The Binomial Theorem 1

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View The Binomial Theorem 1 as PDF for free.

More details

  • Words: 1,842
  • Pages: 24
Lesson 1

THE BINOMIAL THEOREM (1)

Prof. Hany Abdel-Malek

CONTENTS • Case of positive integer power • Taylor’s Expansion • Expansion for any real power • Applications General Term Approximation of roots Sum of Series • Multinomials

The Case of Positive Integer Power n

n 0

n 1

n 2

2

(1 + x) = C + C x + C x +  n r

r

n n

+ C x ++ C x n! C = r! (n − r)! n r

n r

n r −1

C +C

n+1 r

=C

n 0

n n

C =C

n

Example 4

4 1

4 2

2

(1 − 3x) = 1 + C (−3x) + C (−3x) 4 3

3

4 4

4

+ C (−3x) + C (−3x)

4•3 2 = 1 + 4(−3x) + (−3x) 2 •1 4•3•2 3 4 + (−3x) + (−3x) 3 •2 •1 2 3 4 = 1 − 12 x + 54 x − 108 x + 81x

Taylor’s Expansion (Maclaurin)

f ′(0) f ′′(0) 2 f(x) = f(0) + x+ x + 1! 2! (r) f (0) r + x + r! The function is expanded in terms of its value and derivatives at a point ( it is x = 0 in the expansion above)

Case of any power n f(x) = (1 + x)n f ′(x) = n(1 + x)n−1 f ′′(x) = n(n - 1)(1 + x)n-2 f ′′′(x) = n(n - 1)(n - 2)(1 + x)n-3  f (r)(x) = n(n − 1)(n − 2)(n − r + 1)(1 + x)n−r f(0) = 1 f ′(0) = n f ′′(0) = n(n - 1) f ′′′(0) = n(n - 1)(n - 2)  f (r) (0) = n(n −1)(n − 2)(n − r +1)

Substituting in Taylor’s expansion n n(n − 1) 2 n(n − 1)(n − 2) 3 (1 + x) = 1 + x + x + x + 1! 2! 3! n(n − 1)(n − r + 1) r + x + r! n

Remark: It is an infinite expansion Condition for the convergence of the expansion

x <1

Example Find the first four terms and the condition for convergence for:

(i) (ii) (iii)

−4

(1 + 2x)

1/2

(x + 4)

(3x + 4)

-3 2

(1 + 2x)−4

(i)

(−4)(−5) (1 + 2x) = 1 + (−4)(2x) + (2x)2 2! (−4)(−5)(−6) + (2x)3 +  3! = 1 - 8x + 40x 2 − 160 x 3 +  −4

Condition for the convergence of the expansion

2x < 1 − 1 < 2x < 1 1 1 − <x< 2 2

1 2

(x + 4)

(ii) 1 2

1 2

x  (x + 4) = (4) 1 +  4 

1 2

   1  1   1  1  3  − − −        2 3   1  x   2  2   x  x 2 2 2         = 2 1 +   +   +   +  24 2 •1 4 3 •2 •1   4    

Condition for the convergence of the expansion

x <1 4 −4< x <4

(3x + 4)

(iii) 3 − 2

(3x + 4)

3 − 2



-3 2

3 2

3x   = (4)  1 +  4      3  5   3  5  7  − − − − −           2 3   3   3x   2   2   3x  3x  2 2 2         −3 = (2) 1 +  −   +   +   +  2•1 3•2•1    2  4   4   4      −

(3x + 4)

3 2

1 9 135 2 945 3  = 1 − x + x − x +  8 4 128 1024  1 9 135 2 945 3 = − x+ x − x + 8 64 1024 8192

Condition for the convergence of the expansion

3x <1 4 −

4 4 <x< 3 3

Frequently Used Examples 1 (i) = (1 + x)−1 1+ x −1 (−1)(−2) 2 =1+ x+ x 1! 2! (−1)(−2)(−3) 3 + x + 3! 1 ∴ = (1 + x)−1 = 1 − x + x2 − x 3 +  1+ x + (-1)r x r + 

Thus the coefficient of xn for any n can be stated directly from the general term

For example , coefficient of x100 is +1 while the coefficient of x55 is -1 A comparison with the sum of the infinite geometric series 2

3

1− x + x − x + In which the first term a=1 and the base r = -x The sum is given by a 1 1− x + x − x += = 1−r 1+ x 2

3

1 −1 (ii) = (1 − x) 1- x −1 (−1)(−2) 2 =1+ (− x) + (− x) 1! 2! (−1)(−2)(−3) 3 + (− x) +  3! 1 ∴ = (1 − x)−1 = 1 + x + x2 + x 3 +  + x r +  1− x Alternatively: replace x by –x in the previous example

1 −2 (iii) = (1 + x) 2 (1 + x) −2 (−2)(−3) 2 =1+ x+ x 1! 2! (−2)(−3)(−4) 3 + x + 3! 1 2 3 ∴ = 1 − 2 x + 3x − 4 x +  2 (1 + x) r

r

+ (-1) (r + 1)x +  e.g. coefficient of x100 is +101 while the coefficient of x55 is -56

1 −2 (iv) = (1 − x) 2 (1 − x) −2 (−2)(−3) 2 =1+ (− x) + (− x) 1! 2! (−2)(−3)(−4) 3 + (− x) +  3! 1 2 3 ∴ = 1 + 2 x + 3 x + 4 x + 2 (1 − x) + (r + 1)x r + 

Which can be also obtained from the previous example by replacing x by –x

Finding the general term (Coefficient of xn ) Example: Find the expansion and its condition for convergence of 2 + x    2 − x 

2

Hence find the coefficient of xn

2

−2

2

x  x 2 + x     = 1 +  1 −  2  2 2 − x  

2

 x  x  x  = 1 + 2 2  + 3 2  1 + x + 4         r  x  +  + (r +1)  +   2   2

The condition for convergence

-2< x < 2

In order to find the coefficient of xn , the product of the two brackets is considered

  x  x x x 1 + x + 1 + 2  + 3  +  + (r + 1)  +   4  2 2 2   2

2

×x

n −2

r

× x n−1

× xn n

1 1 Coeff.x = (1)(n + 1)  + (1)(n)  2 2 n

n

n−1

1 1 +  (n − 1)  4 2

1 1 Coeff.x =   ((n + 1) + 2n + (n − 1)) = 4n  2 2

n

n

This expression is valid only for n > 2 since we have considered all terms up to x2 in the first bracket

n−2

For the cases n = 0 and n = 1 , not all the terms in the first bracket are considered   x  x x x 1 + x + 1 + 2  + 3  +  + (r + 1)  +   4  2 2 2   2

2

r

Coeff. x 0 = (1)(1) = 1   x  x x x 1 + x + 1 + 2  + 3  +  + (r + 1)  +   4  2 2 2   2

2

Coeff. x1 = (1)(1) + (1)(1) = 2

r

Example: Find the first six terms in the expansion of 1 − 3x 2 1+ x + x

Also find the coefficient of xn

Solution: 1 − 3x 1 − 3x 1− x Q= = • 2 2 1− x 1+ x + x 1+ x + x 1 − 4 x + 3x 2 = (1 − x 3 )

(

)

1 − 4 x + 3x 2 2 3 −1 Q= = 1 − 4 x + 3 x ( 1 − x ) 3 (1 − x )

(

)(

= 1 − 4x + 3x 2 1 + x 3 + (x 3 )2 + (x 3 )3 + 

)

+ (x 3 )r + 

Q = 1 − 4 x + 3x 2 + x 3 − 4 x 4 + 3x 5 +  Coeff. x 3r = 1 Coeff. x 3r +1 = −4 Coeff. x

3r + 2

=3

The value of n can be one of three cases: n= = 3r , n = 3r + 1 , n = 3r +2 e.g. Coeff. x100= -4 since 100=3(33)+1 Coeff. x50 = 3 since 50=3(16)+2

Example: Find the first six terms in the expansion of 1− x (1 + x + x2 )2

Also find the coefficient of xn

Solution: 1−x 1− x 1 − x  Q= = •  2 2 2 2 (1 + x + x ) (1 + x + x )  1 − x  1 − 3x + 3x 2 − x 3 = (1 − x 3 )2

2

( = (1 − 3x + 3x

) )(1 + 2x

Q = 1 − 3x + 3x2 − x 3 (1 − x 3 )−2 2

+ x3

3

+ 3(x 3 )2 + 4(x 3 )3

)

+  + (r + 1)(x 3 )r +  2

3

4

5

Q = 1 − 3 x + 3x + x − 6 x + 6 x +  Coeff. x 3r = (1)(r + 1) + (−1)(r) = 1 Coeff. x 3r +1 = (−3)(r + 1) = −3r − 3 Coeff. x 3r +2 = (3)(r + 1) = 3r + 3

Notice that the case of n is a multiple of 3 can be obtained by considering the first and last terms of the first bracket

Related Documents

The Binomial Theorem 1
November 2019 12
Binomial Theorem
November 2019 11
The Binomial Theorem 2
November 2019 11
Pc Binomial Theorem
May 2020 6
A4 Binomial Theorem
June 2020 5