Teoriaccromosomica Biol

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Teoriaccromosomica Biol as PDF for free.

More details

  • Words: 7,353
  • Pages: 28
CONTENIDOS

1. Leyes naturales que explican la transmisión de los caracteres hereditarios. 2. Aportaciones de Mendel al estudio de la herencia. 2.1. Conceptos clásicos de Genética. 2.2. Las Leyes de Mendel. 3. Teoría cromosómica de la herencia. 4. Estudio del DNA como portador de la información genética. Reconstrucción histórica de la búsqueda de evidencias de su papel

y su interpretación.

5. Concepto de gen. Mecanismos responsables de su transmisión y variación. Los genes. 6. La replicación del DNA. 7. La transcripción del DNA: el RNA. 8. Alteraciones en la información genética: consecuencias e implicaciones en la adaptación y evolución de las especies. Selección natural. Las mutaciones. 9. Genética evolutiva. 10. Expresión de la información: Características e importancia del código genético. 11. La expresión génica: La traducción. 12. La regulación de la expresión génica: El operón. 13. La terapia génica. 14. Los productos transgénicos. 15. La investigación actual sobre el genoma humano. 16. Repercusiones sociales y valoraciones éticas de la manipulación genética.

TEORÍA CROMOSÓMICA DE LA HERENCIA

El principio de Mendel, según el cual los genes que controlan diferentes caracteres son heredados de forma independiente uno de otro, es cierto sólo cuando los genes existen en cromosomas diferentes. Cuando estudiamos pares de genes localizados en diferentes pares cromosómicos, estos genes no cumplen las Leyes de Mendel. Sus caracteres no son mendelianos.

T. H. Morgan y sus colaboradores demostraron en una serie amplia de experimentos con moscas de la fruta (que se reproducen con gran velocidad), que los genes se disponen de forma lineal en los cromosomas y que cuando éstos se encuentran en el mismo cromosoma, se heredan como una unidad aislada mientras el propio cromosoma permanezca intacto. Los genes que se heredan de esta forma se dice que están LIGADOS.

Morgan y su grupo observaron también que este ligamiento rara vez es completo. Las combinaciones de alelos de cada par de cromosomas pueden reorganizarse en alguno de sus descendientes. Durante la meiosis, una pareja de cromosomas homólogos puede intercambiar fragmentos equivalentes (mismos locus) a través de un proceso denominado SOBRECRUZAMIENTO. Durante este proceso los cromosomas homólogos se intercambian fragmentos de DNA produciéndose una RECOMBINACIÓN genética.

El sobrecruzamiento se produce al azar a lo largo de las cromátidas, de modo que la frecuencia de recombinación entre dos genes depende de la distancia que los separe en el cromosoma. Si los genes están relativamente alejados, los gametos recombinados serán muy frecuentes para ese par de genes, pero si están más o menos próximos, los gametos recombinados serán más raros porque entre ellos habrá menos recombinaciones. En los nuevos individuos producidos por gametos recombinados, la recombinación podrá originar nuevas combinaciones de fenotipos que antes no existían. Cuanto mayor sea el número de sobrecruzamientos, más elevado será el porcentaje de descendientes que muestran las combinaciones nuevas. Gracias a esto se pueden trazar o dibujar mediante experimentos de reproducción apropiados, las posiciones relativas de los genes a lo largo del cromosoma, estableciendo mapas de locus. ESTUDIO DEL DNA COMO PORTADOR DE LA INFORMACIÓN GENÉTICA: RECONSTRUCCIÓN HISTÓRICA DE LA BÚSQUEDA DE EVIDENCIAS DE SU PAPEL Y SU INTERPRETACIÓN

El DNA fue aislado y estudiado por primera vez por el suizo Friedrich Miescher en 1869. En su investigación intentaba digerir proteínas de las células del pus, observando que el núcleo de esas células no era digerido, por lo que lo que había allí no eran proteínas, sino otra sustancia a la que llamó "nucleína" por su localización en el núcleo celular. Más tarde, al comprobarse su carácter ácido, recibió el nombre de "ácido nucleico". El alemán Felix Hoppe-Seyler aisló un ácido nucleico de levaduras que difería en sus propiedades del ácido nucleico de Mieschler, al que se denominó ácido timonucleico (por su facilidad para ser extraído del timo de animales) para diferenciarlo del de levaduras. Hacia 1890, el químico alemán Albrecht Kossel, hidrolizó el ácido nucleico, descubriendo la existencia de hidratos de carbono y de unos compuestos o bases nitrogenadas a las que dio los nombres de "adenina", "guanina", "citosina" y "timina". Kossel recibió el premio Nobel de Fisiología y Medicina en 1910.

En 1911, el bioquímico estadounidense de origen ruso, Theodore Leven, demostró que los hidratos de carbono eran pentosas. Tras este descubrimiento se observó que el ácido nucleico de levadura poseía, como pentosa, la ribosa, mientras que el timonucleico poseía un derivado desoxigenado de la ribosa, la desoxirribosa, recibiendo a partir de entonces los nombres de ácido RIBONUCLEICO (RNA), y ácido DESOXIRRIBONUCLEICO (DNA). Se descubrió también que el RNA no poseía una de las bases que se conocían en la época, la timina, pero a cambio poseía una base nitrogenada nueva, el "uracilo". En 1934 Levene aisló, a partir de ácidos nucleicos, unas moléculas más sencillas que estaban formadas por una pentosa, una base nitrogenada y una molécula de ácido fosfórico. A este conjunto se le dio el nombre de NUCLEÓTIDO, y Levene pensó que los ácidos nucleicos estaban formados por cuatro nucleótidos, uno con cada una de las bases. Hasta mediados de los años 50 no se certificó que los ácidos nucleicos en realidad estaban formados por miles e, incluso, millones de nucleótidos y no por sólo cuatro. Poco después, el británico Alexander R. Todd sintetizó nucleótidos en situaciones controladas que sólo permitían un único tipo de enlace, observando que los ácidos nucleicos estaban formados por pentosas de nucléotidos contiguos unidos por ácidos fosfóricos, a la vez que a las pentosas se unían también las bases nitrogenadas. Por sus trabajos, Todd recibió el Premio Nobel de Química en 1957. En la década de los 40, diversos investigadores (Feulgen, Caspersson, Mirsky, Sager y otros) desarrollaron técnicas de tinción y análisis que permitieron estudiar en qué lugares de las células aparecían los ácidos nucleicos. Se observó que el DNA solía aparecer casi exclusivamente en el núcleo y en pequeñas cantidades en algún orgánulo celular como las mitocondrias y los cloroplastos, mientras que el RNA aparecía repartido por el citoplasma, sobre todo en los ribosomas, y en cierta cantidades también en el núcleo. Se comprobó también que existía DNA en los cromosomas, unido a proteínas, viéndose cómo la cantidad de DNA era siempre constante y propia de cada especie, lo que llevó a sospechar que tal vez existía relación entre el DNA de los cromosomas y los genes o factores hereditarios. Una primera pista la obtuvo en 1928 F. Griffith, trabajando con dos cepas de neumococos, una de envoltura lisa y otra de envoltura rugosa. Cuando Griffith mezclaba bacterias rugosas vivas con bacterias lisas muertas y esta mezcla se inyectaba en ratones, de éstos se obtenían bacterias lisas vivas, lo cual sólo se podía explicar si algo de las lisas muertas había pasado a las rugosas vivas y las había transformado. La cuestión era averiguar la naturaleza de ese "algo". No sería hasta 1944 cuando Avery, McLeod y McCarthy repitieron los experimentos de Griffith y demostraron que el "Principio transformante" que convertía a las bacterias rugosas en lisas era, precisamente, el DNA, descubrimiento que marcó un hito importante en la historia de la Genética.

Otra cuestión importante era la función exacta del DNA, es decir, cómo el hecho de tener un DNA determinado da unas características y otro DNA da otras características diferentes. El primero en intentar responder a la cuestión fue A. Garrod, en 1909. Al estudiar la alcaptonuria (enfermedad metabólica producida por un error en un gen que impide sintetizar una enzima) propuso la idea de que la enfermedad se debía a la falta de una proteína específica relacionada con la presencia de un gen recesivo, según la terminología de De Vries, Correns y Tschermack, que habían redescubierto los principios de Mendel.

Sin embargo la cuestión se mantendría hasta principios de la década de 1940, en que los estadounidenses, George W. Beadle y Edward L. Tatum, trabajando con hongos filamentosos, como Neurospora y Penicillium, descubrieron que los genes dirigían la formación de las enzimas a través de los polipéptidos que las onstituyen, de tal forma que cada polipéptido está producido por un gen específico. Este descubrimiento fue el origen de la hipótesis UN GEN = UNA ENZIMA.

En 1953, el bioquímico estadounidense James D. Watson y el británico Francis H. C. Crick aunaron sus conocimientos químicos, utilizaron la información de Rosalin Franklin y Maurice Wilkins obtenida mediante difracción de rayos X, así como los trabajos de Chargaff sobre composición química del DNA y elaboraron una hipótesis sobre la estructura del DNA: la DOBLE HÉLICE.

Actividad 5b

(Contiene vídeo)

En 1955 Severo Ochoa y su equipo sintetizaron, por primera vez, un ácido nucleico gracias a la enzima polinucleótido fosforilasa

De 1960 a 1975 los nuevos descubrimientos se sucederán con gran rapidez, sobre todo para el conocimiento de los mecanismos de acción génica: descubrimiento del RNA mensajero, establecimiento del Código genético, regulación de la expresión génica, descubrimiento del DNA recombinante... En 1975 se iniciará lo que se ha dado en llamar la Nueva Genética, basada en la tecnología para la manipulación de los ácidos nucleicos. El Consejo de Asilomar estudiará las implicaciones del recién descubierto DNA recombinante, la primera manipulación genética realizada por el hombre. Es el momento de la secuenciación del DNA, descubrimiento de los intrones, etc. A partir de la década de los 80 se desarrollarán las técnicas de la pcr y hacia los 90 otros tipos de análisis de secuencias tales como rapds, rflps, microsatélites, etc.

Desde 1990 la manipulación genética alcanza el nivel de su utilización para la obtención de recursos: plantas y animales transgénicos, inicio de la terapia génica humana, inicio del Proyecto Genoma Humano en 1995, clonación, etc. Los últimos años en los que los medios técnicos permiten vislumbrar unas posibilidades futuras muy esperanzadoras en la obtención de recursos para el hombre y en la cura de muchas enfermedades, entre ellas el cáncer, así como la obtención de órganos para transplantes, se ha visto surgir también una importante corriente bioética de prevención contra las consecuencias del mal uso de estas técnicas. Nos encontramos en el momento actual en una controversia científica y social que tendrá que dilucidarse antes de avanzar en las líneas de investigación del siglo XXI. CONCEPTO DE GEN. MECANISMOS RESPONSABLES DE SU TRANSMISIÓN Y VARIACIÓN Un GEN se define como la unidad mínima de información genética. Dicho de otro modo,

Un GEN es el fragmento más pequeño de una molécula de DNA que posee información completa para un carácter determinado

A veces el gen secuencia de eucariotas es esté constituido de DNA secuencias sin codifican partes con fabricar la EXONES, y a intercaladas en deben ser transcripción.

está formado por una bases, pero en frecuente que un gen por varios fragmentos separados por sentido que no ninguna proteína. A las sentido que sirven para proteína se les llama las partes sin sentido el gen INTRONES, que eliminados tras la

Los genes se encuentran en los cromosomas. Los cromosomas pueden ser definidos como un conjunto de genes unidos o GENES LIGADOS, que son aquellos que se heredan juntos (si no se da recombinación genética). En esencia, un gen es una secuencia de nucleótidos que codifica para una proteína determinada, según la hipótesis UN GEN = UNA ENZIMA. Lo que heredamos de nuestros padres son, en realidad, sus genes.

Para que los genes se puedan transmitir de padres a hijos, deben poder copiarse antes de la reproducción, de manera que los padres mantienen su información a la vez que se la pasan a sus hijos a través de los gametos, durante la reproducción sexual. Los procesos de formación de gametos (gametogénesis) y de unión de gametos de individuos diferentes en la reproducción (fecundación) se convierten así en procesos fundamentales para el mantenimiento de la especie. Estos procesos son posibles gracias a la información de los genes, y son necesarios para aumentar la variabilidad de las poblaciones, mediante la recombinación genética y el propio proceso aleatorio de fecundación, variabilidad que, junto con las mutaciones, constituirá la base de la evolución. Cuando los genes se expresan, se desarrollan los caracteres, es decir, el fenotipo de un individuo. La transmisión y expresión de los genes se lleva a cabo mediante tres procesos que constituyen el "Dogma central de la Genética Molecular", que son: • • •

La Replicación. La Transcripción. La Traducción.

LA

REPLICACIÓN DEL DNA El primer proceso necesario para la transmisión de la información genética es su duplicación, es decir, la realización de una copia que pueda ser transportada por los gametos hasta la fecundación y luego pueda ser utilizada por el nuevo individuo.

La REPLICACIÓN es el proceso por el cual el DNA se copia para poder ser transmitido a nuevos individuos.

Con el modelo de la doble hélice de Watson y Crick se desarrolló la idea de que las hebras originales debían servir de patrón para hacer la copia, aunque en principio había tres posibles modelos de replicación: •

Modelo conservativo: Proponía que tras la replicación se mantenía la molécula original de DNA intacta, obteniéndose una molécula idéntica de DNA completamente nueva, es decir, con las dos hebras nuevas.



Modelo semiconservativo: Se obtienen dos moléculas de DNA hijas, formadas ambas por una hebra original y una hebra nueva.



Modelo dispersivo: El resultado final son dos moléculas nuevas formadas por hebras en las que se mezclan fragmentos originales con fragmentos nuevos. Todo ello mezclado al azar, es decir, no se conservan hebras originales ni se fabrican hebras nuevas, sino que aparecen ambas mezcladas.

Meselson y Stahl demostraron en 1958 que el modelo válido era el semiconservativo. Para ello utilizaron nucleótidos marcados con nitrógeno pesado. Elementos que intervienen Para que se lleve a cabo la replicación del DNA en las células se requieren los siguientes elementos: •

DNA original que servirá de molde para ser copiado.



Topoisomerasas, helicasas: enzimas responsables de separar las hebras de la doble hélice.



DNA-polimerasa III: responsable de la síntesis del DNA.



RNA-polimerasa: fabrica los cebadores, pequeños fragmentos de RNA que sirven para iniciar la síntesis de DNA.



DNA-ligasa: une fragmentos de DNA.



Desoxirribonucleótidos trifosfato, que se utilizan como fuente de nucleótidos y además aportan energía.



Ribonucleótidos trifosfato para la fabricación de los cebadores.

Mecanismo Aunque existen pequeñas variaciones entre procariotas y eucariotas, el mecanismo básico es bastante similar:



El DNA se desenrolla y se separan las dos hebras de la doble hélice, deshaciéndose los puentes de hidrógeno entre bases complementarias, por la acción de helicasas y topopisomerasas.



En el DNA eucariota se producen muchos desenrollamientos a lo largo de la molécula, formándose zonas de DNA abierto. Estas zonas reciben el nombre de HORQUILLAS O BURBUJAS DE REPLICACIÓN, que es donde comenzará la síntesis.



La RNA-polimerasa fabrica pequeños fragmentos de RNA complementarios del DNA original. Son los llamados "primers" o cebadores de unos 10 nucleótidos, a los cuáles se añadirán desoxirribonucleótidos, ya que la DNA-polimerasa sólo puede añadir nucléotidos a un extremo 3’ libre, no puede empezar una síntesis por sí misma.



La DNA-polimerasa III añade los desoxirribonucleótidos al extremo 3' (sentido 5'-3'), tomando como molde la cadena de DNA preexistente, alargándose la hebra.



En las horquillas de replicación siempre hay una hebra que se sintetiza de forma continua en el mismo sentido en que se abre la horquilla de replicación, la llamada HEBRA CONDUCTORA, y la otra que se sintetiza en varios fragmentos, los denominados FRAGMENTOS DE OKAZAKI y que se conoce como HEBRA SEGUIDORA o RETARDADA, ya que se sintetiza en sentido contrario al de apertura de la horquilla.

Formación de una Síntesis por la DNA-polimerasa de la hebra Unión de todos los horquilla de conductora (izquierda) y de la hebra seguidora fragmentos por la DNA-

replicación en fragmentos de Okazaki (derecha) ligasa Animación de la replicación. Tomada de www.biotech.bioetica.org •

La DNA-ligasa va uniendo todos los fragmentos de DNA a la vez que elimina los ribonucleótidos de los cebadores.



A medida que se van sintetizando las hebras y uniendo los fragmentos se origina la doble hélice, de forma que al finalizar el proceso se liberan dos moléculas idénticas de DNA, con una hebra antigua y otra nueva.

LA

TRANSCRIPCIÓN DEL DNA: EL RNA

La transcripción del DNA es un mecanismo fundamental para el control celular y para la expresión de la información genética. Este mecanismo permite que la información del DNA llegue al resto de orgánulos celulares y salga del núcleo en el caso de los eucariotas. Para ello esa información debe copiarse en forma de RNA.

La TRANSCRIPCIÓN es el proceso de copia de un gen o fragmento de DNA utilizando ribonucléotidos y originándose diferentes tipos de RNA.

El proceso es similar al de la replicación, con la diferencia de las enzimas y los precursores necesarios. Elementos que intervienen Para que se lleve a cabo la transcripción del DNA en las células se requieren los siguientes elementos:



DNA original que servirá de molde para ser copiado.



RNA-polimerasa: sintetiza el RNA a partir del molde del DNA.



Ribonucleótidos trifosfato para llevar a cabo la copia.



Poli-A polimerasa, ribonucleoproteína pequeña nuclear, RNA-ligasa.

Mecanismo Al igual que en la replicación, existen diferencias entre procariotas y eucariotas, siendo las principales, la existencia de varias RNA-polimerasas en eucariotas y, sobre todo, la necesidad de que se produzca una "maduración", un procesamiento de algunos RNAs debido a la existencia de los intrones. El proceso se divide en tres etapas:



Iniciación: La RNApolimerasa se une a una zona del DNA previa al DNA que se quiere transcribir. A continuación se corta la hebra de DNA y se separan las dos cadenas, iniciándose el proceso de copia del DNA a transcribir; esta copia no

requiere ningún cebador. Los ribonucleótidos se añaden en sentido 5'-3'. En el caso de la transcripción de un gen que codifica para una proteína, la RNA-polimerasa se une a una zona de control denominada PROMOTOR, que regula la actividad de la RNA-polimerasa y, por tanto, regula la expresión del gen. •

Elongación: La RNA-polimerasa continúa añadiendo ribonucleótidos complementarios al DNA hasta que se llega a una determinada secuencia que indica a la polimerasa el final de la zona a transcribir. Cuando ya se han añadido unos 30 ribonucleótidos, en el extremo 3’ se une un nucléotido modificado de 7-metil guanosina, que forma lo que se denomina la “caperuza”, el “casquete” o el extremo “Cap”.



Terminación: La transcripción finaliza, y al RNA recién formado se le añade una cola de unos 200 nucleótidos de adenina, la cola de poli-A, agregada por la enzima poli-A polimerasa, que sirve para que el RNA no sea destruido por las nucleasas celulares.



Maduración de los productos de la trancripción: Se da en el núcleo de eucariotas y la realiza la enzima ribonucleoproteína pequeña nuclear (RNPpn), eliminando los intrones del RNA y quedando los exones libres para ser unidos por una RNA-ligasa.

Tras estos procesos se habrá formado un RNA, mensajero, transferente, ribosómico o nucleolar, que se desplazará hasta el lugar donde llevan a cabo su función, que generalmente es en el citoplasma.

ALTERACIONES EN LA INFORMACIÓN GENÉTICA: CONSECUENCIAS E IMPLICACIONES EN LA ADAPTACIÓN Y EVOLUCIÓN DE LAS ESPECIES. SELECCIÓN NATURAL.

información genética está protegida para no sufrir cambios que impidan su correcta expresión. Sin embargo, puede darse el caso de que se produzcan alteraciones en la información que den lugar a proteínas no funcionales La

MUTACIONES GENÉTICAS Son las alteraciones que suceden en la información genética de los seres vivos.

Por ejemplo, la anemia falciforme se debe a la existencia de unos glóbulos rojos cuya hemoglobina difiere en un solo aminoácido de la hemoglobina normal. Cuando se produce una mutación durante la formación de los gametos, la alteración se transmitirá a las siguientes generaciones. Las mutaciones fueron descritas por primera vez en 1901 por uno de los redescubridores de Mendel, el botánico alemán Hugo De Vries. Las mutaciones se deben a múltiples causas, tales como:



Errores en la replicación que permitan que se cambien unos nucleótidos por otros o, incluso, que desaparezcan o se intercalen nucleótidos.



Errores en la meiosis que alteren la estructura física de los cromosomas o su número.



Modificaciones químicas en el DNA debido a la acción de ciertas sustancias químicas, radiaciones UV, rayos X, etc., a los que denominamos AGENTES MUTAGÉNICOS.

Según la cantidad de DNA afectado, se diferencian tres tipos de mutaciones:



Mutaciones GÉNICAS: Son aquellas que sólo afectan a nucleótidos aislados, bien porque se cambia uno por otro, porque se añade o se pierde un nucleótido. El cambio de un nucleótido por otro puede dar lugar a que la proteína siga siendo funcional y la mutación pase desapercibida, pero si se añade o elimina algún nucleótido, la alteración puede ser tan grande que la proteína no sea funcional, provocando una enfermedad genética o, incluso, la muerte.



Mutaciones CROMOSÓMICAS: Son mutaciones que afectan a la integridad de los cromosomas y, por tanto, a la información que llevan. Suelen deberse a problemas durante el sobrecruzamiento llevado a cabo para la recombinación genética. Según cómo se produzca hay varios tipos: - Deleción: Se pierde un fragmento de cromosoma, por lo que se pierde información.

- Duplicación: Se duplica un fragmento de cromosoma. No hay pérdida de información. - Adición: Se incorpora al cromosoma un grupo de nucleótidos, con lo que tampoco hay pérdida de información. - Translocación: Un fragmento de un cromosoma se une a otro cromosoma diferente con lo que puede darse el caso de tampoco se vea afectada la información. Algunos casos de síndrome de Down son translocaciones en vez de aneuploidías. - Inversión: Se da cuando un fragmento de un cromosoma invierte su sentido, con lo cual no podrá ser leído en el orden correcto, aunque si en el inverso.



Mutaciones GENÓMICAS: Son aquellas que afectan al GENOMA, es decir, al número de cromosomas, bien porque se gane alguno o porque se pierda. Suelen ser debidas a problemas durante la meiosis. Cuando se pierden o ganan cromosmas aislados hablamos de ANEUPLOIDÍA: si se pierde un cromosoma se denomina MONOSOMÍA (porque sólo queda uno en el par), si se gana uno se denomina TRISOMÍA (porque hay tres cromosomas en vez de un par), como sucede con la Trisomía del par 21, el "mongolismo" o síndrome de Down. Cuando se aumenta un número genómico entero se le da el nombre de POLIPLOIDÍA: TRIPLOIDÍA, tres juegos, TETRAPLOIDÍA, cuatro juegos, etc. Estas mutaciones suelen ser perjudiciales en los animales, pero en las plantas pueden ser base de especiación a partir de individuos poliploides.

Según el efecto que producen existen: •

Mutaciones LETALES: Las que provocan la muerte de aquél que las padece.



Mutaciones SILENCIOSAS: Aquellas que afectan a partes del DNA que no llevan información para fabricar proteínas.



Mutaciones SIN SENTIDO: Son mutaciones en las que un codón normal se cambia por un codón de terminación, con lo que la proteína no se termina.



Mutaciones RECESIVAS: Sólo se manifiestan si aparecen en homocigosis. Suelen ser la mayoría y sólo se manifiestan a partir de cruces consanguíneos.

Si no existieran mutaciones, todos los individuos de la misma especie tendrían siempre los mismos genes en los mismos lugares de sus cromosomas, es decir, los cromosomas homólogos serían idénticos entre sí y a la vez idénticos a los de otros individuos de su especie. Sin embargo, las mutaciones son la principal fuente de variabilidad genética, la que hace que en un mismo lugar de dos cromosomas homólogos, lo que llamamos un LOCUS, puedan existir dos secuencias de DNA ligeramente diferentes que, a lo mejor al expresarse no dan diferencias fenotípicas, pero puede suceder que sí. A estas dos formas moleculares de un mismo gen resultantes de una mutación les damos el nombre de ALELOS:

En un mismo locus (misma región de dos cromosomas homólogos) siempre hay el mismo gen, pero puede haber alelos diferentes.

La aparición de cambios en la información puede ser inocua, puede ser letal o puede ser beneficiosa si aporta al individuo alguna característica que antes no poseía y que le hace estar mejor adaptado a su medio. En este caso, este individuo será capaz de dejar más descendientes a la siguiente generación, es decir, se va a producir una selección de sus alelos para que pasen a la siguiente generación, es a lo que llamamos SELECCIÓN NATURAL.

La Selección Natural actúa sobre los fenotipos de los individuos, permitiendo que los fenotipos mejor adaptados prosperen y dejen más descendientes (dejen más alelos a la siguiente generación), a la vez que los fenotipos peor adaptados tienden a desaparecer.

GENÉTICA EVOLUTIVA

Las mutaciones son la fuente de la variabilidad genética, y la variabilidad es la base de la evolución. Los seres vivos evolucionan porque son capaces de sobrevivir a los cambios en su medio, bien porque sea el medio el que cambie, o porque los seres vivos se desplacen a otros lugares donde el medio sea diferente. Los seres vivos poseen alelos que les posibilitan el desarrollo de determinados caracteres. Son esos caracteres los que harán que un individuo viva mejor y se reproduzca, o viva peor y no deje descendientes. Si deja descendientes está perpetuando sus alelos, si no los deja, sus alelos terminarán por extinguirse. Esta es la base de la selección natural: se seleccionan aquellos individuos cuyos caracteres les permiten estar mejor adaptados a su medio, pero lo que en realidad se está seleccionando son las combinaciones genéticas más favorables que se transmitirán a la siguiente generación a través de sus descendientes. La genética evolutiva o genética de poblaciones, es la ciencia que estudia cómo se distribuyen los alelos en las poblaciones de organismos y de una generación a otra. El fundamento de esta ciencia se encuentra en los trabajos del matemático inglés Godfrey H. Hardy y del obstetra alemán Wilhelm Weinberg, quienes en 1908 formularon por separado lo que ahora se conoce como la ley de Hardy-Weinberg:

En una población de elevado número de individuos, con reproducción aleatoria entre ellos y sin que actúe ninguna fuerza evolutiva, las proporciones de los alelos de un gen se mantienen estables, generación tras generación. Si en una población determinada existe un gen con dos alelos (A y a) y si la frecuencia con las que se presentan esos alelos son p y q (FRECUENCIAS GÉNICAS) de tal manera que p + q = 1. Si, además, el apareamiento se produce de forma aleatoria y no se dan mutaciones, ni existe selección natural y el número de individuos de la población es elevado y constante, entonces en la siguiente generación la frecuencia de los tres genotipos AA, Aa y aa será p2, 2pq y q2 (FRECUENCIAS GENOTÍPICAS), respectivamente. P

AA

Frecuencias genotípicas

p2

Aa

aa

2pq

q2

En la F1 habrá p2 + ½ (2pq) alelos "A" y q2 + ½ (2pq) alelos "a", es decir: Frecuencia de "A" en F1

==>

p' = p2 + pq = p (p+q) = p

Frecuencia de "a" en F1

==>

q' = q2 + pq = q (p+q) = q

Por tanto, como se mantienen constantes las frecuencias génicas y no hay ningún cambio, la población está en equilibrio= EQUILIBRIO DE HARDY-WEINBERG.

Este equilibrio es teórico, no existe en la naturaleza porque nunca se cumplen las condiciones ideales. Siempre actúan lo que llamamos las FUERZAS EVOLUTIVAS, que son factores que alteran las frecuencias de los alelos (frecuencias génicas) y por tanto también las de los genotipos (frecuencias genotípicas). Estas fuerzas evolutivas son: •

Las mutaciones: Crean alelos nuevos a partir de alelos preexistentes.



Las migraciones: Alteran las frecuencias de los alelos de una población al mezclarse sus individuos con los de otra población diferente.



La deriva genética: Es un proceso aleatorio que permite el aumento de un alelo sobre otro en poblaciones pequeñas por un proceso puramente de azar al ser un muestreo pequeño. Si tenemos una población de 1000 individuos y uno tiene el alelo recesivo "a" la probabilidad de que ese alelo pase a la siguiente generación será diez veces menor que si la población es de 100 individuos; y 100 veces menor que si la población es de sólo 10 individuos.



La selección natural: Es un proceso por el que un individuo que está mejor adaptado a un medio determinado se reproduce más y mejor, dejando más descendientes. Este parámetro se mide por el aumento de la cantidad de descendientes (= EFICACIA BIOLÓGICA) que una pareja de individuos es capaz de dejar a la siguiente generación.



Falta de panmixia: Sucede cuando no todos los individuos reproductores de una población tienen las misma posibilidades para reproducirse, por la razón que sea. Por ejemplo, lo normal es que en los animales sólo se reproduzcan ciertos machos, los más fuertes, o más ágiles o de plumaje más vistoso, etc.

Generalmente las poblaciones son pequeñas y soportan migraciones, no se reproducen todos los individuos, existen mutaciones y actúa la selección natural. Por estos motivos de una generación a otra varían las frecuencias génicas de tal manera que la tendencia es a fijar un alelo, es decir, a conseguir que la proporción de un alelo sea 1, y la del otro alelo sea 0. En realidad esto es también imposible de conseguir por las mismas razones, es decir, porque las fuerzas evolutivas siguen actuando, siguen apareciendo nuevos alelos por mutación, varía el número de individuos y unos se reproducen más que otros, cambia el medio en que viven los seres vivos, etc. Sobre todo esto actúa la selección natural, favoreciendo unos fenotipos, por lo que a la larga favorece unos genotipos determinados y por tanto a un alelo concreto: por ejemplo, si el fenotipo del homocigoto dominante es el mejor adaptado, la selección favorecerá la reproducción de estos individuos, impidiendo la de los recesivos, con lo que se consigue que el alelo dominante se haga más abundante mientras que el recesivo tenderá a desaparecer. Otras veces es el heterocigótico el que sobrevive mejor que cualquiera de los homocigóticos (ventaja heterocigótica). EXPRESIÓN DE LA INFORMACIÓN: CARACTERÍSTICAS E IMPORTANCIA DEL CÓDIGO GENÉTICO.

La información genética se encuentra en la secuencia de bases del DNA y se expresa en forma de proteínas que desarrollan los caracteres de los seres vivos. Desde que se desarrolló la hipótesis un gen = una enzima, se pensó que debía existir algún tipo de relación entre las bases del DNA y los aminoácidos, idea que se vio reforzada al descubrirse el RNA mensajero, que hacía de intermediario entre el DNA y las proteínas. Gracias a los trabajos primero del equipo de Ochoa y Kornberg, desarrollando la maquinaria metabólica necesaria para fabricar ácidos nucleicos en laboratorio, y luego del equipo de Holley, Khorana y Nirenberg se fue estableciendo la correspondencia entre las bases del RNA mensajero (que es copia del DNA) y los aminoácidos de las proteínas, correspondencia a la que se le dio el nombre de CÓDIGO GENÉTICO. Estos investigadores demostraron que la relación se establecía entre grupos de tres bases nitrogenadas del RNA mensajero (tripletes) y un aminoácido.

El CÓDIGO GENÉTICO es la relación que existe entre los tripletes de bases del RNA mensajero y los aminoácidos proteinogenésicos.

Existen 64 combinaciones de las cuatro bases nitrogenadas tomadas de tres en tres (por tripletes), que codifican para 21 aminoácidos más tres tripletes "sin sentido" o de terminación. En principio, un RNA formado por 30 nucleótidos (secuencia de 30 bases nitrogenadas) tendrá información para construir una proteína de 9 aminoácidos: 9 aminoácidos x 3 bases = 27 bases + 3 de terminación = 30 bases Al haber más combinaciones que aminoácidos, a algunos aminoácidos les corresponden varias combinaciones, hasta seis tripletes para la Leucina y la Arginina, cuatro tripletes para la Valina, Alanina, Prolina, Glicina, etc.. En realidad sólo existen dos aminoácidos codificados por un único triplete, que son el Triptófano, un aminoácido de estructura peculiar, y la Metionina, que es el aminoácido de iniciación de todas las proteínas en el ribosoma. Esta característica del código genético hace que algunos aminoácidos estén codificados por un par de bases y no por un triplete en lo que se ha dado en llamar la DEGENERACIÓN DEL CÓDIGO GENÉTICO. Una de las principales características del código genético es su carácter universal para todos los seres vivos. Podemos decir que es exactamente igual para cualquier organismo, desde las bacterias quimiosintéticas hasta la especie humana, incluyendo a los virus, lo cual se considera como una prueba más de que el origen de la vida sobre la Tierra es único. Sólo se han encontrado excepciones al código genético universal en alguna mitocondria, en las que algún triplete tiene un significado distinto. 1ª BASE

2ª BASE

3ª BASE

U

C

A

G

U

UUU Phe UUC Phe UUA Leu UUG Leu

UCU Ser UCC Ser UCA Ser UCG Ser

UAU Tyr UAC Tyr UAA - - UAG - - -

UGU Cys UGC Cys UGA - - UGG Trp

U C A G

C

CUU Leu CUC Leu CUA Leu CUG Leu

CCU Pro CCC Pro CCA Pro CCG Pro

CAU His CAC His CAA Gln CAG Gln

CGU Arg CGC Arg CGA Arg CGG Arg

U C A G

A

AUU Ile AUC Ile AUA Ile AUG Met

ACU Thr ACC Thr ACA Thr ACG Thr

AAU Asn AAC Asn AAA Lys AAG Lys

AGU Ser AGC Ser AGA Arg AGG Arg

U C A G

G

GUU Val GUC Val GUA Val GUG Val

GCU Ala GCC Ala GCA Ala GCG Ala

GAU Asp GAC Asp GAA Glu GAG Glu

GGU Gly GGC Gly GGA Gly GGG Gly

U C A G

LA EXPRESIÓN GÉNICA: LA TRADUCCIÓN El paso fundamental para que los seres vivos puedan existir, vivir, pertenecer a una especie, funcionar, etc. radica en que la información genética, que es una secuencia de bases nitrogenadas encerrada en los nucleótidos del DNA, se convierta en moléculas activas capaces de fabricar materia, producir y gastar energía, hacer funcionar el metabolismo, fabricar células y tejidos, etc.; estas moléculas están constituidas por aminoácidos, y son las PROTEÍNAS.

La TRADUCCIÓN es el proceso de síntesis de proteínas llevado a cabo en los ribosomas, a partir de la información aportada por el RNA mensajero que es, a su vez, una copia de un gen.

Las proteínas de los seres vivos se fabrican en los RIBOSOMAS, orgánulos celulares que se encuentran en el citoplasma de los eucariotas, asociados al retículo endoplasmático. Los ribosomas son nucleoproteínas, algo similar a la propia cromatina nuclear, con la particularidad de que están formados por una asociación de proteínas y un RNA especial que es el llamado RNA-ribosómico. Este RNA, como todos los RNA, se fabrica en el núcleo celular mediante la transcripción de una región determinada de ese DNA.

El proceso de fabricación de proteínas recibe el nombre de TRADUCCIÓN, puesto que se pasa de un lenguaje construido con bases nitrogenadas a otro construido con aminoácidos.

En el proceso de traducción intervienen de forma fundamental los tres tipos más frecuentes de RNAs, cada uno con una función complementaria para llevar a cabo de forma conjunta el proceso:



RNA-mensajero (RNA-m): es el encargado de transportar la información genética desde el núcleo hasta los ribosomas con el fin de que pueda ser expresada en forma de proteínas.



RNA-ribosómico (RNA-r): forma parte esencial de las dos subunidades que constituyen los ribosomas.



RNA-transferente (RNA-t): juega un papel fundamental transportando a los aminoácidos hasta los ribosomas en el orden correcto en que deben unirse para formar una proteína determinada, según la información genética.

Los RNA-transferentes

Los RNA-t son cadenas cortas de ribonucleótidos arrolladas en el espacio de tal forma que se produce apareamiento entre bases complementarias que quedan próximas. Se origina así una configuración espacial en forma de "hoja de trébol", con cuatro brazos o bucles de RNA no apareado que cumplen diferentes funciones: •

BRAZO ACEPTOR, formado por los extremos 3' y 5' de la cadena que se encuentran próximos. En el extremo 5' es donde se unirá el aminoácido que debe ser transportado hasta el ribosoma.



BRAZO AMINOACIL RNA-t SINTETASA o TFIC, que interacciona con la enzima que va a unir al RNA-t con su aminoácido específico.



BRAZO ANTICODÓN: Es el más importante porque gracias a él el RNA-t se une a un aminoácido específico, según la secuencia de cada codón del RNA-m. El anticodón es una secuencia de tres bases complementaria de un codón o triplete de bases de un RNA-m. Según cual sea el codón, entrará al proceso de traducción un RNA-t u otro diferente. Es frecuente que la tercera base del anticodón sea una base rara (pseudouridina, metil guanosina, dihidrouridina, etc.)

Elementos que intervienen en la traducción •

RNA-m, RNA-t.



Ribosomas.



Aminoacil RNA-t sintetasa, translocasas, peptidasas.



GTP, factores de iniciación y terminación.



Aminoácidos.

Mecanismo



Activación de aminoácidos: Cada RNA-t busca a su aminoácido específico según el triplete de su anticodón y se une a él por la acción de una enzima específica llamada aminoacil RNAt sintetasa, que une al aminoácido con su RNA-t en el brazo aceptor, gastándose una molécula de ATP. De este modo, un gran número de transferentes se encuentran unidos a su aminoácido antes de iniciarse la traducción.



Iniciación: El RNA-m llega hasta el ribosoma que está separado en sus dos subunidades y se une a la subunidad mayor; a continuación se une la subunidad menor. En los ribosomas existen dos lugares en los que pueden caber transferentes, el llamado LUGAR P (= peptidil) y el LUGAR A (= aminoacil). El RNA-m se une de tal forma que el primer codón se coloca en el lugar P. Este primer codon siempre es el mismo en todos los RNA-m (salvo en algunas mitocondrias), es el AUG leído desde el extremo 5', que codifica para el aminoácido Metionina, con el que se inician todos los procesos de traducción celular. A continuación llega hasta ese lugar P un RNA-t con el aminoácido Metionina, y al lugar A llega otro RNA-t con el siguiente aminoácido que corresponda, según las bases del segundo triplete. En ese momento una enzima une ambos aminoácidos mediante un enlace peptídico y todo el complejo se desplaza un lugar hacia el primer codón, de tal manera que ahora el dipéptido se coloca en el lugar P (peptidil) y queda libre el lugar A (aminoacil).



Elongación: Al quedar libre el lugar aminoacil se acerca un nuevo RNA-t, según la secuencia de su anticodón, trayendo un nuevo aminoácido, volviendo a crearse un enlace peptídico y repitiéndose el desplazamiento del complejo. Estos procesos se repiten siempre que el codón que aparece en el lugar A tenga sentido.



Terminación de la cadena polipeptídica: En un momento determinado puede aparecer en el lugar A uno de los codones sin sentido o de terminación, con lo que no entrará ningún nuevo RNA-t y el péptido estará acabado, desprendiéndose del anterior RNA-t y liberándose al citoplasma al tiempo que los ribosomas quedan preparados para iniciar una nueva traducción.

La nueva cadena va adquiriendo su estructura secundaria y terciaria a la vez que se va formando, de tal manera que al finalizar ya tiene su conformación. En ocasiones la proteína no es todavía funcional y debe ser procesada, añadiéndole algo, recortándole algo o, incluso, debe unirse a otros péptidos para adquirir estructura cuaternaria LA REGULACIÓN DE LA EXPRESIÓN GÉNICA: EL OPERÓN Cada ser vivo posee un gran número de genes, tanto mayor cuanto más compleja es la especie. Esto no significa que todos los genes se transcriban a la vez, ni siquiera que todos los genes se transcriban alguna vez a lo largo de la existencia de los seres vivos. Muchos genes sólo se transcriben cuando la célula lo necesita, y muchos otros no se transcriben nunca una vez que se ha producido la diferenciación celular. Esto es lo que constituye la REGULACIÓN DE LA EXPRESIÓN GÉNICA. Existen, por tanto, dos aspectos a considerar en esta regulación: •

La diferenciación celular, es decir, la conversión de una célula totipotente en otra especializada que forma parte de un tejido. Aunque no conocemos los mecanismos exactos de esa transformación, sabemos que cada estirpe celular posee una parte concreta de su genoma que está irreversiblemente bloqueada y que no se expresa nunca. Sólo existe reversibilidad de ese proceso cuando se desarrolla un cáncer, enfermedad que consiste precisamente en que una célula diferenciada vuelve a convertirse en totipotente, desbloqueando su genoma.



La regulación génica como respuesta a factores ambientales que provocan necesidades en las células.

El proceso de bloqueo y activación de los genes en los organismos superiores aún no está claro. Sin embargo, el proceso de regulación génica en bacterias, que es más sencillo, fue estudiado por los franceses F. Jacob y J. L. Monod, que propusieron un modelo de regulación para procariotas que les valió el premio Nobel, el llamado modelo del OPERÓN. El Operón

Este modelo supone la existencia de una región próxima al gen que se necesita transcribir denominada REGIÓN PROMOTORA o simplemente PROMOTOR, que es el lugar donde se une la enzima RNApolimerasa que va a transcribir el gen. Próxima al promotor, incluso formando parte de él, existe otra región llamada REGIÓN OPERADORA u OPERADOR, a la cual se puede unir o no una proteína especial denominada REPRESOR que se fabrica en otra zona del genoma a partir de un gen especial llamado GEN REGULADOR. Ciertas sustancias químicas actúan bloqueando al represor para que deje libre al operador, recibiendo entonces el nombre de INDUCTORES, ya que permiten la transcripción. Para que la RNApolimerasa pueda transcribir el gen tienen que darse dos circunstancias: •

Una, que la RNA-polimerasa se una al promotor.



Otra, que el represor no esté unido al operador, y por tanto al estar el operador libre, la RNApolimerasa pueda moverse hasta el gen.

Si alguna de estas circunstancias no sucede, la transcripción no se lleva a cabo. En procariotas y, de forma similar en eucariotas, la célula produce el represor o modifica la forma del promotor, según le interese que se dé la transcripción o no, regulando de esta manera la síntesis proteica, es decir, la expresión génica.

Parece que los operones no existen en los organismos complejos, aunque es muy posible que cada gen tenga su propio sistema individual de promotores y operadores, y que los intrones y las secuencias repetidas desempeñen también algún papel en este proceso.

LA TERAPIA GÉNICA.

La TERAPIA GÉNICA es un tratamiento médico que consiste en manipular la información genética de células enfermas para corregir un defecto genético o para dotar a las células de una nueva función que les permita superar una alteración.

Con la ayuda de vectores adecuados, que son generalmente virus, se introduce el gen correcto y se integra

en el ADN de la célula enferma mediante técnicas de recombinación genética. En principio existen tres formas de tratar enfermedades con estas terapias: •

Sustituir genes alterados.

Se pueden corregir mutaciones mediante cirugía génica, sustituyendo el gen defectuoso o reparando la secuencia mutada. •

Inhibir o contrarrestar efectos dañinos.

Se lleva a cabo mediante la inhibición dirigida de la expresión génica. Este proceso se desarrolla bloqueando promotores, interfiriendo con los mecanismos de expresión génica mediante RNAs anti-sentido que son complementarios de RNA-m y se unen a ellos bloqueándolos, o, más recientemente, mediante siRNA ("small interferents RNA", "RNAs pequeños interferentes"), que bloquean secuencias específicas de RNA, por lo que pueden inhibir cualquier gen bloqueando sus RNA-m. •

Insertar genes nuevos.

Se realiza por supresión dirigida de células específicas. Se insertan genes suicidas que destruyen a la propia célula que los aloja o genes estimuladores de la respuesta inmune. También se puede introducir una copia de un gen normal para sustituir la función de un gen mutante que no fabrica una proteína correcta. Por ejemplo, en el tratamiento de los cánceres que se realiza hoy día, una de las principales vías de investigación es la de marcar genéticamente a las células tumorales de un cáncer para que el organismo las reconozca como extrañas y pueda luchar contra ellas, estimulando la respuesta inmune. Otras estrategias que se siguen en la actualidad contra el cáncer son: - Inactivar oncogenes. - Introducir genes supresores de tumores. - Introducir genes suicidas. - Introducir genes que aumenten sensibilidad a fármacos.

En el siguiente cuadro se recogen algunos de los tratamientos que se utilizan actualmente.

Related Documents

Biol 2051
May 2020 10
Fact Biol
April 2020 10
Signature Assignment- Biol
November 2019 7
Naves Cons Biol 03
November 2019 10
Biol Kat Glyk Metagrafi
December 2019 12