The Gamma Function The gamma function is a generalization of the factorial function for any positive integer n: Γ( n) = ( n −1)! For example, Γ(6) = (5)! =120
Gamma is defined by the improper integral ∞
Γ(n) = ∫ e −t t n −1 dt 0
Integration by parts readily reveals that Γ( n) = ( n −1)Γ( n −1) . We may write the previous result as Γ( x +1) = xΓ( x )
where x is any real number. Let’s consider the following case: 1 2
∞
For x = ½: Γ = ∫ e −t t
1 −1 2
dt
0
∞
= ∫ e −t t
−1
2
dt
0
∞
1
(Let u = t 2 , then du =
1 − 12 t dt ) 2
= 2 ∫ e −u du 2
0
= π
(The value of the previous integral requires multivariable calculus.) We may use this value to evaluate the following values of gamma: π 3 1 1 Γ = Γ = 2 2 2 2 5 3 3 3 π Γ = Γ = 4 2 2 2 7 5 5 15 π Γ = Γ = . 8 2 2 2