Teorie Analiza Matematica Clasa A 11-a (2)

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Teorie Analiza Matematica Clasa A 11-a (2) as PDF for free.

More details

  • Words: 2,236
  • Pages: 6
OPERAT ¸ II CU S ¸ IRURI CONVERGENTE Se dau ¸sirurile convergente (an )n≥0 ¸si (bn )n≥0 .

Propriet˘ a¸ti: 1) S¸irul (an + bn )n≥0 este convergent ¸si lim (an + bn ) = lim an + lim bn . n→∞

n→∞

n→∞

2) S¸irul (an · bn )n≥0 este convergent ¸si lim (an · bn ) = lim an · lim bn . n→∞ n→∞  n→∞  an 3) Dac˘a bn 6= 0, (∀)n ∈ N ¸si lim bn 6= 0 atunci S¸irul este convergent ¸si n→∞ bn n≥0   lim an an n→∞ lim = . n→∞ bn lim bn n→∞  4) Dac˘a an > 0, (∀)n ∈ N ¸si lim an 6= 0 atunci S¸irul abnn n≥0 este convergent ¸si n→∞   lim bn lim (an )bn = lim an n→∞ . n→∞

n→∞

Demonstrat¸ie: Presupunem an → a, bn → b unde a, b ∈ R. Proprietatea 1): ε an → a ⇒ (∀)ε > 0, (∃)n0ε ∈ N astfel ˆıncˆat(∀)n ≥ n0ε , |an − a| < 2 ε 00 00 bn → b ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |bn − b| < 2 Fie nε = max(n0ε , n00ε ). ε ε ε  |an − a| < ⇒ − < an − a <   2 2 2  ⇒ |an + bn − (a + b)| < ε, (∀)n ≥ nε ε ε  ε   |bn − b| < ⇒ − < bn − b < 2 2 2 sau ε ε |an + bn − (a + b)| = |(an − a) + (bn − b)| < |an − a| + |bn − b| < + = ε, (∀)n ≥ nε 2 2 Deci (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |an + bn − (a + b)| < ε ⇒ ⇒ an + bn → a + b adic˘a lim (an + bn ) = lim an + lim bn . n→∞

n→∞

n→∞

Proprietatea 2): |an bn − ab| = |an bn − abn + abn − ab| = |(an − a)bn + a(bn − b)| ≤ |(an − a)bn |+ +|a(bn − b)| = |an − a| · |bn | + |a| · |bn − b| (bn ) → b ⇒ (bn ) este m˘arginit ⇒ (∃)M > 0 astfel ˆıncˆat(∀)n ∈ N, |bn | < M ε an → a ⇒ (∀)ε > 0, (∃)n0ε ∈ N astfel ˆıncˆat(∀)n ≥ n0ε , |an − a| < 2M ε 00 00 bn → b ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |bn − b| < 2(|a| + 1) Fie nε = max(n0ε , n00ε ). ˆınlocuind relat¸iile (1),(2) ¸si (3) ˆın relat¸ia (∗) se obt¸ine: ε |a| ε ε ε ·M + · < + = ε, (∀)n ≥ nε |an bn − ab| < 2M |a| + 1 2 2 2 Deci (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |an bn − ab| < ε ⇒ ⇒ an bn → ab adic˘a lim (an · bn ) = lim an · lim bn . n→∞

n→∞

n→∞

Observat¸ie: Demonstrat¸iile pentru propriet˘a¸tile 3 ¸si 4 sunt mai dificile. 6

(∗) (1) (2) (3)

˘ INFINITA ˘ S ¸ IRURI CU LIMITA O mult¸ime V este V(∞) dac˘a (∃)ε > 0 astfel ˆıncˆat(ε, ∞) ⊂ V . O mult¸ime V este V(−∞) dac˘a (∃)ε > 0 astfel ˆıncˆat(−∞, −ε) ⊂ V .

DEFINIT ¸ IE: Fie l = ±∞. Spunem c˘a ¸sirul (an )n≥0 are limita l(±∞) dac˘a ˆın afara oric˘arei vecin˘at˘a¸ti V ∈ V(l) se afl˘a cel mult un num˘ar finit de termeni ai ¸sirului.

REFORMULARE: S¸irul an → l dac˘a (∀)V ∈ V(l), (∃)nV ∈ N astfel ˆıncˆat(∀)n ≥ nV , an ∈ V . Deoarece vecin˘at˘a¸tile lui +∞ au structur˘a diferit˘a fat¸˘a de vecin˘at˘a¸tile lui −∞, definit¸ia cu ε a ¸sirurilor cu limita +∞ sau −∞ are forme diferite.

DEFINIT ¸ IA 1: an → +∞ ⇔ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , an > ε

DEFINIT ¸ IA 2: an → −∞ ⇔ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , an < −ε

Observat¸ii: 1) Definit¸iile cu vecin˘at˘a¸ti ale ¸sirurilor cu limit˘a finit˘a, ale ¸sirurilor cu limita +∞ ¸si ale ¸sirurilor cu limita −∞ sunt identice. 2) Definit¸ia cu ε a ¸sirurilor cu limit˘a finit˘a sau +∞ sau −∞ difer˘a. Acestea ¸tin cont de structura vecin˘at˘a¸tilor unui punct finit sau a vecin˘at˘a¸tilor lui +∞ sau a vecin˘at˘a¸tilor lui −∞. 3) S¸irurile convergente au limit˘a finit˘a. 4) S¸irurile divergente sunt ˆın una din situat¸iile: - au limita +∞; - au limita −∞; - nu au limit˘a. ˆ 5) In definit¸ia ¸sirurilor convergente, ε > 0 trebuie s˘a fie ”oricˆat de mic”. 6) ˆIn definit¸ia ¸sirurilor cu limita ±∞, ε > 0 trebuie s˘a fie ”oricˆat de mare”.

7

CRITERII PENTRU S ¸ IRURI CU LIMITA ±∞ Criteriul 1: Dac˘a an → ∞ atunci

Demonstrat¸ie:

1 → 0. an

Fie ε > 0. 1 < ε ⇔ |an | > 1 ⇔ an < − 1 sau an > 1 an ε ε ε 1 Not˘am λ = > 0 ⇒ (∃)nλ = nε astfel ˆıncˆat(∀)n ≥ nλ , an < −λ sau an > λ ⇒ ε 1 ⇒ > 0. an

Criteriul 2: Dac˘a: a) xn ≥ an , (∀)n ∈ N b) an → +∞ atunci xn → +∞.

Demonstrat¸ie: an → +∞ ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , an > ε Dar xn > an ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , xn > ε ⇒ xn → +∞

Criteriul 3: Dac˘a: a) yn ≤ bn , (∀)n ∈ N b) bn → −∞ atunci yn → −∞.

Demonstrat¸ie: bn → −∞ ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , bn < −ε Dar yn < bn ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , yn < −ε ⇒ yn → −∞

Observat¸ii: Criteriile 2 ¸si 3 sunt criterii de comparat¸ie. Ele hot˘ar˘asc soarta unui ¸sir ˆın urma compar˘arii termenilor s˘ai cu termenii altui ¸sir.

Criteriu de convergent¸˘ a: Dac˘a ¸sirul (an ) este m˘arginit ¸si bn → 0 atunci an · bn → 0.

Demonstrat¸ie: an este m˘arginit ⇔ (∃)M > 0 astfel ˆıncˆat(∀)n ∈ N, |an | < M ε bn → 0 ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |bn | < M ε |an bn | = |an | · |bn | < M · = ε, (∀)n ≥ nε M Deci (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |an bn | < ε ⇒ an · bn → 0

8

Criteriul cle¸stelui: Dac˘a ¸sirurile (an ),(bn ) ¸si (xn ) ¸si l ∈ R au propriet˘a¸tile: a) an ≤ xn ≤ bn , (∀)n ∈ N b) lim an = lim bn = l ∈ R n→∞ n→∞ atunci xn → l.

Demonstrat¸ie: an → l ⇒ (∀)ε > 0, (∃)n0ε ∈ N astfel ˆıncˆat(∀)n ≥ n0ε , |an − l| < ε ⇒ l − ε < an (1) bn → l ⇒ (∀)ε > 0, (∃)n00ε ∈ N astfel ˆıncˆat(∀)n ≥ n00ε , |bn − l| < ε ⇒ bn < l + ε (2) Fie nε = max(n0ε , n00ε ). Din a), (1) ¸si (2) ⇒ l − ε < an ≤ xn ≤ bn < l + ε ⇒ |xn − l| < ε, (∀)n ≥ nε Deci (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |xn − l| < ε ⇒ lim xn = l n→∞

Observat¸ie: Criteriul cle¸stelui se folose¸ste ˆın probleme dup˘a urm˘atoarea schem˘a:

Criteriul major˘ arii: Dac˘a ¸sirurile (αn ) ¸si (xn ) ¸si l ∈ R au propriet˘a¸tile: a) |xn − l| ≤ αn , (∀)n ∈ N b) αn → 0 atunci xn → l.

Demonstrat¸ie: b): an → 0 ⇒ (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |an | < ε Fie n ≥ nε . a) 0 ≤ |xn − l| = αn ⇒ αn ≥ 0 ⇒ |αn | = αn < ε a): |xn − l| ≤ αn = |αn | < ε Deci (∀)ε > 0, (∃)nε ∈ N astfel ˆıncˆat(∀)n ≥ nε , |xn − l| < ε ⇒ lim xn = l n→∞

9

S ¸ IRURI TIP 1) S ¸ IRUL RAT ¸ IONAL Fie f, g ∈ R[x] dou˘a polinoame cu coeficient¸i reali, g 6= 0. f (n) , n ≥ n0 , unde n0 ∈ N fixat este mai mare decˆat toate r˘ad˘acinile g(n) reale (dac˘a exist˘a) ale polinomului g, se nume¸ste ¸sir rat¸ional. f (x) = a0 + a1 · x + ... + ap · xp , ap 6= 0, p ∈ N∗ fixat g(x) = b0 + b1 · x + ... + bq · xq , bq 6= 0, q ∈ N∗ fixat a1 a0 ap−1 + p−1 + ... + + ap p p a0 + a1 · n + ... + ap · n n np n n ⇒ xn = ⇒ xn = q · b0 b1 bq−1 b0 + b1 · n + ... + bq · nq n + bq + + ... + nq nq−1 n a0 a1 ap−1 + p−1 + ... + + ap n n p−q np ⇒ xn = n · b1 bq−1 b0 + q−1 + ... + + bq q n n n a p Dac˘a p = q ⇒ np−q = 1 ¸si xn → bp     a ap p Dac˘a p > q ⇒ p − q > 0 ⇒ np−q → ∞ ¸si xn → ∞ · ⇒ xn → ∞ · sgn bq q  b a p Dac˘a p < q ⇒ p − q < 0 ⇒ np−q → 0 ¸si xn → 0 · ⇒ xn → 0 bq  ap  ,p = q    bq (n) 0   ,p < q displaystyle limn→∞ xn = limn→∞ fg(n) =   a p   sgn · ∞ ,p > q bq S¸irul xn =

2) S ¸ IRUL PUTERE a) Dac˘a |q| < 1 atunci |q n | → 0 b) Dac˘a q > 1 atunci |q n | → ∞

Demonstrat¸ie a): 1 |q| < 1 ⇒ |q| = ,ρ > 0  1 + ρn 1 1 1 1 1 = = |q n | = |q|n = n = 0 1 2 2 n n < 1 1+ρ (1 + ρ) nρ Cn + Cn ρ + Cn ρ + ... + Cn ρ Cn ρ 1 Deci q n < → 0 ⇒ qn → 0 nρ

Demonstrat¸ie b): q > 1 ⇒ q = 1+ρ ,ρ > 0 1 q n = (1 + ρ)n = C0n + C1n ρ + C2n ρ2 + ... + Cnn ρn > C1n ρ = nρ Deci q n > nρ → ∞ ⇒ q n → ∞

10

3) Dac˘a |q| < 1 atunci n · qn → 0 Demonstrat¸ie: 1 ,ρ > 0 1+ρ n n n |nq n | = n|q|n = n = 0 1 2 2 n n < 2 2 = (1 + ρ) Cn + Cn ρ + Cn ρ + ... + Cn ρ Cn ρ 2 n = = n(n − 1) 2 (n − 1)ρ2 ρ 2 2 n |nq | < → 0 ⇒ n · qn → 0 2 (n − 1)q √ 4) Dac˘a a 6= 0 atunci n a → 1 |q| < 1 ⇒ |q| =

Demonstrat¸√ie:

I) a ≥ 1√⇒ n a ≥ 1 Not˘am n a = 1 + αn , αn ≥ 0 ⇒ a = (1 + αn )n ⇒ a ⇒ a = C0n + C1n αn + C2n αn2 + ... + Cnn αnn ≥ C2n αn2 = nαn ⇒ αn ≤ n √ a 0 ≤ αn ≤ ⇒ αn → 0 ⇒ 1 + αn → 1 ⇒ n a → 1 n 1 not II) a ∈ (0, 1) ⇒ = b > 1 a √ 1 I) √ n b>1⇒ b→1⇒ na= √ →1 n b √ 5) n n → 1, n ≥ 2

Demonstrat ¸√ ie: √

√ n

n = 1 + αn , αn > 0 ⇒ n = (1 + αn )n ⇒ n(n − 1) 2 ⇒ n = C0n + C1n αn + C2n αn2 + ... + Cnn αnn > C2n αn2 ⇒ n > · αn ⇒ 2 √ √ 2 2 ⇒ 0 < αn < √ ⇒ αn → 0 ⇒ n n = 1 + αn → 1 ⇒ 0 < αn2 < n−1 n−1 6) Fie p ∈ N∗ fixat, n ≥ 2, a1 , a2 , ..., ap > 0 ¸si b1 , b2 , ..., bp > 0. q xn = n b1 an1 + b2 an2 + ... + bp anp → max(a1 , a2 , ..., ap ) n≥2⇒

n

n≥

n

2>1⇒

an 7) ˆIn general, dac˘a a ∈ R fixat → 0 n!

11

Related Documents