Teknik Reaksi Kimia Tugas.docx

  • Uploaded by: Agil Priambodo
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Teknik Reaksi Kimia Tugas.docx as PDF for free.

More details

  • Words: 477
  • Pages: 5
Tugas Teknik Reaksi Kimia

Penentuan Nilai Kinetika Laju Reaksi

AGIL PRIAMBODO 12210026 Sekolah Tinggi Teknologi Indocement

Reaksi : T

K

D

CT 100 (mol/m3) T 0

22

8

2

0,5

0,01

4

8

12

16

24

Dari reaksi di atas diperoleh persamaan: 𝑑𝐢𝑑 = βˆ’π‘˜ 𝐢𝑑 𝑑𝑑

Tentukan nilai k dengan menggunakan metode integral dan diferensial .

Jawaban οƒ˜ Metode Integral 𝑑𝐢𝑑 = βˆ’π‘˜ 𝐢𝑑 𝑑𝑑 𝐢𝑇 𝑑𝐢𝑇

βˆ«πΆπ‘‡π‘œ

𝐢𝑇

𝑑

= βˆ’π‘˜ βˆ«π‘‘π‘œ 𝑑𝑇

𝐢𝑇 [ln 𝐢𝑇]πΆπ‘‡π‘œ = βˆ’π‘˜[𝑑]π‘‘π‘‘π‘œ

ln CT – ln Cto = -kt ln CT = -kt + ln Cto y

= bx + a t 0 4 8 12 16 24

CT (mol/m3) 100 22 8 2 0,5 0,01

ln CT 4,605 3,091 2,079 0,693 -0,693 -4,605

ln CT

y = -0.3735x + 4.846

6 4 2 ln CT

0 0

5

10

15

20

25

30

Linear (ln CT)

-2 -4 -6

Berdasarkan persamaan ln CT = -kt + ln Cto y

= bx + a

Dan berdasarkan persamaan linear pada grafik, y = -0,3735x + 4,846 dapat disimpulkan bahwa nilai k = 0,3735

οƒ˜ Metode Differensial 𝑑𝐢𝑇 = βˆ’π‘˜ 𝐢𝑇 𝑑𝑑 𝑑𝐢𝑇 βˆ’ = π‘˜ 𝐢𝑇 𝑑𝑑 𝑑𝐢𝑇 βˆ’π‘™π‘› = ln[π‘˜ 𝐢𝑇] 𝑑𝑑 𝑑𝐢𝑇 βˆ’π‘™π‘› = ln π‘˜ + ln 𝐢𝑇 𝑑𝑑 𝑦

=π‘Ž

Mencari nilai

[

+ 𝑏π‘₯ 𝑑𝐢𝑇 𝑑𝑑

dengan metode finite difference :

𝑑𝐢𝑇 βˆ’3 𝐢𝑇𝐼 + 4 𝐢𝑇𝑖+1 βˆ’ 𝐢𝑇𝑖+2 ] = 𝑑𝑑 π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™ 2βˆ†π‘‘

𝑑𝐢𝑇

[ 𝑑𝑑 ]

[

π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™

=

βˆ’3 (100)+4(22)βˆ’ 8 2(4βˆ’0)

= βˆ’27,5

𝑑𝐢𝑇 ( 𝐢𝑇𝑛+1 βˆ’ πΆπ‘‡π‘›βˆ’1 ) ] = 𝑑𝑑 π‘–π‘›π‘‘π‘’π‘Ÿπ‘–π‘œπ‘Ÿ 2βˆ†π‘‘

[ [ [ [

𝑑𝐢𝑇

] =

𝑑𝑑 1 𝑑𝐢𝑇

] =

𝑑𝑑 2 𝑑𝐢𝑇

] =

𝑑𝑑 3 𝑑𝐢𝑇

] =

𝑑𝑑 4

( 𝐢𝑇2 βˆ’ 𝐢𝑇0 ) 2βˆ†π‘‘ ( 𝐢𝑇3 βˆ’ 𝐢𝑇1 ) 2βˆ†π‘‘ ( 𝐢𝑇4 βˆ’ 𝐢𝑇2 ) 2βˆ†π‘‘ ( 𝐢𝑇5 βˆ’ 𝐢𝑇3 ) 2βˆ†π‘‘

= = = =

( 8βˆ’ 100) 2(8βˆ’4) ( 2βˆ’ 22) 2(12βˆ’8)

= βˆ’11,5

= βˆ’2,5

( 0,5βˆ’ 8) 2(16βˆ’12)

= βˆ’0,9375

( 0,01βˆ’ 2) 2(24βˆ’16)

= βˆ’0,124375

[

3 𝐢𝑇𝑓 βˆ’ 4 πΆπ‘‡π‘“βˆ’1 + πΆπ‘‡π‘“βˆ’2 𝑑𝐢𝑇 ] = 𝑑𝑑 π‘“π‘–π‘›π‘Žπ‘™ 2βˆ†π‘‘

[

𝑑𝐢𝑇 3 (0,01) βˆ’ 4(0,5) + (2) ] = = 0,001875 𝑑𝑑 π‘“π‘–π‘›π‘Žπ‘™ 2(24 βˆ’ 16)

t 0 4 8 12 16 24

CT (mol/m3) 100 22 8 2 0,5 0,01

dCT/dt -27,5 -11,5 -2,5 -2,9375 -0,124375 0,001875

(-)dCT/dt 27,5 11,5 2,5 2,9375 0,124375 (-)0,001875

ln CT 4,605 3,091 2,079 0,693 -0,693 -4,605

ln(-) dCt/dCt 3,314 2,442 0,916 1,0775 -2,084 6,279

7 6 y = 0.0535x + 1.4202

5 4 3 2 1 0 -1

0

5

10

15

20

25

30

-2 -3

Berdasarkan persamaan βˆ’π‘™π‘›

𝑑𝐢𝑇

𝑦

𝑑𝑑

= ln π‘˜ + ln 𝐢𝑇 =π‘Ž

+ 𝑏π‘₯

Dan berdasarkan persamaan linear pada grafik y = 0,0535x + 1,4202 , dapat disimpulkan nilai ln k = 1,4202. Jadi di dapat nilai k adalah = 4,138.

Related Documents


More Documents from ""