Pure Mathematics – Calculus
p.1
King’s College 2007 – 2008 F.6 Pure Mathematics Revision Test 10 Time Allowed: 60 minutes Total Mark: 30 1.
(2003)
x Using the substitution t = tan , evaluate 2
2.
(2004)
Evaluate (a)
3.
(2004)
Evaluate
4.
(2006)
Evaluate lim sin x sin
5.
(2006) (a) Let f : ℜ → ℜ and g : ℜ → ℜ be continuous on [a, b] and differentiable in (a, b), where a < b.
lim(tan 3 x + cos 4 x ) x , 1
x →0
3
(
(3 marks)
)
(b) lim cos 2004 + x − cos x . x →∞
x →0
∫ sec
dx
∫ 2 + cos x .
θdθ .
(6 marks)
(3 marks) 1 . x
(3 marks)
Suppose that g (a ) ≠ g (b ) and g ' ( x ) ≠ 0 for all x ∈ (a, b ) . Define h( x ) = f ( x ) − f (a ) −
f (b ) − f (a ) (g (x ) − g (a )) for all x ∈ ℜ . g (b ) − g (a )
(i) Find h(a) and h(b). (ii) Using Mean Value Theorem, prove that there exists β ∈ (a, b ) such that f ' (β ) f (b ) − f (a ) = . g ' (β ) g (b ) − g (a ) (5 marks) (b) Let u : ℜ → ℜ be twice differentiable. For each x ∈ ℜ , let F : ℜ → ℜ and G : ℜ → ℜ be defined by F (t ) = u ( x ) − u (t ) − u ' (t )(x − t ) and G (t ) =
γ ∈ I such that
( x − t )2 2
. For each c ≠ x , prove that there exists
F ' (γ ) F (c ) u ' ' (γ ) (x − c )2 , where I is the = and u ( x ) = u (c ) + u ' (c )( x − c ) + G ' (γ ) G (c ) 2
open interval with end points c and x. v( x ) = 2006 . x →0 x
(5 marks)
(c) Let v : ℜ → ℜ be twice differentiable. It is given that lim
(i) Prove that v(0) = 0. Hence find v'(0). (ii) Suppose that v' ' ( x ) ≥ 2 for all x ∈ ℜ . Prove that v( x ) ≥ 2006 x + x 2 for all x ∈ ℜ . (5 marks)
--End of Test--