lz
0
ly
y
lx x
) ( E # 2 ) 3 * )! ! & * : ! >!' % ! ! " :# & " : ! 2 )R * # :# ! ! # & ) # 3 * " " " ! # 2 ! 2 ) 3 * - B )* )3*? ) * " # ! >!' % # &+ B B
A
A
? ?
A - B
)3 G*
$! ! % & # ! & " . ! !+ - A . A )3 G*
G
$! " ! # ! + B A B -B
A . - B
? A ? - B
)3 G*
" )' & * ' # + B
) - B * -
3
?
)3 - B . * -
) - B * - B
)3 G0*
$! ! % + B - )*
- ). 3*
? - ) *
)3 G *
! " )3 G0* - 3 - . - + ) * - B D !+
- 0
). . * - B D
&
. - 0.
&
) * - B &
-0
.
)3 G2* )3 GG*
$! ! ! & +
2 ) 3 * - /
0
&
2
) 3 * - 2 ) 3 *
- / 0
0. &
& .
0
3
0.
& .
3
&
)3 G3*
0
&
2
)3 G*
! - " - & )0 * A )0. . * A )0 * $! % ! )0 0. 0 * # & "+ . -
"
&
-
"
0
A
0. .
A
0
½¾
)3 3B*
. " !" # ! #! - & ' . - B( - B( $" 3 0 ' ! % ! : $! & : ! " # BBB 8 7 - ( ! " 30B M $! " !" " # $! # & #! 8 ) # 3 B* & " )E F * ! )1 0 G* ! 1 0 G & ! # G # "+
E / 46 A 46 )E F * - C4 )&4 * G& 8
)3 3*
G
/ /% /! ' I8 : 2 2 #$$ $ 2 2 ! H#% 1 2 2 . :$"; # 2 2 :"J2 2 2 : $::$ : 2 : 8 5 $:%2 : : 2 5 #$#2 ' L
z
2a
+* ( ! C4 ! ; 0 $! & 4 ! C4 )&4 * - B ' $" 3 $! % # & "+ .47 -
3 2 : $
"
4
A
G
½¾ )3 3*
8
2 : $ 2 :$$ $111 2%H" :"J; $;:; 2J;$ $:1% 1:;1
1 1$1H 1;$% #:J$
M ! & ! : " # " ! "& " " ! #! % " & ) ! * # ! % ( " & "& # " BB BBB >' ! " # :
/1
G
2 0 .
$! & !& ! & ! + ,% # # & ) 3 * ! ! ! & #! # ! ! & ! ! # ' ! ! #!,% # & & ) 3 2* ! ! ! &, #! ! ! & ( ! " " ! & ! >!' )8 * . >!' & & % ) !
! : # *+ ! & #! # ! ! & " ! ! ,& # " , ! & # 3 ( & & , : ! #! 8 NECK: length L, surface S, mean radius a
Combustion duct
VOLUME V (any shape)
++ . I 8 $! & # )! ! ! & * , )! # ! !
* , )! ! #* ! % .* # & "+ .* -
"
&
! 8 ,
)3 3*
! 8 #! ! 8 A ( " !
! & $! ! >!' " !" ! ! Æ ' )6 8 * ! ) ! # 3 * ! ! " " ! ! " @ ! : ! >!' % .* ! ! & " ! % ! !"
/3
'
$! # " " " ( ! : 4 ! ! " ! # "
G0
( & # & ! , # $! # 3 2 $! # ! & # & ! ' ! ! # )5 5 ! '* " & ! ! # /% )3 B* )3 *+ A (= - B )3 30* "
=
A - B
)3 3 *
= # /% )3 30* " /% )3 3 * " = # ! # &+
= A "
A ()= * - B
)3 32*
$! # : & "+ -
= A "
. - =
)3 3G*
/% )3 32* ! ! ! # & " ! . +
)3 33*
A (. - B
Boundary A n
Domain V
dA
+ ' HHH $! # " " # & , ) ! , 4 * " " 2 ) # 3 *+
A
. (= 2 - B
)3 3*
G
! - 8 , ! # ! = ! ! 2 /% )3 3* ! ! ! ! # ! # # ! " $! . (0 - = (= /% )3 3* ! " 4 + ! =(= ' )! = - = - B* ! & )= - B " = - B* ! ) - B* . % " " & " ) # 3 * ! # ! ! ! !#! ! " ( ! & " : & # ! &# ! E # & & # ! ! # )! & & & * " # & & ! " ! #!, 4! $! ! & " " )1 1 $! Q 9 *
Constant velocity inlet
Wall
Constant pressure outlet
Wall
Constant velocity inlet
Wall Constant pressure outlet
Wall
+ 0 6
9
4 + 8
9
6 $! ! & ! , # ! ! ! # # &+ ! " !
" : ! # # ! " "
# ! 3 ! # # " " " #! " "
- F/ 1 ' "
!& "
G2
'% ) $ # ! & & % . & & ! % ! ! # ! ! "
'
/
$! # ! 9& , % ! # & & : "+ .
-
.
A =(.
$ 3 ! & + > , ' & ). - B* > , ' & ! )C - B* $! % % & , # +
A (= -B
)3 B*
- A (
)3 *
=
! " ! # % ) 2B* % +
- C A
A + =
&
=
9 ,
(
)3 *
= ! & & ! , /% )3 B* )3 * " " & & % . & ! & ! # % )3 * " ! % - E "
% )*+
)* 7
A (= -
C A + =
&
=
9 ,
(
A
E E
)3 *
$! % )3 * " )*+ =
" A )* - ( 7
)3 0*
GG
: # ! " "+ " - 7 " # ! & & /% )3 * ! &# /% )3 0* & & % ! # ! + " ( )* )* - ) ( *
7
C A + =
&
7
=
9 ,
(
) )E** = + = )3 *
, # & # /% )3 * ! & % )3 * & 3
/
4 '
$ " & & % # + >2 , , ) 3 * >G , #! $! & & " # : + C " " C #! % ) 2* 7 ! ! 7 - " )! ! ! " * . # )8 * ! !
! 1> /% )3 * ! ! ! ! & " # ! : % +
" 7
)*
7
)*
-
C
= + =
)3 2*
. & & & & & & )5> * ! & & , % . ! ! , ! + . - 2+ .
-
.
A
.
- )@ A @*. - @
"
. - @ ) 5 * .
)3 G*
- " =! " 5 - " ! !
. # # " . " " .
G3
/% )3 2* ! "+
" )*
)*
0
C
7 = + =
)3 3*
$! % ' " & : 5 ' # 3 ! - A ! ! )* " /% )3 3* " % ! ! # +
"
- )7 *
C
7 = + =
)3 *
$" 3 2 ! & % , # # ! , # ! = + = + ! " " $! "#! " " ! & " ! ! " ! ! ! 1> ! % ! " $! " "
" $! ' /% )3 * Æ ! #! " " , % " ,
,
*5 +6 +6
4 5 4 5 4 : & 4 5 4 5
( 6 ' 5 +6 / 4 ' 5 ' % & " $! % ! & = : /% )3 * # ! ) # # " & & & & &* ! & %
+ = - )3 BB*
! " $! % " " : # # & & #! /% )3 * $! & ! E
G
"! & ! ! /% )3 * : + )* 7
A (= -
C
)3 B*
$ ',! ) ! * ! % + (= -
C
)3 B*
! C ! 1 # :, /% )3 B* , # # & & & & )4 #! 5> *+
A (= -
7
7 C 7
)3 B*
! C ! ! # & # # & " ! ) * ) # 3 * , " ! /% )3 BB* )3 B* " # # 3 # &+ - )3 B0*
7
/
A
!
)! * -
7 C 7
)3 B *
5 '
$! & #! ! # " # ! ' ! ' ! " . - BB >' ! & #! - - ". " # BBB 8 ! (3 ! ' ) Æ "* ! B ( ! " " JK & #! ! ! " : ! 7 % !#! " & ! & % 4 ! !
# 3 0 ( ! ! ! # " ',! ' - 9 ! ! ! # # - ( # # /% )3 B0* )3 B * - -
# ! !
# + \ ] \! ]
·
·½
·½
·
·½
·½
-
-B
)3 B2*
7 C N 7
)3 BG*
3B
Flame Fresh gas
Burnt gas
Section Sj
Section Sj+1
z
z j + 1 - zj+1 zj+1+
+ S + C ! N
·
·½
·½
! ! " ! ! C
$! : ! ! ! !#! ! + ) * - )
*
)3 B3*
! ! ! ! ! & 7 !#! ! +
! ) * ! ) *
7 C N "
)3 B*
! " & ! ! A A ( ! 7 " " ! ! & /% )3 B* ! ! ! & . " & ! # 3 0 @ # ! 3 G ! & A A A + ) * - 2
! ! & +
) * -
2
"
2
A 2
2
2
2
2
)3 B*
)3 *
! " & ! & " ! ! A
' ' ' 1 & ' ; ! 6 G 1 4 '
3
$! # ! NC " ! + NC - N2
)3 *
. ! A : - # A A A ! 7 )3 B3* )3 B* +
) * - ) * ! ) * - ! ) * A
!
7 C N "
)3 *
2 A 2 - 2 A 2 ! "
)2 2 * -
! "
)3 0*
7
)2 2 *A
"
N
)3 *
! ! & A A ! A "+
2 2
) A H * ) H *
) H * ) A H *
! H # & "+ H -
2 2
A
"
!
1 ¾ 1 ¾
N
)3 2*
N
" ! "
)3 G*
!
/% )3 2* " +
2 2
-
2 2
A 6
)3 3*
!
) A H * ) H *
) H * ) A H *
" 6 !
1 ¾ 1 ¾
N
N
)3 *
$! # ! /% )3 2 * " & "
$! ! & A !
A A $! ! )A A *: !#! 6 /% )3 3*
3
Duct 1
Duct j
Duct j+1
Length = lj - 1
Duct
j-1
Length = lj
Length = lj + 1
Section = Sj-1
Section = Sj
Duct J
Section = Sj+1 Flame
...
A j-1 +
A j+
A j+1 +
A j+1 -
A j-
A j+1 -
z1 z2
zj Interface
Interface 1
...
z j+1 (j-1)
Interface j
zJ
z J+1
Interface (J-1)
+ 5 /! " $! & " ,
! ) # 3 * $ 6 " ! ! , # " #! #" $! #" D94 !& ! !+
2 2
- D9
2 2
A
&
D9 6 A 6
)3 B*
$! D9 # A ! ! D9 # A + D9 - ( ( (
D9 - ( ( (
)3 *
< # ! )3 B* ! A - C # ! " + 2
2
-
25 - 5 2 5
)3 *
! ! ! & ) ,'* ! ) " ! & 2 5 25 A - C * $! # ! ! " ! # + & ! " # ! $! #" ' $" 3 G # ! # 3 ! "
& " " )! 2 5 2 *
3
! + Æ
0 : 1 :4
5 0
·½ T" ·½ ·½
' # : Q T" # : T" : " $ '' # : T" # : Q T"
5 "
"
5 ) 6"
6"
·½ ·½ ·½
5 3 2" ! + Æ
! 4
) ) ) #
& ¾
( ( ( !
$
= * *
& ¾
* + %
=
2" " / : 0
" ) ) ) #
3$
3$
$
"
* *2 * $ %
) ) ) #
$ 3
3
$ $ * & *Q 2$ * %
6 Q 6$
3 3 3$ 3 $ # $
6 4
I 9 6 4
3$ 3 3 $ 3 0 : 1
, 6 5 1 1 : . + Æ $ 6 ! "
" . " "
4 " " 4 D " " "
30
/ 2 ' . # " : 3 B+ -
= A "
)3 *
= # /% )3 B* " # ! ! % )3 BB* " = +
A . -
! -
)7 * 7
C
. - =
)3 0*
$! 1> " ! C $! " ! #
! " ! $! % & "
" : " 1 #! /% )3 0* " & ! " #! ( # & ! ! & , ! " +
8
, A
. (= 2 -
8
,
)3 *
( /% )3 * $ & # ! #! ! " /% )3 * " &# & $! " & ! ! " ) $" 3 3
* # ! & & " & ! + - )2 )*2 *
= - )=2 )*2 *
C - )#C 2 )*2 *
)3 2*
! 2 )* =2 )* #C 2 )* & #
A -
)3 G*
5 ( & 9 2 9 ) +C," =8- 2 & & ¼½ 9 9
3
0 !
7
. #
8
(
9
9 5 5
9 + 6 ! ! ,&# # ! ! "+
-
H, 8
H-
-
0"
2 2 A
= 2 =2 0
)3 3*
$! ,&# & # ! " +
-
) -
) , 8
. -
)2 = 2 *
)3 *
. ! &# +
-
8
!,
! -
-
)7 * 7
C -
)7 * )2 #C 2 * 7
)3 B*
M # + ! ,&# # )& , * ! ,&# & 2 #C 2 ) " ! * " & ! # ! $! #! ! # > " " # ! ! ! " ! # ! ! 2 =2 #C 2 " + 2 )* - /
= 2 - I=
#C 2 - 4
)3 *
! > $! # " "+ >-
) A *
)3 *
$! #! > " & ! " ! " ! ! "
32
' *
" "& $! ! # " ! ! ! " ! ! ! ! " " ! : : # ! " >& #! " # ! ! # ! " " # ! & ! &
/ & $! 1 #! ! ! # ! & ! " " ( # & !! ! # " ! : ! " )6 * 4" " ! & ! ! C ! ! #
!+ )7 * C
)3 * 7
.!#! ! ! ! 1 #! #!
+ ! ! # ! ! E ! &# 1 #! ! # & " /% )3 B*+
)7 * )7 *
)2 #C 2 * C ! 7 7
)3 0*
! " #! ( ! # # &
" ! " " # ! ! ) & ! * ! ! # ! " " " # ! ! )6 # * ( # ' ! ! # " " /% )3 G* ! # ! ! " # # # 3 2 ! ! & " ! " ## - B ) " ! # # ! # * ( ! #! > # & " /% )3 * & ! # + ! # ! ! >& # #+ ! " ", , ! ) ! * ! ! , ! ! # ! #! > " ' $! "
! ) * ! ! # " ! ) * $! # ! 1 #! ! ! " # : " ! " =&
3G
! : ! # ! " ! " " ! ! 1 #! " # & ! " ( ! ! # ! "
! !#! ! 1 #! $! " ! & " # " " # ! ! ( " # & ! ! " 6 6 $! ! " ! " " Non-linear zone: limit-cycle
Pressure oscillations
Linear zone: exponential growth
0
20
40
60
80 Time
100
120
140
+ K 6 $! !# & ! & " ! " # ) 3 0 * ! 0 , ) 3 0 * $! ! ! ! 1 7 " )1 7 1 7* ! ! ! , ) 3 0 0* ( ! :# " $! ! #! #! ! ! ! " ! ' ! ! ! 0 , 3 0 ! ! 4 " !
/
$ '
$! & 3 " #! ! " ! $! : # ' !
! "
!" & " ! $! " ) ! ! ! Æ " ! " *
33
$" 3 G #! ! !# % " " ( ! ! !# "
# 3 G ! ! $! " ! :& + ! &
2 2 2 2 !
Premixed gases Flame holder Section 1: cold gas
Section 2: burnt gas
A1+ A1-
A2+
Outlet
A2a
b
+ 0 5 8 ( ! " ' - ! ! ! ! ! ! # !& " 1#
! # ! ! ! ! # ! !& " 6 : ! ! ) - A *+ ) A * - B ! ! Æ $! ! # + )B * - B ! ! Æ A @ # ! $" 3 G ! " && ) - * $! #" D )% ! ! % * ! 6 +
½ ) A H * ½ ) H * ! D - - ½ ) H * ½ ) A H *
"
$
1 " # ½ ¾½ N % 6 )3 * ! 1½¾ N
½
! H - ) " ! *) " ! * )3 * " & ! & 2
2 2 2 ! # ! " + -
2
2
- -
2 ¾ - 2
)3 2*
$! " N ! " ! , 3 0 ! N " " " ! ! "
/
2 6
3
'
. " # ! ! " N
! # & $" 3 G # N)2 2 2 2 * ! ! ! ! ! " ( # ! # ! N ! + N #! ! ! , " ! ! ; !
N)2 2 2 2 * " ! , !& " ! " " " ! )4 4 * ! ! " " " ! & ! ! )) - ** ! ! ! & ! ! & ! ! " # ! & " ! " ) ! R 6 * C " + $! # " N 7 C N - ! 0 ) * "
)3 G*
! 0 ! ! ( & " ! + 7 NC - ! 02+ )* "
)3 3*
! ! " N+ 7 "
N-
0 "
½ ½ ! 2+ )2 2 *
)3 *
" # N /% )3 * # " )3 2* &, ! ! ! ' $!
& % ! + ) * ) * H ) * )*) A 02+ * - B
)3 0B*
! - " - " & # /% )3 0B* & ! # ( ! # & ! ) 2* " " " $! % ! " " ! ( # !
" >& & # ! ! # ! " 3 0 0
B
/ + . /% )3 0B* " : & ! ! .+ -
" - " - "
! - !
-
)3 0*
$! :# ! #! # # # " 7 ) # 3 3* ( ! H - /% )3 0B* + )* )*02+ - B
)* -
# ! 0 +
02+
)3 0*
A 02+
)* - 02+ ! - " ! ! " #
)3 0*
Premixed gases Flame holder Section 1: fresh gas
Section 2: burnt gas
A1+ A1-
A2+
Outlet
A2-
z=0
z=2a
z=a
+ ) L ! %$ < ! " )0 - B* ! : % - " ) # % '+ ) * - B* # & "+ )* - B - &0
)3 00*
$! ! & #! - - &" - 3 ! ! ! #! $! : ! ! %,& $! & ' " # ! & ! !
! )3 * + 2 - 2 D
A@ 2
2 - @2 -
)3 0 *
¾ ! " #
$ % & ' ! ( ) ' !
" % ) ( *# $ & + )
Pressure amplitude
Velocity amplitude
1/4 wave mode 3/4 wave mode Flame holder
0.00 1/4 wave mode 3/4 wave mode Flame holder
0.0
0.2
0.4 0.6 0.8 Abscissa (z/2a)
1.0
0.00
0.0
0.2
0.4 0.6 Abscissa (z/2a)
0.8
1.0
, ) '! % - ¼ # ./ 0
¼ ¼
¼ ) ' #! $ &/ ' ' + # $ &/ # & & ¼ $ & # # & & 0
) -
' # 1'# 0
'
2)
' #! ' & ' " ' & 3 " ' (
1# ! & !# 4 '
" #! ./ 65 #! ./ ' ! " %
# ./ 0
65
¾
4 ' 65 0
-
2
7 # 1# # ' & '
# '
0
-
-
2
' % ! $ 1# /! " $ % 1# '
/8'! & 7 8/ $ '! #! 0 ) '
-
2
'!#
8 /8'! *# 7 & /8'! # &/ % - ¼ # ./ 0
¼
¼
2
+ &0 ) -
-
'
22
Quarter wave mode
0
To/2
To
Three quarter wave mode
0
2 T1
T1
3 T1
Three quarter and quarter wave modes together
0
To/2
To
"! #$ %&'( 7 *# ) & /8'! / '! 0 -
- -
2
3 ! & ! & /8'! 8/ '! # !# ( ' & & ' 9 0 ( /8'! # & % # 8/ '! ## : # : #8 +!8/ + # ! ' &/ # ' # #0 !# & 4 &/ + # ' ;# ' ' + / 9 8 4
& # 0 4 & % & '
% & 7 # ' + & ! 0
< & # &# ' ! # ' + ' &/ & & & # & &/ & & & '
! & &/ ;
, + Æ /
# %
7 " % ! & & & ' " ' ( % = ' / / %
! & 8 " & &
" ./ & " ' & & 8 ' % , ' Æ & < ! & " % 0 8 " % ># ; > / : ? & @. / 2 3 &
# " & & ! % & A % & 9 ' &
& "B # & 1 & C' D
& *# ! 4 0
(
# '!
< ' = = # ! ' % $& ! % & *# & # ' ! % ' , 9 & & # '8
9 & & #! ! %
'! ! % # &' 9 & E & & # & & ! % & # & " ' 0 " ' # !' C D > # #( 4 ' Æ # " '
" ' 9 Æ ' + &
#
2
Hot recirculated gases
Fresh gases
Vortex formation by hydrodynamic instabilities or acoustic mode
Mixing and convection
Combustion after a ‘delay’
) * " ' ' !
A ! # 4 = 8
1& + & F( 1 = = , F# ! + & " ' # ' # & & # ! ' 8 8 0 '8
F ' ! F &/ &
& & +
" '
'!# & 7 & & " '
&/ & +
0 2 )) ' 9
& ! + # = = ! 4 ' A Æ 8 ' &' 9 & 0
G9 # ' ! &/ + ! ' # & &/ & &/ # ! % ## = = 9 +
& + & ! 8
, % +
! " $& + # Æ8 & + <
%
F # # 4 & " ' , 4 #
" ' : ! >
% # " ' ' # # # " & #+8 # ! ;H 1
+ &/ & ' ! # ' # $ ! + !! # &
# & #
* # ' # 8 0 &/ ! $ & & &/ ' &/ 1 # < Æ ! ' & % & # % ' @ 1 9' 3# # ! '
= & ! : # # ! ! & " ' '! ! I ! & ! " ' ? ; ! & Æ # & & # 7 % *#
' ! ; $ & # I
( # # !0 & !' & *# ! ( & # ' # ! % $& /! # " % # ! &/ * # # !' & *# ' & & ! # ! 2) =( ! Æ 2) "
& & # & = % " 4 ! 2) =( # ! % & * # *# ! & ! & !# ! /( ' ' & *#
#* +
,
- + * . / # 5 #B J )
G # 2) =( 5 #B J )
, * 0 %11 $/ 0 %11 0 +
t=1.32 ms
t=1.55 ms
t=1.78 ms
Normalized values
t=1.09 ms
Inlet flow rate Averaged reaction rate
0.0
0.5
1.0
1.5
2.0
2.5
Time (ms)
+ 2 $/ 0%11 $ 3 4512
3 (' 6 + *# ' *# 2 !' !# + & & # ! % & & % I & ) *# 2 ! # ! # ' " ! *# 2 & # ' ! , ! ' !
# & # # ! 22 # # ' & # % Æ & # " & & ' 0 ! % & # ! & ' # # ! 9 & &9
E & ' 0 & #8 ! % ! & ' @# . / ! ) +
2
!'
$
1
)
22
7'4 8/ + 0 %11 0
))
7 Æ ! # 8 ! ! # $ Æ &/ 4 & $ !# ! 8 & / ' #8 ! # " ' 0 @.
@# . @. / > &
" & * @. %8 ! ! # *# 2 8
0 & @. & & C D ' % # & ! ( B 7 &
& @. & 0
@. ! & " ' & " 'B
: @. '! 0 !
G # @. & #
& % ' % ! & # @. ! & + ' &
& " ' >*F 8 % # & 7 # # # " '
&
#
#
' + @# . ! ) ! # + &' ! 0 % & @. 2 2
4 ' " ' + !! " ' " ' + = = $ " ' + *# & " ' # ' ! ' ' $
)
#
*# #0 & &
&8 > ! & # &9 '!
# @. = '! & + & & &9
x
x
Perturbation
Perturbation
t t=t o
t t=t o
3 8 8 7 / ' @. 0
* + 0 & &9 # 8 *# " ' $ % & & &
&8% 0 & &9 '! *# " ' ' ' $ + % & # " ' '
1 ' !
# @. / & # ' % # & % ' " '
)
Flame
Flame
Outside forcing Acoustics (a) Forced modes
(b) Self excited modes
. * 7 / & & # ! C D # ' & # / & % %# ! + & $ % 9 " & &
#
# > ' # C& D ! # & &# # 7
( &
&/ CD # $& & # # 9 & ' ! & # ' 8 & @. & & & # 8 * &
/ & ! &
7 @. # # & # ' '8+ + @. % &8% % 9 % !# # &/ + !# & &8% % 0 # + ! & % &8% / # # # 0 / < % # & =!# ' &' & 8 % > # & / & & &
)
! & 8 & 0 & ' # > # # & @. I '9 &8% < 8 0 # " ' # F# ' & / & # Æ 9
& & &8% : @! ? & ; & # # ! = '! # % # & / ! !
& @. & & & 8 % & ; & 7## #8 *# I & % & ; *#
, 9# + 0 7 & ' " ' ! ( ! # ' ' 8 @. & " ' # 9 * B 9 " 7## > 2 # 2))))) # )) ! !! & ' & & # ' & # + & & & " ' # & )) ? /! ! & B 7 & " ' & # #! *# " # # ! % 8 & *# &
)
: 9# 0 % '! # 0 I! 2) =( % & " ' # & # ! < @. ' " ' '! " ' # / 2) & " ' & # &/ 2) =( & # & & # *# ) #8 & ! @. ! %0 # 8
! ! !8 I # & " &
' % & 4 & & # @. % & & & 7 ' ! ' " ' & & ) # & & % *# *# ' & @. ' 8
"% 8 % !'# ' ' ! ( ! !# ! ) & @. ) & & ) / %
)2
; 7'4 8/ ;
$ 4<( 0
+ . 0 %11 ;
* 0 %1<
)
* +# # & # " '
# ! ' % * % & ; @. & ' & # +# * *# % I # #
)) ? ! # 2 @. # 4 7 8"# E>:> > ' +% ! 7 8"# %( #
( B" # 7
" ' # &8% 2 ) =( ! ' & & ) # 2) # & ' ! A CH 4 +air
D Exhaust B C
+ * +
Pressure (Atm)
*# ' ! &
! 7 *# ! # ! & & B '! ## & 4 ! #+ *# !
! # & & )2 *# $ ' !
) 1.2 1.1 1.0 0.9
0
20
40
60
80x10
-3
Time (s)
; + +
Velocity (m/s)
)
36 32 28
0
20
40
60
80x10
-3
Time (s)
; + + $ + & &
& *# 2 " '9# # 9 ! # % & 9 & & # & ' ! ' & " ( # 7 #+ & ! + & & $ 2 ) =( ! & 9 ! ! &/ & )) =( ! # " #0 ' ¼ ) B & ! ) B 9 ' / 0
! 9 ! " 0 8 ' ' # ! *# 2 '!# 2 ) =( # I B
! ! " " '9# '!# ! & " 7 ! " & ' 8 ! ' % & ! +
> ' ' F ' *# 8 ' # &/ )) =( + ! &/ & # ! 8 & ' " !
% ' & # # 2 0 & &8 9# & #
)
CH4 + air
0
. +
1.20 Upper wall (C) Lower wall (D) Inlet (A)
Pressure (atm)
1.15 1.10 1.05 1.00 0.95 0.90 0.85 78
79
80 Time (s)
81
82x10
-3
+
0 %'1 +
F!# / & # " '
& !# E! 9 / F E @# . * ! #8 '
@ > & '! / & F E & & ' ' % 0
# & & / = '!
+ & & E 8 # " ' ' & #8 & '#0
G &
" ' @. FE / & '! " & ' E!8 9 $ '! ! ! & # + E '! &
7 @. FE # ! ( ! '! !
8"# #
E
! #8 & # 8 '! '! '## # A8 ! 9 : ' @ '! ' I .! ' '! 8 # & '! ' " ' )
)
* % ' # # ' 8 & 8 ! / A! 9 : ' ' & ' 8 8
: =
; @ " ' &
> ## '! # 8 # " ' * % & 8 / & ! & * !
& # '! !
7 Æ & E!8 9 9 & 8 9# 0 % # '8
! & . / ?
=# =# .#/ <I K &
L % & E!8 9 / F# & #! & E!8 9 / '8
K &
L
F ( & / 9 '8 # & # '8
& # E!8 9 / CED % & ! ! # & # /
' & / ! &
E!8 9 / 0
$ . ' ! ! 8
! & . E!8 9 / $ ' & 4 '!
#
E % & + & E!8 9 / 8
9' F
& # " ' + & 8# " '
#& ' $ % % & & . E!8 9 / ! % & & 4 " ' " ' 8"# ' 8 ' & 8# " ' 2
& # " ' #! % & & " ' ( & '! " ' * ! % & ! " ' ' 1 ; " '
7 # / & &# & & 4 '!
# % ! & . / ?
.#/ <I = & . > : > .>:> & % .>:> E!8 9 / E!8 9 > : > E>:> ! & & C8 D / & E!8 9 / & ' & # " ' 8 7
! & '!
# ' % & '! ; 8 & . / 2 & E!8 9 / * & #
!
"#
& & ?
.#/ <I & & 9# & C.D F4 ! & 8 % .>:> * % & ! % ' & & 8 1 9' 1 9' E = '!
! 9 & % 8 + & . / < + / & E!8 9 / #! 2 & '# 8 & % + 4 # % $ + '
& # 0
&
; & 9 ' ! & & ! * % + & # ! & ! ! / &
Æ & '8
:
[email protected]
E7A$.1
E7A$.1
3?.
3?.
E 8#
E 8#
1#
" '
2
2
2-
" '
2
2-
" '
)
-
" '
-
0
= $ .
. 3# F 9' ( E!8 9 E>:> 9 8 # . C! D
+ E!8 9 !
4 4 * % 8 # ! " ' ' 8 / +! C D 0 & .>:> & . / & C! D ? '# # ! , & ' & ! ! ' & " ' & % ! ' + 7 / CD 7 CD ' % ' +% & ! / &
# ! E & ' # % #! & $ & " ' % 8 A ' !# ! / * % +%# ! & 8 & ! " ' ' C D ' / CD &
& " ' .% &
&
! & ' # & 0 % # (
# & ! &# E>:> /0
# / & # ! &
7 Æ
' 0
E & !! ! /8 4 ! 8 48 # # ! &
$ ' 9 ' 8 !! + 4 ' & & !# '! ' 4# '' 4# E '! ## & & & + # 8 4# *# '' 4# & # '! $ ' '! ## ' & ' '! # +
!
$ %& ' (
7 % + ! # & '#
0
= 8 7 # ! % %
& :
= 8 A & # ) 9 ! 5 )
= 8 *9M ' ) ' ! & 4 !
G
" / ! > ' ' ! 0 ! ! ) ! ! !" ! ! ! N" - O # - 5 ! ! ! ! ! ! ! ! ! ! ! !
&
! ! !$ $ % 5
! ! !
&
9 E
' " # ' + 0
" -
& -
-
2
"% & # & % + 0 ! !
#
% '
!$
!
> ( *# & '! ## 0 ! ! ! - & ) ! ! ! !" !
& -
& - & - & - &
! ! ! ! ! N - O N - O - 5 ! ! ! ! ! ! ! ! ! - & - & ! ! ! ! ! ! ! ! ! - & - & ) ! ! ! ! ! ! ! ! ! ! - & - & ! ! ! ! ! ! ! ! !$ -$ & -& $ $ % 5
& 9 E ! ! ! ! 4 & & / !! & & !! ! ! #! 0
& & & & & &
@ - @ - @
@ - @
@ @
@ @ @
! ! ! ! - ! ! ! ! ! ! ! ! ! ! !$
!
Æ ! "# $ %&'
2
x2 OUTLET
INLET
L 5 (u+c)
L 5 (u+c)
L 2 (u)
L 2 (u)
L3
(u)
L3
(u)
L4
(u)
L4
(u)
L 5+k k=1,N (u)
L 5+k k=1,N (u)
L1
L1
(u-c)
x1 = L
(u-c) x1
x3
> * ' @ M & '!
' ! 0 P
P
-
' & #! ! & '! !# #! ! !P ! & ! ' ! ' ! ! ' ! @ M #! 0 @
@
@
@
@
!
! ! ! ! ! ! ! ! ! ! ! ! ! - ! !
2
@
!$
!
& 9 E
)
7 & @ M #! # ( E!8 9 / & 8 ! '! > 8 ## '!
' ! $& ¼ ¼
! '! ¼ ¼ ! # - ) * 0 ! ! - ) ! !
! - @ ) !
7 #! @ & ! & '! : # @ ! & '!
# & E>:> ! # & / $ / # ! ! 0 ! !# !! # ' % / !! /8 /# & &M ' ! @ @ # & ## & & # 8 4
# & ! @ & '! ## & OUTSIDE REGION: use simplified method (boundary layer theory) to evaluate waves entering the CFD domain
INLET COMPUTATIONAL DOMAIN: use full CFD
? 7 ' 4 & # 0 ' & 9 ' @ & # '! ! ' & !
$ + ' + *# * % &8 & ! & & #
& # @ & # # / 2 ) 7 &
& & ! & # '! = '! & & ! & !! & ! & %
G # % ! & # '! & & /
$ '! & & ! % ! & # '! ! 7 % & # '! ! ! '
!
"# ) * & +)*,
% & ! @ & # '! & 8 E!8 9 / = '! & 8 ! / E>:> & ! & '! ! ! 8 %# 8 ! @3F$ 7 @3F$ &
& / ## ! ! C D & & '!
# @3F$ 4 & # & ! $ & ! ! @3F$ 0
! - @ - @ - @ ) !
! - @ - @ )
!
! @ @ ) !
! - @ ) ! ! - @ ) 2 ! !$
- @ ) ! ! %
!! & /8 & * % !! & " ' * # + 0 ! !
@ - @ - @
)
! !
@ - @ - - @
@
@ @ - - @
!* !
!+ !
)
)
)
)
' + " - - * < 0 3 & & @3F$ & ' & # 7 # %
& & @ 0 ! ! ! ! ! ! ! !
@ @ @ @ @-
- @ @
-
@ @ @ - - -
< ! # @3F$ * % # / # @ ) & / $ #
# @ @ & ./
+% ! & '! @ # A ! & '! ! # @3F$ % E!8 9 / ! ! ! : 8 ! ! # & / ! 4! 9 # @3F$ 8 # '! ! @ & ! / 0 % ! # ' ( )* + % + %, - . / ## #0 %' 1
-.
02
%, 3 4 & ' 5 + 67
!
"# %-.- # (
E>:> ! ! & . / & '
+ % *# 7 #! 0
* .>:> 8 # ! / & & / $ % & *#
+ # /
* ! / # @3F$ %
9 ' @ # # '! &8 & 9 ' @ # # # '! * % & *# *# ' # '! @ @3F$
## 0 @ @
#& ! @ & '! !# # *# & 8
!! ! @ & '! # # ! # ! #! /
G # ! / & ' ! & @ & ! ' #! .>:> $ &
& *# !
& # # / ' ./ & @
9 & E>:> G # ! / ' ' & & # '! ## @3F$ ! # & !# CD E ! &
% & / ' @3F$ 9 ' & ' '
/ ' !
! "# %-.- %& ' ( E!8 9 / / . / $ E>:> E!8 9 # . ! .>:> # '
)
Physical boundary conditions ECBC conditions: impose one or more independent variables Ex: Outlet pressure is fixed STEP3
Equations used in code
STEP1 Density x1 momentum
The remaining conservation equations are used on the boundary to time advance density, velocities and species. The amplitude of incoming waves is estimated by the LODI relation
x2 momentum x3 momentum Species (k=1 to N)
Energy equation is cancelled: not needed on the boundary (pressure is fixed)
Energy
LODI relations
STEP2 Using the physical conditions and the LODI equations gives the amplitude variation of incoming waves. For fixed pressure:
L1
= -L 5
=,>, # $ #* * Physical boundary conditions ECBC conditions: impose one or more independent variables Ex: Outlet pressure is fixed
Viscous conditions: impose weak conditions on viscous and diffusion terms. Ex: constant heat flux, normal stresses and species flux along x1
Equations used in code
STEP1 Density x1 momentum
STEP3 The remaining conservation equations are used on the boundary to time advance density, velocities and species. The amplitude of incoming waves is estimated by the LODI relation. The viscous conditions are used to set values to diffusive terms in the conservation equations.
x2 momentum x3 momentum Species (k=1 to N)
Energy equation is cancelled: not needed on the boundary (pressure is fixed)
Energy
LODI relations
STEP2
Using the physical conditions and the LODI equations gives the amplitude variation of incoming waves. For fixed pressure
L1
= -L 5
=,>, = . $ #* *
! ! ## 4 ' ! 8 # ( ! .>:> $ E>:> ! #
&# ! 4 ! / ! !# !8 ! & ! & E>:> & / # *# ' E>:> & ! ' +
& . *# E!8 9 / *#
:.&
:.1
:.'
:.<
# #,>, , 2 2
= . ; #,>, @ = , , , 2 2 = =
; =
7A=
7A=
7A=
+
. ;
; * & ! ' . rel="nofollow">:> 8
$ E>:> & 8 .>:> ! & 9' 3# ( & 8 # " ' ' 3 8
" ' & . / & & ' ' E!8 9 * " ' &
$ #
>1
+
# #,>, ; , = = &
>'
+
& ><
& =?
?
:
= . #,>, @ , , , ½¾ 3 4 = ½ ½ 3 4 ½¿ ½ 3 4 ½ ½ 3 4 ½ & ' = ½¾ 3 4
½ ½ ½¿ ½ 3 4 ½ 3 4 ½ ½ 3 4 & ' = ½¾ 3 4
½ ½ 3 4 ½¿ ½ 3 4 ½ ½ 3 4 ½ & ' = 3 4 3 4 < 4 = B 3 4 3 4 ' & =
; =
+
. ; ; *
$ rel="nofollow"> $8 / & E!8 9 & . / - ' & 0 # 9 ' ' # / ' ! ! & E!8 9 / $ # 2-
## 9' * % $8 ' & . / 3# ! ! & E!8 9 / 0
# F < & ' " ' $8 > $8
#! $8 > $8 & ' '8
& & E!8 9 #! 3# = '! & Æ + $8 8"# & E>:> * ! +% '! ! > $8 $8 /! & 8 0 %
! 8" & '! & @3F$ & = '! & / 40 $8 & ' ! ! ' $8 +% '! ! # * 8 " ' & $8 # E>:> #& ' & & & $8 3" ' : & : : 8 "#
* # E!8 9 / - ! . ## 9' & F 0 # !
& # ' "% # ! ! # * # " ' 4 "% & # % F!$ ! % ! ' ! ! # ( # !! # & # % ( & /
!/ & ' 8 & # 8 / % & E>:> * #
& % # & !! & & & / '! ! & 7 @3F$
! & ! & 4 '! # A & ! & % #& ' @9 & E>:> & # / + > &
&0 & % 8 ' '
" # / ' > # 7 # + &
& & # #! ! Æ & '8
7 # ! & . ( 8 & 4 & & 8 " ' ! % & E!8 9 $ & # # & E>:> & '# 0
7 " ' ' +% ! $8 7 8"# " ' $8 E 8"# " ' : : 7 "# " ' : 7 8 ' 2 E, 7 ' 7,
E *# 0 ) (
* 0
! 0 12 2 # 3 & +, C D " ' ' & ! '
& $ ) > $8 * # 8 " ' - '! # *# 0 @ @ @ @ @ ' & @ !# &
" ' & *! & $ & / E ! ! @ & 4 '!
# 3 & '! @ !# & #! E>:> & ' 0
2
! +% & / ) +% # /
& $ ./ # / / @
7 ! +% @3F$ ## & '# %
& '! @ # 0 @ @
7 +% @3F$ #! & '! @ 0 @ @ - @ @
# / @3F$ 2 ' 0 @ @ @ )
& ./ 0 ! ! ! - & ) ! ! !
' & #! / 0
)
& @ - @ - @ @
@ @ @ 3 - .>:> ! ' 9' 2 -
'! 9 ' ! / & . E!8 9 /
! 0 1 12 +, $ # !
/ & '! ! ' 7 ' > +% !
& " & '! $ % !
! & '! C#D ! , - C#D ' #
8"# & & !
# & '# '! %
0 @ ., ,
@ . - - @ .
@ .
% . & * ( & ' ! & Æ ! & 8"#
0 '! ## ' " # ! P # & & ! ' * # . # ! "#
* ! & . ! & ! # ! ' '! # # ' & " % 2 . Æ ( & &# " '
! 1 12 +. ., 7 > % & '!
' "# ! # !# G # 8"# ' '! ! ! 8 # / * # & 8"# # '8 0 " ' *# 2 ' ! ! * C& 8"#D & ' " '
Q ; & ! '! " # " ' '
½ + 8 +0 &
4 & ½ " '! # ½ , & 8"# & & 9 # 8 1 9' 1 9' ? K! > & 9 8"#
! & E>:> > : * *# +! '! @ @ @ @ @ ! ' @ # $&
+ ½ '8 7 ! ' ! 9 ! @ & # '!
4 ½ ' '0 3 0
+ +% +% & ! ! / 9 & / & # '! @ +% 0 @ / ½
$&
½ " '! # #
9 ! ½ , / ) ./ & " '! ) & 8"# & &
Infinity conditions (imposed pressure) Computational domain
INLET
L5 L2 L3 L4 L 5+k k=1,N
OUTLET
L1
; * * / ' 1 9' ' ! # / 0 / . ( ' % < " ' ( ( & . # ' # & % & % ! @ & @ ./ '0 @ / ½ - @
2
# & !! ' & 8 ' + 9 ! ½ $ ./ & ' * ! " ' #
"% # "% % # ( 7 @ ' & @ #! ./ & / !
! 0 1 12 +., * & # " & '! & $ # .>:>
! & %
" & '! & &
: 7
+% # / @3F$
## & " '! 0 @ @ 7 # #
"% > 4 "% & ! " ' 7 @ ' & @ #! @ @ & / $ %
! 0 # 2 +%4, 7 8 ' E, ! ! E
"% 3
"% % ( 7 ! +% ./ ) 7 # / @3F$ ## & " '! @ @ @ @ @ @ ( ! ( ./ ./ ) > # ! & @ & @ @ @
& / & # & ./
& $ & ./ E & ( "% % ' # / & "% !! !% ! # ! / * 8 & "% 9# ( ! & % ½ 0 !% !
½
% R
½
½
' R (
!/ 0 2 +04, 7 ' ( .>:> 0 ! ' ( ! ( 4 "% # ' ( #
( "% # ' 4 "% # ' % ( 7 ! ( @ @ @ @ ( & ./ ) 3 '! @ !# # ' ' " '! @ # ' ( *# 0
! ' ( / @3F$ ## & " '!
0 @ @ @ & @ @ !! # & 4 "% % & # !
& "% # ' # ! '0 % ) # ) ) ! & % 1# ! $ # & ./ ' ./
! " #$
+ % & ! 8# + *# 7 # 8 8 8 ! # * #8 + 4 # @ 8 %8 G # #8
&
4 & 0 '8
+ E>:> & ' x2
x2
x 2 =l Inlet
Slip walls
x1= l
u1
U1
Outlet
U2
x1
x 2 =-l (a) Axial inlet velocity
(b) Boundary conditions
> @ 0 0 8' 7, $ ) ! ! ( % ! # # + *# 0 )
-
)
' & + ! & 9
$
# E>:> $8 & # ! & " ' ! + & * 4 & & 0 & 8# 0
:0 > : 1 9' & % & ! 1 ! &
$ & / %
& 8"# 0 ! !
! - / ½ ) !
' / ½ E>:> & 0 / .¼ ( : # ! & ./ & ( Æ 8 & / 1 9' 1 9' ! ! & .¼ ) & .¼ )2 ! 4 ' E>:> & % & ! & ! / ½ # / & & ' E>:> % # '! @ ./
: 0 > : E>:> & ' . ) $ & 8"#
:0 * : 8"# E>:> & ' . )
:0 > : "#
½ ' E>:>
& & '# ! (
# & ' & (0 ) ) 1 (2 ))) ( )) 2 *# ) ! & " ' ( & ' ( 7 ( & 2) ' ) ! ! - )2 ' # # & " ' *# ' # : Æ .¼ / )2 ## 1 9' ' '! ' 9 ' & ) $&
" ' &
0 >& * A 5<%
2 & & & '! # ## &
0 >1 . =,>,
2 *# ' & 8"# : $ '! !# 7 #
+
" ' '
E!8 9 / ' & 8"# 8 #
! % 4 & ' , 6/' 5 ! 8 % +
*# # 8"# : ' . )2 $ '!
& ( 2
! " ' / " & . '9 * . )2 ' A & / )) )2 ) 2 ' 0 . )) &# & . ) *# ' ' ! & $ # . . ) # " ' ! & . ! & .¼ ./ ! 1 9'
0 >' . =,>,
2
0 >< =,>, 2 * ! & & "# : *# ) $ + # & ! !
' & # $ ! # # ( < )2 0 (
' )0 # ! "% ( *# ) ' % & & 7 # *# & & & ! & & 8 "# E>:> *# 4 & & / & * ! & " ' 9 : *# ) & " '
! #$ # *# ' & & # & & ' % " ' # " ( & # 4 # # % " ## ' & " ' x2= 2 l Hot gases
Non reflecting boundaries
x1 x 1 =5 l Fresh premixed gases
Laminar flame front
x2=-2l
% ! + *# ! !
(
& + ' *# + " ## & ' '0 # # & " # ' & # ' # 7 # 8 ./ 8 & '#0 ( 3 ) 4 ) 1 02 )
2)
x2= 2 l
U
u1
T
T1
0
1
Y1
T2
x2=-2l (a) Axial inlet velocity
(b) Temperature
(c) Fuel mass fraction
' 3 4 ( ! # ! ./ 1 & # ! 2
>' % & S #! " * )) ! + ( " ' % + # + 7 ) " # & ## ' & # 7 ! +% # $8 / * & : & : 8"# E>:>
8"# , E>:> : & / ) # # !! ! ) & + #! *# E
2
"
' + % ! *# * *# #! #8 ! ! + 7 ! ! ( " '
" # ' & # # " & % # )
>' ;& # ' & : 4 78 # ! + ' *# 2 % 8
# # ' E !# ! & ' 1 & " ' 1 ) ' #
= '! / &
>&
% & #$ $' !/ 5# 2& $ ' 9 ' # '! 9 " ' 0 '!
% & '! $
9 ' # '! 0 '! ! '!# & + C'## D # 4 #+ & $ ' !# : ! # # 4 > 9# '! & A! 9 : ' A! 9 $ &' 9 & # " '
( % & '! " & # ! & + ! 17E '
'## * @. FE + ! ( ! ! ( FE '!
! #+ ! & '! > #8 # ' & '! *# 0
; '! CD '! A! 9 ! # '!# 8 ! & E!8 9 / '!
E '! C/D '! ! '!# & ( # # " ' # ! Physical wave ("p"): group velocity equal to flow speed
Numerical wave ("q"): negative group velocity
Mesh points
+
$ & 8 ! / 5 0 ! ! -5 ) ! !
2
A! 9 : ' ' C/D '! # ! # ! ' & & ! 5 & 4# # $ # 5 #!0 C/D '! ! 7 # & 5 ' $ ' &/ % & C '8D C'## D ' ! '!# / R 8 4 % # ! #! 5 A! 9 : ' $ # &
# & & # ! # ! 5
. , . , * .
C 6 .& .' .&'6' ½
C @ > 2 > $ 8
" ' C/D '! & '! !# "0 !! '! 5 ' '! 5 C/D '!
' ! ! & 0 ' %8
# ! '! # !
" ' E C/D '! # ' ' A! 9 : ' A8 ! 9 ; 0
$ # & # &/ 8 # FE @. ' # & & C/D '! '
E '! G # % '! ' '!
9 ' & : 5 ,
D . * * / ; > ;
7 % *# ' # & # !# '! #
8 & ' # ! & C/D '! % 5 *# ## & '
! 9 : & C/D '! # *# '! ! & # ! / ' '! ! # *# : '! & ) ( ( )2 " '! *# : & "# 7 A! 9 : ' : '! ! " C/D '! & ## ' # 9 *# & C/D '! # " CD '! ## ' , / ! & " & C /D C/ D '! ! ( " & '! # & C/D '! ## & ! 9# & & " & C/D '! CD '! ## ' : = ; @ ' % " ' ! # & &9 & '! +% / & 0 % & # " '! 3! @. FE
0
#
& + !# &
INLET
OUTLET Incident physical wave Speed = u+c, amplitude A1
Reflected physical wave Speed = u-c, amplitude Ap Reflected numerical wave Speed = group velocity of wiggles, amplitude Aq x1 = 0
x1 x1 = L
)
% & *# ## ' " Æ 8 ( #! *# 0 " Æ & '! " Æ & '! & '! 7 / ( & " '! 0 7 / ( & " '! 0
!/ 6 ! & / ! '! / & #! #
'! !# #
& 8 '! # 8"# '89 ' E>:> '
' ! ! & " 0 & & ) *# ' & " ' 0 ! % # " ' ## # 8"# *# ! + & ! % ( ) # & 6 &
8! ! % # ! % 0
)
-
!6 ! !6 !
6
%
-
1
2
! % # 1 ! % ! % & ! ' # &
# & ! & & ( & 7 1 " & ! % ( 0 / & ! 1 *(#
+ ( 0 ½
- % 1
1
2
" ' & & '#0
1 02 ))))
2
! % & ) ) + 1 # 0 , ,
x2= l Non reflecting lateral boundaries Non reflecting outlet
Uniform supersonic inlet flow at speed u0
x 1= l
x 1= - l
x1
Initial vortex
x2=-l
; *
10 )2
0 ))))2
22
$ # & "# E>:> 8 ' & & 0
:0 1& & 8"# 1 9' :0 E 8"# E>:> ' . )2
*# ) ' ! # ! + # : & 0 F #! ! & ' ! ! # ! " ' ' ' ! " ' & $ *# ) ! % # 9' & #! ! # & ! ! ! % ! ' " ' % ! % ))) 7& 0 ! % ! *# ) > : ' ! % ! ' # & ! + +0 ! # ! % C/D '! ' & ' ! " ' '! # # ! " & & ' ! % 7 0 ' & ! ' $ ' # 9' % ! )2 % ! 7 # " '
: &9 '
@ *
>& 9 * * ) 2 ? * 2 * *# ' 8"# E>:> : *# ) , ! % ! 0 ! + ! # ! + & " '! ' 7 0 # ! % # ! % ' % ! ' ) % ! + & ' # ! &
0 A! 9 ; & ! / ' & ! : = &
" '
!
@ *
=,>, >' 9 * * ) 2 ; * C D & &
( ! $ ) #$ % ; " ' ! ' 1 " ' ' 8 ' *#
# ' 8 & &8' 0 # (0 ) " ' 0
P ) )P ) 2
0 ' % 1 1 02 2 < ) ! " ' 5 0 5 0 )
0 8 ' E 8"# ( x2= l INLET: imposed velocities and temperature
OUTLET
x 2 = -l x1
x1 = L ISOTHERMAL NO SLIP WALLS
+ $ 2 ! " ' 5 $& % # & &
! # &
# # 0 ! 5 8 21 2 !
0 0 % ! + & #! 0
! 0
8 !
5 0 0
2
% + ## # / ) ' # # % &
0
8 0
0
2
' % ! % 0
0 ! 5
8 ! 0
)
E ' '
' 4 & ! # # ' #
! # / ' & # & 0
1
" ...!
+
!
2
; / +
>&2 =,>, >' * =,>, ><
& : & 1 9' 8"# E>:> & : ' . )2 & : '
½
$ 8 ' ' # E>:> E, * ; " ' % ! & & ./ 2 & # '! 0 @
! !
! ' & E>:> : 7 !# *# #! ! & " ' & : *# 8"# E>:>
: *# "# E>:> : *# " ' ! ! # ' "# : *# ' ' & : & & )
2 + >& *# + & & ' ' E>:> : : *# & & + 0
4 )) ½ ½ # ! 4 ' #! " ' ))
!
!
,
>' =,>,
' % ! + ./ 2 2 ! #! *# 2 & E>:> : # / # # # # : *# 0 #
# " ' ! + *# 8"# E>:> : ! *# 0
# & # )!! E ! ! # ! + *# + *# E
% / ½ 0 " '! # # "# & : #! & & !8 & '! ! + *# = '8 ! + ! *# ! # & ' +#
2 + =,>, >' 3 4&7
!
2 + =,>, ><
& .E 2 ?2 > 2 )2 C 2 + F 92 &554 ; * . 2 *
; , : 2 + 2 %17.%'' 1 .C 2 C F > 2 ) &5%5 ,
* 1&'.1&% ' .C 2 C2 > 2 )2 8 2 E = F 9 2 E &5%< 9 G ; , : 2 + 2 747.7&1 < .C 2 C2 > 2 ) F 92 H , &5%% ; * ; , : 2 + 2 ('&.('% 7 2 H F E2 + &55' 9
: !
'4'I'&'2 # J 2 ; F 2 , K &55% ; 2
" ; , : 2 + 2 (5'.(55 ( 2 9 F 8 2 , # &5%& . $ &('.&%7 % 2 ) &5%< # $ 8 +. , 5 2 , &55( % & '( '! ! + )2 :=+2 ; &4 2 ,2 # 2 0 F @ 2 ) 144& 9 # G ) && 2 ,2 +2 ; F ) 2 > &55( : . : * + * ! # + 5(1%%& &1 2 )2 @ 2 )2 # 2 0 F +2 ; &55% 9 # * , $ , , ; 2 = 6 -2 J&.%1 &' 2 ? ; &554 C *
. : ,( $ ,
1<7.17'2 , ; 2 -6=. &< 2 ? ; &55' 0 2 %(.&4' &7 2 ? ; F >2 + H &5%' * 11(.17J &J 2 ? ;2 H 2 2 H 2 E F C2 , 8 &5%( = . , 1'<'.1'7' 2
2
&( 2 ? ; F EE2 + &5%5 0 * &(.'( &% 2 ? ;2 + 2 = F 2 E ) &5%( =
. 9 ''5.'(7 &5 2 H ;2 82 E : F 0 2 C E &55( 0 6 * 6 &.1< 14 2 H ;2 82 E : F 0 2 C E &55% #G * &.&7 1& >2 +2 CL 2 )2 2 D2 > 2 +2 , 2 E2 ) 2 >2 ) 2 F $ 2 &55J #* * / - ; , : 2 51' . 5'4 11 >2 F , 2 K M &551 D . . ; , : 2 +. 2 1'&.1'( 1' >2 2 0 2 C K2 , 2 , ) F , 2 K.M 1444 #* ,D6816=1 7<<.7J5 1< >2 + H &554 * &&&.&17 17 > 2 E &5(< E /0 1% % 2 157.'4% 1J >N 2 E F ?2 0 &5J% , 3 ; , : 2 + 2 &J5.&%& 1( >2 K ) F 9 2 K = &5%1 = $ . 444 5 577.5J& 1% >2 E &55< & ' + )2 #
, + 15 >2 E2 +2 ;2 8 2 ) F ) 2 = &55< - ) = 8 6D 6= * 5 &.'1 '4 >2 E2 +2 ; K F 8 2 ) , &55' - ) = 8 6D 6= * 6 ') 17.1.&2 17.1.J '& >2 E2 +2 ; K F ; L 2 ) &55< . 5 , 1<(.1J& '1 > 2 82 E 2 +2 ?2 K2 ,2 2 >2 H2 E2 F + 2 ? &554 : . * 1) 9:0 D8 ; , : 2 + 2 %&(.%1' '' > 2 >2 # 2 0 F +2 ; &555 ) = =D* * J5.%' '< >
2 K E F , 2 = &5%' H '7 > 2 9 9 &57< 4 EC 8 'J > 2 F , 2 ? D &5J' $ ') + '( > 2 ? &5%4 ; . * : ') @ '% > 2 ? &5%% ; * ; , : 2 + 2 <(7.<%%
2
'5 <4 <& <1 <' << <7 <J <( <% <5 74 7& 71 7' 7< 77 7J 7( 7% 75 J4 J& J1
> 2 ? &5%5 ; G 4 /0 &4& > 2 ? &55' , , <'( > 2 # F ) 2 ? K &557 $.
<7(.<J< >2 K &5%J ;
(5.51 >2 K F > 2 K 8 &5%1 0 . * %(.57 >2 K F > 2 K 8 &5%1 8 ! # + %144J' >* 2 C2 )2 2 8 2 = F 9 2 + &5%% // 444 5 (%'.(54 > 2 E F @ 2 ) 1444 9 * @. : 40 7
<<5 . <712 ,:E=# > 2 E2 @ 2 )2 > 2 8 F ; 2 &55% ) =
9 # * " ; , : 2 + 2 5&(. 51( > 2 &5(% /% 2 + )2 - L + E
, . + J > 2 &5%< E 5 2 'J&.'(4 > 2 &5%% ; , 1<7 > 2 F ) 2 E &55% ' # ;#,8=:+ > 2 +2 8 2 2 +2 ; F > 2 ; &551 . ; , : 2 + 2 74'.7&4 > 2 8 F ; 2 &55% ; * " ; , : 2 + 2 5(&. 5(% > 2 )2 C 2 + 8 F C2 O K &55J > 2 E 2
$ . &(J.&5% > 2 + &5(( , 4 /0 ''.7< > 2 +2 , 2 ; F ? 2 K 8 &5%& $ ') + >2 H = , &5%4 ; * :
&&72 @ >2 H = , &554 , / + 4 '&7.''7 >2 H = , F ,2 &55&
HP , / 4 + 4 8 90 1&(.1<4 >2 H = ,2 , 2 E F 92 + &5%5 ;
* : / 0 )
7<&.7J'2 9
2 @ >2 H = , F 92 + &5%J + $ * 17' >2 H = ,2 92 + 2 E2 C F E2 K > &5%& ; * &1(.&<4
2
J' J< J7 JJ J( J% J5 (4 (& (1 (' (< (7 (J (( (% (5 %4 %& %1 %' %< %7
>2 H = ,2 92 + F E2 K > &5%< 0 $ * &<'.&(1 >2 H = , F E2 K > &5(( * 4 4 15& . '&5 >2 H = , F + 2 = &55< 9 : / )
J'.&&'2 + > *2 C2 2 H2 +2 ; F 0 / 2 K &55J 0 . . 1(.<< > *2 C2 +2 ; F 0 / 2 K &55( + * . $ 5 &5&.1&5 > *2 C2 +2 ; F 0 / 2 K 8 &55< . : , $ ,
&7(.&(<2 , ; 2 = 6 - > 2 K F , 2 &5%< ; 5 '<& > 2 K F 9 2 C &5%1 $ ' , - + > 2 K F 8 2 + &5%% : , $ ,
&5.1(2 , ; 2 = 6 - > 2 + F 2 ; # ? &51% )G 55%.&447 > 2 ? F 0 2 0 &5(4 9 <1& > 2 ; ) F DP 2 + K &5(( . 3- ; , : 2 &74' . &7&7 , 2 ? 8 F E 2 &55J 444 . 4 : + 5J.47&J , 2 &557 % 2 ) , 2 2 8 2 , F +2 ; &55J : :
%'.&&12 = : 2 H + 2 ) , 2 2 @ 2 )2 92 02 ) 2 =2 >2 E F +2 ; &55< /;4 < 5.&J , 2 2 @ 2 )2 92 02 E 2 #2 ) 2 = F +2 ; &554 ,
* : 40 0 $
&5.J<2 ? 2 , 2 E2 E 2 #2 ) 2 =2 +2 ;2 @ 2 ) F 92 0 &5%% #* . 145.1'J , 2 E F +2 ; &554 0 $
&.&7 ,2 F >2 H = , &5%% * ; , : 2 + 2 (5&.(55 ,2 2 + 2 > F >2 H = , &554 E * ; , : 2 + 2 %45.%&7 ,2 2 2 , F ;L &554 : , $ ,
1(&.1(52 , ; 2 -6=. , 2 E 82 C 2 ) F 2 &55< ; G
5 , 114.1'J
22
%J %( %% %5 54 5& 51 5' 5< 57 5J 5( 5% 55 &44 &4& &41 &4' &4< &47 &4J &4( &4%
,2 K2 >2 + H F E2 = = &5%5 + * . &4&.&1& , 2 8 ,2 , 2 F H 2 8 &5%5 + , /0 +
1J7( , 2 K 82 # 2 ; F H2 ? &55% ; . * &7.<% , 2 E2 8 2 E F + 2 = 1444 0 6 G = ; , : 2 + 2 , 2 H F
2 : C &5%( : * '7'.'(7 , 2 H F
2 : C &55& ; * (.1J , 2 ? H F ) 2 K &55& = :
! # + 5&41J% , 2 , , F 9 2 > # &5%4 D * 8 # $ &%5.14( , 2 +2 92 , H2 , 2 H F
2 : C &5%% @
* ; , : 2 + 2 ('5.(<7 , 2 , F 8 2 H M &55% ) * ''J.'<% , 2 8 F 92 , H &5%< &1'.&17 ,2 8 F ,2 E ? &5%5 . 8 # $ 1&.<( ,2 + &5%7 ) * , &.75 ,2 + F C2 + &5%' ;
G 5 % 2 1<7.1J' ,2 + F K2 C &5%' + * 5 ,2 +
9&.9&1 ,2 + F 9QL2 &5%< ; 84; 4 < 15&.''% ,2 + F ?2 0 &5%1 #G G *
* 5 17&.1%1 , 2 , ?2 2 ? F 8 2 &5%& $ 3= ; , : 2 + 2 &7%'.&7%5 ,2 , E &55J , , <1( . 745 ,2 D2 )2 02 @ 2 ) F +2 ; 1444 * , &%<'.&%J' ,2 ;2 9 2 F E2 + &55' > . 444 5 &7(<.&7%1 ,2 ? &55( ) Æ . , 4 &<%7 . &<%( ,2 ? F > 2 ? H &555 .
* , 4 (<J . (<%
2
&45 &&4 &&& &&1 &&' &&< &&7 &&J &&( &&% &&5 &14 &1& &11 &1' &1< &17 &1J &1( &1% &15 &'4 &'& &'1 &''
,2 ? F 2 K K &55< $ , 4 1%J% . 1%(4 ,2 ? F 2 K K &55% 75' . J4J , 2 ) C2 )2 2 0 ?2 K2 8 2 E F 9
2 0 &551 @ ,2 9 &57& $ + : 5 4 /> &J'.&(% ,2 9 &571 $ + :: 5 4 /> . , 2 > F +2 ; &55< #G G :.
G ? ; , : 2 + 2 &'%'.&'54 , 2 > F +2 ; &55J G
9 &&&.&'( ) 2 ;2 , 2 ;2 ) 2 =2 2 K , F 2 &55J
G 81 D1 =1 G 1(&.1%( ) 2 = &551 ; 8 . G * &J'.&%& ) 2 = F , 2 &551 ; * . G J(.%7 ) 2 =2 , 2 F E 2 0 # &5%J ; G * 14'.1&( ) 2 =2 C2 @2 ;L 2 2 , 2 E F # 2 # &5%( ,
* : / 0 ) +
75&.J'(2 )2 8 &%&( , )2 8 &%'4 4 , &'J ) > H 2 E2 2 K K2 H2 C F ,2 ? &55% : . * ) &47.&11 ) 2 K # F H 2 K D &5%5 + . .
$ 2 2 '75.'(< ) 2 K # F H 2 K D &554 ; . '7%.'(4 ) *2 2 92 > F + 2 &5%5 D
'5.J4 ) 2 > F ,2 + &554 ; *
* 'J&.'(7 ) K 2 + # F 0 2 8 &55% 9 *
. , 4 115% . 1'&< )2 &5%< . # + %<41'4 ) &5(' 0 5 7 '&<'.&7< ) 2 K ? &5%5 0 * (&.%% )2 + F @ 2 9 &55J ; * . . * * - ; , : 2 + 2 1''.1<4 ) /2 , &55< : / )
'(7 . <(<2
2
&'< ) 2 ) 2 2 ) > F ;2 , &554 ; * G 6 * ; , : 2 + 2 '17.''1 &'7 )/2 + C F 2 ? 8 &5%& # , - + &'J )2 K 02 2 )2 2 ? 92 +2 E F C2 9 + &55< ; * * . 1&'.115 &'( )2 K.E2 B 2 E F > 2 ; &555 ') ):.: ; 1 ( /0 &, 175.1J< &'% )2 K E2 > *2 C F > 2 ; &55J ') < : G + ! # + 5J&5J< &'5 )2 K E2 @ 2 ) F +2 ; &55' * &4&.&&( &<4 )2 02 , 2 + F 9 2 E &55J 9 . 5 &.'J &<& )2 + &5%% G = $ 5 8 4 1<7I1J( &<1 # 2 ; F , 2 K 8 &55J - G * . &%<.141 &<' # 2 ; F 0 / 2 K &55'
* 15'.'7& &<< #G 2 # F + 2 = &5%% G ; , : 2 + 2 J5'.(44 &<7 # 2 0 F 92 , H &55< 0
$ ? ; , : 2 + 2 &'<&.&'<( &<J # ; 2 #2 2 , K F 0 / 2 K &55&
* . &77.&(' &<( #$2 > F E 2 &5(( J15.J7& &<% #2 F C2 @ &55< 4 @ &<5 #/ 2 D 2 C 2 F 9
2 ) &551 : G $ . ; , : 2 + 2 &<J7 &74 0 2 + ?2 0
2 ) F 0 2 0 # &5%< $ ; ; , : 2 + 2 %7.54 &7& 0 2 &5J5 $ : , $
1'&.1JJ2 &71 0 /2 #2 H 2 @ F 92 1444 )G .G
= ; , : 2 + 2 &7' 0 / 2 K &55( 9 : 8)
15 . <(2 9 # + $ . @ &7< 0 / 2 K 8 F + L2 E &55( $ @ @ &77 0 2 02 ) 2 >2 @ 2 ) F , 2 E &55<
$
. * ?
; , : 2 + 2 &1('.&1%& &7J 0 2 02 92 02 @ 2 ) F , 2 &55' D . . * &.1J
2
&7( 0 2 , C2 ?2 8 F 92 , H &555 : 2 (((.(5< &7% 0*2 2 C2 02 E 2 2 2 E F 82 K &551 : , $ ,
<4'.<172 , ; 2 = 6 - &75 0 2 E2 ?2 82 C 2 E2 2 C +2 C 2 ) E2 >2 , ;2 82 H2 C 2 ? , F 92 @ &557 C:.E / . C:.
C:.576447%2 C : &J4 0 2 , F 9RR2 , &55< 9 G / ? ; , : 2 + 2 &17( . &1J< &J& 0 2 , F ER 2 : &557 9
G / 444 5 1''5 &J1 C2 0 &55' . , &1%1.&1%< &J' C 2 E2 EÆ2 2 2 F E2 C &55( D * : @ +
15& . '442 H + &J< C 2 E2 + 2 -2 E2 + F ,2 ? 8 &55& . , 4 &(J4 . &(J7 &J7 C 2 F H 2 &5%% D . * ; , : 2 + 2 JJ7.J(7 &JJ C 2 02 2 E , F H2 D E &551 #G . ; , : 2 + 2 11'.1'4 &J( C 2 F E2 + &557 ; $ * 5 , 1< . '( &J% C 2 F @ 2 9 1444 ;
* 5 11(.1J4 &J5 C 2 E &554 =. # $ 444 5( 1474.147% &(4 C2 @ &5%% ! ' %% % ) N 2 + @: &(& C2 @ &555 ) > R &(1 C2 @ F 2 E &5%( , * * 5 , '1(.'<7 &(' C2 @ F 2 E &5%( #* * .
* 1'.<5 &(< C2 @ F 2 E &55'
* 1<&.17J &(7 C2 F + 2 > &551 + 5 1<(.1(( &(J C2 F B 2 M &55J * , 4 &11<.&1'J &(( C2 + &5%5 E .
, &.&4( &(% C2 + &55< * : / )
<(7.7(12 + &(5 C2 : &5%( +
2
&%4 C 2 02 >2 H F , 2 K M &5%5 , ( 1<& &%& C 2 0 , &55J , * - ; , : 2 + 2 '%& . '%% &%1 C2 O K2 8$2 E B2 9 2 E F ? 2 1444 9 E . * <&.7% &%' C 2 9 &555 @%0 & %2 %% &% ( + )2 - L &%< C 2 D &554 ; * G ; , : 2 + 2 (<'.%'7 &%7 C 2 D 9 F 2 C K &557 : G
* &4(.&&< &%J C 2 H2 9 2 ) C F 2 = &5%< ) ') + &%( C2 > F R2 &5(% : 4 5 4 '<'.'7( &%% C 2 # &5%( ; G ) , # 717.7'7 &%5 8 2 > F C2 ) &5%<
; , : 2 + 2 117.1'1 &54 82 E2 K 2 @ F > 2 ) &55J ; :
%& . &7<2 H + &5& 82 B2 /2 )2 , 2 0 # F @ 2 C &55J : .
- ; , : 2 + 2 1(&(.1(1' &51 8 2 M2 ;2 E F ;2 E H + &55J , * : @0 + 2 4
&752 &5' 8 2 ) K F 2 0 8 &5(1 9$
+.&5<2 = &5< 8 2 ,2 >2 E2 + 2 = F ) 2 8 1444 S &&(.&15 &57 8 2 # F ,2 1444
* = ; , : 2 + 2 &5J 8 2 )2 , 2 >2 +2 ; F >2 1444 =
. '57.<&( &5( 8 2 ) ,2 ) 2 E ,2 + 2 > F >2 K &5%% ; .
G ; , : 2 + 2 7%5.75( &5% 8 2 ) , F +2 ; K &554 ; 9 * * : , $ ,
1%&.15%2 , ; 2 -6=. &55 8 2 ) , F +2 ; K &551 = 9 G
* 5 <47.<'J 144 8 2 C ? &5(5 = 5 , 111.1'( 14& 8 2 K F ; 2 1444 , 0 E * = ; , : 2 + 2
)
141 14' 14< 147 14J 14( 14% 145 1&4 1&& 1&1 1&' 1&< 1&7 1&J 1&( 1&% 1&5 114 11& 111 11' 11< 117
8 2 K 2 D/2 F H 2 8 &5(< ) I 5 <&(.<<< 8 2 K > &5%% $ EC.8 8 2 9 &5%J :. 4 /0) &((.1&( 8 2 9 &5%( = $ $ J7.54 82 E &55% %2 % ' ( + )2 # , + 82 E2 >2 E2 +2 ; F @ 2 ) &55J * : @ $ ') / /
14&.11<2 # ;#,8=:+ 82 E2 @ 2 )2 >2 E F +2 ; &557 * 3 ) &5.&5 8/ 2 K D &5(7 EC.8 8 2 , &5%% 8 $ ! ') K ? 8 2 K D2 ,2 , 0 F > 2 > &5J5 $ 2 K ? F 82 , E F 8 2 + &5%< +
5 'J7 8 2 8 , F 8 2 ? &5<5 )G ! , ; , : 2 + 2 17< . 1JJ 82 ? E2 @ 2 F C 2 &5%J 8 $ 2
G 3 ; , : 2 + 2 &%7'.&%J4 :2 8 C2 9 2 ; F 0 / 2 K 8 &55( 9 . , 4 '%1J . '%'' : /2 F 92 , H &5%1 * *
* 36 ; , : 2 + 2 '1(.''7 : /2 2 E2 H F 92 , H &5%1 #G 2 G2 * 6 * 15'.'4% K2 K &5%J * %&.&&J K2 K2 9
2 K F H2 &5%% : * ; , : 2 + 2 747.7&< K 2 E &551 E. * ! # + 5147%5 K /2 ,2 , 2 > F +2 ; 144& - . K /2 K2 9QL2 2 2 E F 8 2 0 &55( * 5 &<5 I &(& K /2 K2 ?2 2 G2 + C F 2 &55' ; 5 J7.54 K 2 ? F 9 2 > # &5%1 ) TD * T 8 # $ &%5.1&1 K 2 ? + F 9 2 > # &5(1 ; / 1. $ 5 $ # $ '4&
11J K2 ; &55< E ? ;
, : 2 + 2 J%(.(4< 11( H 2 H2 C 2 K 82 D2 # F >2 K + &55& = &&7.&'< 11% H2 2 +2 M H F @ 2 ) C &55% ;. 2
2 2 * <7.J& 115 H2 + E &555 ! 0 $ '! ! ' + )2 - 1'4 H/2 F E 2 0 # &5%J G * J7.%< 1'& H 2 @2 9 2 F B2 @ &55J
* . - ; , : 2 + 2 1<5.17( 1'1 H2 @ F $ 2 ? E &55' G 1(<.1%1 1'' H2 @ F $ 2 ? E &55% ) E K )G 0 - 0 , E 444 5 14<<.147< 1'< H2 ? E F , 2 E # &55' 0 0 # $ EC 8 1'7 H
2 K2 C2 K 02 2 E F E 2 K &5%7 +#E:O 0 . =)%7.%1<42 = 9 1'J H
2 K2 2 0 E F E 2 K &5%5 , .:: 0 , H + C.+ , H =)%5.%445>2 = 9 1'( H
2 K2 ?/2 K F E 2 K &5%' . 2 2 G Æ =)%'.%1452 = 9 1'% H 2 K D2 > 2 ; ;2 >2 + H F /2 K &55< =D* ,D *
<J4.<JJ 1'5 H 2 K D F C2 ) &5%5 #* . 5 , &(1.&51 1<4 H 2 K D2 @ 2 92 H 2 )2 8 2 C 92 C 2 02 )2 K ? F D
2 H &5%& E 444 5 17<.1J1 1<& H 2 E &5%7 8 5 '&.7% 1<1 H 2 &5%% * '5& 1<' H 2 &5%5 9 .# + ::
* '5( . <&' 1<< H 2 &554 9 . + ' E* G .
G 5 <&& . <'7 1<7 H 2 &55& 9 . + J E G * 5 'J& . '5< 1<J H 2 &551 9 + < G (7 . 5J 1<( H 2 2 2 ? F ?2 0 &5%% 0 $ , /0 4 1(1%.1('& 1<% H 2 ; E2 E 2 ) F ?2 ) # &5%J ; . $ 3 ;
, : 2 + 2 &7%'.&7%5
1<5 174 17& 171 17' 17< 177 17J 17( 17% 175 1J4 1J& 1J1 1J' 1J< 1J7 1JJ 1J( 1J% 1J5 1(4 1(& 1(1 1('
H2 K2 E2 + F E 2 &5%( ; 5 &''I&JJ H2 ? &55& , . .
444 5 7<(.77< H 2 9 #2 0 2 2 ,
2 > F 2 K @ &5%1 $ K ? H2 + =2 >2 H = ,2 C
2 ) F 2 > &55% #* &51.14J H2 + =2 2 >2 >2 H = , F 9QL2 &55' 0 * 1(J H 2 M &554 E G * @ '1( . ''< H 2 M F > 2 ? &555 , , 757 . J%( H2 = &5<& ; / 4 :/ '4& H 2 &5(7 D 5 7 '55.<&4 H 2 8.D &5(4 : , 4 1((.15% H2 H H &5%J , $ K ? 9Æ 2 + &5'5 + ' A! 8 , 2 $ 9 2 82 , 2 E2 H 2 ) F > 2 + &55% : >E9
&7' . &(' 9 2 9 F 9 /2 # &5%< ,2 2 ( - B 2 # 9 C . # E: 9 2 > # &55J
:
&5' . &512 H + 9 2 E F , 2 &5%5 , G * * 5 , ,) &'<.&<' 9 2 E F , 2 E &5%% G . * . (5.5J 9 2 E F , 2 E &5%5 G * . (5 92 , H &5%% ) ;
, : 2 + 2 &'%&.&<41 92 , H F 2 , K 1444 2 * , <75.747 92 , H2 B 2 ) 9 F M2 C &5%J + * * 3 ; , : 2 + 2 &<&5.&<1J 9
2 ; ?2 9
2 K2 = 2 ) F 2 ) &55' 9 * HLL *
&<J.&J4 9 8 2 + &55< 2 ! # , + 9 2 &551 , G 5 , &J.<1 9 2 F 82 K &5%% ) = 5 C 17.<'
1(< 1(7 1(J 1(( 1(% 1(5 1%4 1%& 1%1 1%' 1%< 1%7 1%J 1%( 1%% 1%5 154 15& 151 15' 15< 157 15J 15( 15%
9 2 E &554 ' H + 9 2 E &55(
. : 8)
& . 1%2 9 # + $ . @ 9 2 E F E 2 D &55J = . 4 /0 <7 . %1 9 2 > F @ # 2 C &5%( ! $ 1 + 92 + F ?2 0 &5%( + * 1'( 92 + F >2 H = , &5%& , G * 444 5 147.1&' 92 + 2 >2 H = , F E2 K > &5(5 #G * 1%7.'4& 92 + 2 9QL2 F ?2 0 &5%' * . 9 17( 92 + F ?2 0 &5%1 * 1%( 92 + F ?2 0 &5%' * . &.<1 92 + F ?2 0 &55< ; : / )
1.J&2 + 9 9 2 H2 >2 H = , F E2 K > &5%< * &55.1&' 92 &5(< ; G
4 4 &44( 92 F , 2 &5(J G
57.&&( 92 F ?2 0 &55' $ D* - + 9 2 F , 2 K 1444 )
* = ; , : 2 + 2 9QL2 2 D 2 +2 @ /2 F 8 2 0 K &55< #G . 9 G : , $ ,
7.&%2 , ;
9 2 0 , F =2 &5(7 ;
. 2 G &45.&1< 92 K 82 #/ 2 D2 C 2 F 2 0 &554 - $ ; , : 2 + 2 <<&.<<J 92 9 F 2 ) &5%< . * $ 5 '''.'71 92 H 8 1444 D G G =
; , : 2 + 2 92 H 8 F >2 H = , &55% , G G " ; , : 2 + 2 1&J7 . 1&(& 9/2 #2 H
2 K F E 2 K &55& 0 + + 8. C + H =)%(.%1<%2 = 9. E E2 + 2 2 K K F E 2 ? &5%5 #G .
* 5
15(.''1 E 2 > 0 F E 2 > 8 &5(J D 3- ; , : 2 + 2 (&5.(1(
155 E 2 #2 ) 2 #2 +2 ;2 @ 2 )2 92 02 , 2 F # 2 # &5%5 8 ) * > 9 # 2 @ 2 > 2 5%.&&( '44 E / 2 C E F E 2 @ : &55& 0
:@ , , &(J.&%' ; 0/ C @/2 12
<5.7%2 &55& '4& E 2 ; F > 2 &55< * $ <<'.<7( '41 E 2 ;2 2 K E F >2 , ; &555 0 * . *. . + :: ( 77(.7%1 '4' E 2 0 # F > 2 K # &5(( ; . ;
;?.5.+-2 + $ '4< E2 #2 > 2 ; F +2 ; K &55( = * &5% . 11' '47 E2 #2 + ) ,/2 2 > 2 ; F +2 ; K &55(
G * 1<' . 1%1 '4J E2 E F E2 > K &5%1 0 5 1'5 '4( E 2 0 F , 2 K + &55( . * : @ +
&4' . &&<2 H + '4% EE 2 + 2 C 2 ; ,2 H 2 F H 2 H &55' 9 . * , 4 &41' . &4'< '45 EE 2 + 2 E 2 F H 2 &551
. . ; , : 2 + 2 1(& . 1(% '&4 EE2 + F C2 + &5%5 ) * .
* &(&.&%7 '&& E
2 K + F = 2 0 ; E &55( .
: @ +
'4& . '&42 H + '&1 E 2 , F H/2 K 1444 . 4 /0 &.'1 '&' E 2 ,2 9 2 ; F ,2 ? &55J . 5 '7' '&< E 2 , F +2 ; &55& $ * '&&.''1 '&7 E 2 , F
2 H &5%5 E
, +
4 &4' '&J E 2 , F
2 H &55& ; 5 <15.<%< '&( E 2 F H 2 &551
* . ; , : 2 + 2 '&% E 2 2 EE 2 + F H 2 &55' *
: + $ ! ')
%( . '&<2 , - + '&5 E 2 2 EE 2 + 2 H 2 F , 2 K M &55< + =D* . 5 , ,) &J&.&J% '14 E 2 E F H 2 K , &5%4 9 . * &<'.&7<
2
'1& E2 ) &5%< ; + : * 17.'& '11 E 2 8 +2 E 2 2 2 E F H
2 &5%1 ; * * 36 ; , : 2 + 2 &%&.&5J '1' E2 ; &5%4 + . &(7 '1< E 2 H2 ;G2 E 2 2 E )2 G 2 E F 92 E > &55% ,.
* 2 2 * 2 G " ; , : 2 + 2 J5'.(41 '17 E2 + F H2 K &5%1 = 5 '<&.'(( '1J E2 +2 $ 2 H2 ,2 ? F 9
2 &55& .
, 1(<J.1(7( '1( E 2 , K2 HL2 C F 2 K K &55( ) = ; = * , E
8 .D* H &&'.&<< '1% E 2 + &5%& #* * 3= ; , : 2 + 2 55' . &444 '15 E 2 + E F : 2 H - &5J% + - + ''4 E 2 ,2 )2 K 02 2 )2 ) 2 E F 2 E &55% @ * '<1.'7% ''& E 2 > ) &5%4 , 5 7 <'(.<71 ''1 EQ/2 9 F E2 E C &55( : ./ . G. &J.'& ''' ER 2 , E2 > 2 8 F + 2 = &55< + * ? ; ; , : 2 + 2 &455 . &&4J ''< =2 , F ,2 + &5%( #G * J5.(& ''7 = 2 0 &55< , $ 2 ! + )2 #
, 9 ''J = 2 0 &55% ) 5 ,
<&%.<11 ''( = 2 0 ; E F E
2 K + &55( 9 . : 8)
1J< . 1%42 9 # + $ . @ ''% =2 H &55< $ ! ') ) ) + )2 : ''5 =2 H H F # 2 # &551 E* , J4J.J17 '<4 =2 , 1444 + $ + )2 # , + '<& DP> 2 # &5%4 ;
: / ) 4 , + 9 '<1 D 2 &5%( , 5 747.7'& '<' D 2 K F 2 &5(% ; 4 5 4 <&5.<<J '<< D2 # F >2 K + &5%( 8 $ 0 ') #
'<7 '<J '<( '<% '<5 '74 '7& '71 '7' '7< '77 '7J '7( '7% '75 'J4 'J& 'J1 'J' 'J< 'J7 'JJ 'J( 'J%
D2 : &5(J 5 , 17&.1J5 D 2 F 2 K &5%( 0
8.K %(.JJ2 :,# +2 C F H 2 H &55& #G . . ; , : 2 + 2 &J<&.&J<( +2 C F H 2 H &55' ./ 3 444 4 : + 5'.41<& +2 C F H 2 H &55% $ . * " ; , : 2 + 2 (&& . (&( +2 C2 H 2 H2 9 2 H F D2 # &5%% ) ; , : 2 + 2 &7&(.&71J +2 + F ?/2 K &55%
" ; , : 2 + 2 <57.74< + 2 + F ,2 + &5%1 : G * 5 1&5 + 2 = &5%< 9 G . * , '&5.''5 + 2 = &5%J 9
3 ; , : 2 + 2 &1'&.&174 + 2 = &555 ; . . 5 &4( . &'1 + 2 = 1444 , - + + 2 8 &5J7 0 3 ;
, : 2 + 2 &1((.&1%' +2 K2 @ 2 )2 , 2 F +2 ; &55( ) C. $ * : @ +
'1&.''42 H + + &5%& 4 B EC 8 + 2 , ) F E2 + &55%
, '4<&.'4<< + 2 - &555 9 . , 4 ''7.'J1 + 2 - F , 2 K &55J 9
:
1J5 . ''J2 H + +$ 2 K &555 ') .@ + 2 8 F + 2 = &55% . * G G G 1J.<4 + 2 8 F + 2 = &55% - . G " ; , : 2 + 2 &47(.&4J< + L 2 D 8 F 2 ? , &551 8 G *
: + 51.4451 + 2 ;2 ; 2 +2 + 2 = F E2 E &55% * ''7.'7' +2 ; &55J - * . - ; , : 2 + 2 1&5.1'1
'J5 '(4 '(& '(1 '(' '(< '(7 '(J '(( '(% '(5 '%4 '%& '%1 '%' '%< '%7 '%J '%( '%% '%5 '54 '5& '51
+2 ; &55% , 0 * 1(5.1%< +2 ;2 2 ,2 # 2 0 F @ 2 ) &555 9 # 3 ; ) , &.J +2 ; F , 2 &5%% &1&.&7' +2 ;2 , 2 F ;L 2 &55J
. * , 7'&.7(J +2 ;2 # 2 ; F E2 E C &551 * <7.(' +2 ;2 8 2 ) F > *2 C &55' ) . * &&%.&'' +2 ;2 9 , 2 ;2 , 2 F # 2 # &5%J #* Æ * 5 7 1J7.1(% +2 ; F 9 2 &551 > 5 , &4<.&15 +2 ;2 ;L 2 2 @ 2 )2 , 2 F # 2 # &5%( @ * 5 1J7.151 +2 ;2 @ 2 )2 > 2 02 , 2 2 # 2 # F 2 K &5%% :.
; , : 2 + 2 &'J'.&'(4 +2 ;2 @ 2 ) F , 2 &55& S * 5 7J&.J47 +2 ;2 @ 2 )2 M 2 >2 ;L 2 2 2 K.E F , 2 &551
5 , &''&.&'7( +2 ; K2 @ 2 ) F , 2 &554 ) * ; , : 2 + 2 J&'.J&5 + 2 &5%% ; 5 <<7.<J5 + 2 F , 2 ? &5%% ; * ; , : 2 + 2 (%&.(%5 + 2 > &5%7 + , &&5.&51 + 2 > &554 ,
; , : 2 + 2 75&.J&1 + 2 >2 M 2 + H F C2 &5%5 ; , 14&4.14&% +
2 + F >2 E &55( * 2 . $ '1( . '<% +
2 +2 2 E F >2 E &55J 8 6 . - ; , : 2 + 2 1J5'.1(44 + 2 9 &517 : D $ $ ) > > &'J + 2 # ? &5J5 3 ; , : 2 + 2 &4&.&&' +2 &5(& 0 # 2 9 &%(% ; * 8 '&5.'1&
'5' '5< '57 '5J '5( '5% '55 <44 <4& <41 <4' <4< <47 <4J <4( <4% <45 <&4 <&& <&1 <&' <&< <&7 <&J <&( <&%
2 + 82 ; 2 )2 2 K , F , 2 1444 ) 6 * . , 117.1%1 2 K &55J 2 2% ! ' ( (%% % + )2 - L 2 K F @ 2 9 &55J 9#
G , 4 11<% . 1174 2 ? , F + 2 8 , &5(( EC.8 2 0 8 &5J& , + 2 + 9 &%75 =
, <&5.<11 2 + 9 &%75 =/ 2 # G
9 / / 4 ,> ''5 2 + K &5(1 ' 8 + 2 ? 9 F )2 K 0 &55& * * 1<7.17J 2 ? 92 )2 K 02 ) 2 E , F C2 9 + &55' : $ * $ 7%.J5 2 ? 92 )2 K 02 ) 2 E , F G 2 K &551 0
$ * * . ; , : 2 + 2 &J5.&(J 2 ) # F E 2 0 # &57J $ 5 , <7J.<J1 2 > &5%5 E * " ) 1J&&.1J&J 2 ) 8 F 2 K , &5%4 . = 5 , 77.(4 2 ) 8 F 2 K , &5%& > = '1(.''% 2 C F E* 2 E &55& , &7%(.&75( 2 C 2 @ 2 9 F 9QL2 &557 #G , &<<(.&<7< 2 , K F ,2 &55< ; * : , $ ,
(7.5<2 , ; 2 -6=. 2 , K F 0 / 2 K &5%5 : * * " 444 4 : + %5.4&1(2 2 , K F 0 / 2 K &55& . * '<'.'J4 2 , K F ;L 2 &554 + * . 9 . : , $ ,
155.'&42 , ; 2 = 6 - 2 , K F ;L 2 &55' ) * 9 <&.7( 2 + 1444 + $ ') .@ 2 F > 2 &5%% U T ; , : 2 7J5 . 7(( 2 K.E2 M 2 >2 +2 ; F , 2 &55' 9. $ . 'J'.'%& 2 K E &55' * . * * E ; , : 2 + 2 + 5'.4J&
<&5 <14 <1& <11 <1' <1< <17 <1J <1( <1% <15 <'4 <'& <'1 <'' <'< <'7 <'J <'( <'% <'5 <<4 <<& <<1
2 K E F E 2 ; &555 0 *
* + : * 7'(.77J 2 02 + 2 - F >2 # &555 . . , 4 &75J . &J4( 2 2 # 2 C2 82 E M F H 2 8 D &55& ; 5 $ <('.<5& 2 K &5%1 #G 9 * * 36 ; , : 2 + 2 &7<&.&7<% &577 < EC.8 2 ; F +2 ; &555 : 9 # : 4 / <$
('.%<2 , ; 2 = 6 - 2 C F S 2 K &554 ) E
* 15%.'&& 2 H &55J E
- ; , : 2 + 2 %'&.%<J 2 H F + 2 = &5%% #* E . )G 0 1'.<< 2 H2 + 2 = F ?2 0 &55< . <4(.<1( 2 B.2 K2 # F D/2 &554 : * 8 11J.11%
2 : C2 E2 K > F >2 H = , &5%1 ; * 36 ; , : 2 + 2 <1'.<'& 2 @2 E 2 @ F H 2 &55( . . &%' . 1&7 2 ) F B2 # # &5%7 , * 3 5 , $ : %7.&1<% 2 ; F E 2 &55J E
* - ; , : 2 + 2 155.'4J 2 F ) 2 # &55<
. .
1<4.174 2 ) > &5(& E* 3 ; , : 2 + 2 J<5.J7( 2 ) > &5(J ) # .> .- 3- ; , : 2 &J7(.&JJ' 2 #2 2 F 2 &55< 4 /0 1%(.'&5 2 2 82 E F >2 E &55< 1) 366. :/; $ 0 , # >@2 (5'.%44 2 ? &5(% , , &7(.&(J 2 K , &5(( : , 4 (5( 2 ) F + 2 8 &5(& K=0 2 1 # =).=> '(2 - = > 2 = F > 2 ? &555 * 7&5.7<7
)
<<' ;2 , F >2 + &5(% D 5 '('.'55 <<< ; 2 E2 2 ;2 2 E F E 2 ; &555 9 * =D* . E . * 4(,C $ ; , : 2 + 2 744.74' <<7 ; 2 E2 M2 =2 02 E F ;2 E &555 0 81.
* 3 ) >
K# # 2 75.J< <<J ; 2 8 F 9 2 K 9 &5(1 4 C E:; + <<( ; 2 )2 2 + 82 0 2 C2 C 2 K F 2 K , 1444 .
* 6 * = ; , : 2 + 2 <<% ; 2 )2 2 + 82 2 , F , 2 &55% #* .
* * " ; , : 2 + 2 (&5.(1J <<5 ; 2 H ? &5%( ;
5 ( , &.1< <74 ; 2 &55& * : 4 / <$
1('.1%J2 , ; 2 = 6 - <7& ; 2 2 , 2 F )2 K ? &5%% 9 - 4 : %%.4&<5 <71 ; 2 F +2 ; &55< ; $ 5 &.'& <7' ; 2 2 @ 2 )2 >2 H = , F E 2 ; &55< ;
* : , $ ,
57.&1<2 , ; 2 = 6 - <7< ;G2 K E F 2 C &555 #* ) .9 .P@P 2 E '7.71 <77 @ 2 , E F # 2 0 &55% ) #* ) 9 0
" ; , : 2 + 2 7&'.7&5 <7J H 2 # &55J ' 2 + )2 # , + <7( @ H 2 # F @ 2 ) &55(
.
* 33 ) 1&.(2 1&.&1 <7% @ H 2 # F @ 2 ) &55% )
* , 4 1'<( . 1'J% <75 @ H 2 #2 @ 2 ) F , 2 &55J ) . * - ; , : 2 + 2 '7.<1 <J4 @ 2 D &555 0 81.D1 ;6,0)6556<<2 ,#0, <J& @ 2 92 > *2 #2 >2 H = , F H2 ? &557
* 2
, 4 1<5J <J1 @ 2 9 F +2 ; &55% ) = * 4 /0 J77.J51 <J' @ 2 9 F @ 2 ) 1444 :
= ; , : 2 + 2
<J< @ 2 )2 , 2 F E2 K + &5%( , * : ! /
'%J.'5%2 @ <J7 @ 2 )2 )2 K E ) F +2 K &55< #*
* ? ; , : 2 + 2 &1<5.&17J <JJ @ 2 )2 92 02 E 2 # F , 2 &5%5 ,
* " ) 1J1&.1J1J <J( @ 2 )2 +2 K2 )2 K E F E 2 , &55J #*
* - ;
, : 2 + 2 <&'.<14 <J% @ 2 ) F +2 ; &55( #G * 5 %'.&&< <J5 @ 2 ) F +2 ; &55( 9 #
* : 4 / <$
17'.1(<2 , ; 2 = 6 - <(4 @ 2 ) F +2 ; &55( 9 # : 8) + ?
&47.&'72 9
+ $ 2 <(& @ 2 )2 ;L 2 2 >2 H = , F E 2 ; &55( C . * 5 1J'.15' <(1 @ 2 &5%1 : 4%7<<2 + - 2 )
E # <(' @ 2 F > 2 K > &5%1 $ ! $ ( 2 :E
E <(< @ 2 F + 2 # , &5%J = $. 8 $ , @F 2 &.&1 <(7 @ 2 2 , 2 K M F +/2 ? &551 E * * 81. 444 5 '57.<41 <(J @ 2 F E //2 E &55& ; . 5 &.17 <(( HLL2 ; F E2 C &57' ; ; , : 2 + 2 &('.&(( <(% @ 2 2 C 2 F ? 2 , H &5%< -
$ ; , : 2 + 2 (J.%' <(5 ? 2 8 C2 ;2 C2 C2 ) F 0 2 , &55%
. 9# * " ;
, : 2 + 2 %55 . 54( <%4 ? 2 , F ) 2 0 &5%& E D* 8 . 0 0 '&.<' <%& ? 2 , H2 /2 F 9 2 C &5%&
$ %&.55 <%1 ?
2 @ &5&% 5 %<4 <%' ?
2 @ &5&5 5 %& <%< ? 2 0 E &55& 7 ' ') EC.8 <%7 ? 2 : F > *2 C &557 8 $ * 15J.'&4 <%J ?2 0 &5%7 > , <%( ?2 0 &551 ; . (
; , : 2 + 2 &.&%
<%% M 2 @2 D/2 , C2 ; 2 2 C2 ; > F / 2 , C &551 ) * $ , &7&4 <%5 M2 : F ;2 8 &5%< ) ; , : 2 + 2 &%%'.&%51 <54 M2 @ F ,2 0 # , &5%J . $ . &.17 <5& M 2 + H2 C2 F + 2 > &554 '<4.'J7 <51 B 2 D &554 )
* , $ &(%.&%% <5' B 2 F 2 , &557 + * G <<(.<J& <5< B2 2 , 2 2 +2 ;2 ;L 2 F # 2 # &5%J 8 $
* 3 ;
, : 2 + 2 &<1(.&<'<
* 2 11J .G $ 2 'J( )R G 2 &&7 * 2 15& * 2 &%J 2 '75 G 2 &7 2 &' 0P 2 &' ) = * 2 '&( 2 1<5 ) = )= 2 &'1 * 2 1<5 * 2 &%( 2 J #>- 2 14<
2 <1'
2 &J
2 &J
$ 2 54
$
G *
2 '1 G 2 && * 2 &4
2 &44
* 2 &1
* 2 <&4 $2 54 0P
* 2 &' 2 &7 2 J4 *
2 <7
. 2 77 * 2 <%
2 '(4 2 '(%
2 '(7 2 '%< . 2 '(<
2 '7%
* 2 'J4 2 '(5 . 2 'J< 2 %
G 2 57 * 2 '5 2 &<J 0 . 2 &<& 2 &<& 0 2 &%4 2 &'5 $ 2 &(< U T * 2 15 )=2 &7' >.E.9 2 &(( $ 2 1&4 2 1&< 2 145 2 J G 2 &(( > . 2 5' . 2 ''7 2 <&J 2 <&& ,E, 2 '4( , 0 2 1&( 2 '%5 2 &71 2 &7 * 2 &%(
2 J( 2 J% 2 J% * 2 &(1 /2 1(& * 2 1(' * 2 1'7 2 '<& 2 J&
$ 2 &4( 2 &47 2 75 * 2 '&4 *
* 2 1&< $2 1&7
2 1&1 2 1&7 9 # 9#2 1<' 2 7J 2 7% 2 7J 2 7( 2 7(
* 2 &%7 2 (7 6 * * 2 1%1
* 2 &5J $ G 2 %% G 2 15<
* 2 1&'
* * 2 &51 * . 2 '4'
* 2 '4% * 2 &%( )= * 2 171 2 <4& 6 2 &%1 2 &%1 C . $ * 9 # 9#2 1<& + P2 1&5 =2 14J C 2 &J< 2 &J7
2 <'( 2 'J& 2 < G Æ 2 ( )=2 &77 . 2 ''1 2 'J 2 'J
$2 &% $2 &5 8 / $ . 2 'J& 8 / 2 '(' 8 .) / G. 2 &&& 2 '57 2 &<% :;=0 2 1'1 H/ 2 &%J 2 J 2 &( H.? 2 &%( 2 &57 H 2 &1% H++ * 2 1'1 G 2 %% 2 %% 9 #
2 <44 9 # 9# 2 &'1 2 &J4 * 2 '&' * 2 1'% 2 && 9 2 ( G 2 %< * 2 '' 9 # 2 '&' 9 D ) : 2 <&( 2 'J< .E 2 &71 .E $2 &5 E 2 '4& . 2 &7 2 & 2 1 G 2 15' 2 '44
* 9#2 &J< * 2 %7 G 2 %5 2 &&% 2 5'
2 '512 '5' 2 &1 . 2 '%5 =,>, 2 <1% 2 <1% 2 <1< . 2 <17 . 2 <1J 2 <1( 2 <1< 2 <&5 2 <&4 2 <'J . G 2 <&'
* 2 <4 2 &&% 2 %7 + 2 ''4 + 2 <<' + 2 (
$ * 2 117 2 114 * . 2 '&& 9# * 2 '&< * 2 114
* 2 11&
* 2 <& * 2 14' $ . * 2 11<
2 '77 $ . . 2 '54 $ 2 ''& 6 2 '<4 . 2 ''1 2 ''' . 2 ''1 6 2 ''4 G 2 &&J * * 2 &5J * 2 (<
2
$2 &J * 2 (' )=2 &77 . 2 ''& 2 % 2 '%J
$2 '%< 2 '51 Æ 2 '75
* 2 'J4 )=2 &7J 9#2 &J% 2 54 = 2 &'1 * 2 151
* 2 141 2 &1( 2 &<J 2 && $ . * 2 15% 2 '44 G 2 %% 9#2 &J< 2 &<( . * . 2 <41 G 2 &11
* 2 '1 * 2 '' * 2 '' 2 &J' G 2 (
2 '7% 2 (J 2 (& 2 J G 2 <1 2 7< * 2 5< 2 5' 2 && 2 &4 2 'J 2 J& 2 J 2 75 2 '57 2 &JJ 2 &J
.$ . 2 '51 * 2 'J% .G $ 2 'J( 2 <4( 2 'JJ
2 &(< .G * 2 &55 2 &1( 2 &1( * . 2 &%7 * 2 151 * . 2 &%% + P * 2 &%% 2 &<%
2 &'4 2 &(1 H++ 2 1'1 2 1'& 2 &'& * # .
2 '4& * 2 14< >E9 2 14( # > - 2 14< 2 1&1
2 114
2 14J * 2 11J $2 115 2 &<7 2 &<' * 2 &<< + .H 2 &<7 9#2 &JJ 2 J $ . 2 '7% 2 '(( . # $2 <&4 = . $2 <&4 . 2 &%( 2 <'J B0H * 2 <<