Pure Mathematics – Inequalities
p.1
King’s College 2007 – 2008 F.6 Pure Mathematics Revision Test 6 Time Allowed: 50 minutes Total Mark: 30 1.
(1991) (a) Let ak, bk (k = 1, 2, …, n) be non-zero numbers. (i) Prove the Schwarz’s inequality 2
⎧ n 2 ⎫⎧ n 2 ⎫ ⎧ n ⎫ ⎨∑ a k ⎬⎨∑ bk ⎬ ≥ ⎨∑ a k bk ⎬ . ⎩ k =1 ⎭⎩ k =1 ⎭ ⎩ k =1 ⎭
(ii) If p ≤
bk ≤ q for k = 1, 2, …, n, prove that ak
pqa k2 − ( p + q )a k bk + bk2 ≤ 0 for k = 1, 2, …, n. Deduce that
n
n
n
k =1
k =1
k =1
( p + q )∑ ak bk ≥ ∑ bk2 + pq∑ a k2 .
(iii) If 0 < m ≤ a k ≤ M and 0 < m ≤ bk ≤ M for k = 1, 2, …, n, prove by using (ii) or otherwise, that 2
2
⎫ ⎧ n 2 ⎫⎧ n 2 ⎫ 1 ⎛ M m ⎞ ⎧ n ⎨∑ a k ⎬⎨∑ bk ⎬ ≤ ⎜ + ⎟ ⎨∑ a k bk ⎬ . ⎭ ⎩ k =1 ⎭⎩ k =1 ⎭ 4 ⎝ m M ⎠ ⎩ k =1
(10 marks) (b) Using (a) or otherwise, show that 2 2 2 2 ⎧⎪ n ⎛ 1 ⎞ ⎫⎪ 169 ⎛ 1⎞ 1⎞ 1 ⎞ ⎫⎪⎧⎪ n ⎛ ⎛ ⎜ n + ⎟ < ⎨∑ ⎜1 + k ⎟ ⎬⎨∑ ⎜1 − k +1 ⎟ ⎬ < ⎜n + ⎟ . 3⎠ 9⎠ ⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭⎪⎩ k =1 ⎝ 3 ⎠ ⎪⎭ 144 ⎝ ⎝
(5 marks)
Pure Mathematics – Inequalities
2.
p.2
(1997) Let x1, x2, y1, y2, z1 and z2 be positive numbers such that x1y1 – z12 > 0 and x2y2 – z22 > 0. (a) Let D1 = x1y1 – z12 and D2 = x2y2 – z22. Using A.M. ≥ G.M. , show that y2 y D1 + 1 D2 ≥ 2 D1 D2 , (i) y1 y2 (ii)
y2 y D1 + 1 D2 ≤ x1 y 2 + x 2 y1 − 2 z1 z 2 , y1 y2
(iii) (x1 + x 2 )( y1 + y 2 ) − ( z1 + z 2 ) ≥ 4 D1 D2 . 2
(9 marks) (b) Show that
8
(x1 + x2 )( y1 + y 2 ) − (z1 + z 2 )
2
≤
1 x1 y1 − z1
2
+
1 x2 y2 − z 2
2
,
and if the equality holds, then x1 = x2, y1 = y2 and z1 = z2. (6 marks)
--End of Test --