0.600
CLEAR ROAD
0.300 0.150 0.300 0.600
1.350
G1
3.000
Cross Section At Mid-Span All Dimensions are in 'm'
CLEAR ROADWAY 7.5
0.150 x0.300
G1
G2
3.000
d-Span
n 'm'
G3
3.000
DESIGN OF RCC T - GIRDER USING STAAD RESULTS :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
BASIC DESIGN DATA Effective span Angle of skew Clear carriage way Spacing of main girder c/c Spacing of cross girder c/c Width of crash barier Thk of deck slab Thk of wearing coat Length of cantilever Cantilever slab thk at fixed end Cantilever slab thk at free end No of main girder Depth of main girder Web thk of main girder ( at center ) Web thk of main girder ( at support ) Top haunch Bottom haunch Bottom bulb No of cross girder Depth of cross girder Web thk of cross girder
22
Leff Ang Bcw Spmg Spcg Wkerb Df Wc Lcan Dcan1 Dcan2 Nomg Dmg bwmc bwms Thw x Thh Bhw x Bhh Bbw x Bbh Nocg Dcg bwcg
21.40 0.000 7.50 3.000 5.35 0.325 0.210 0.070 1.050 0.310 0.160 3 1.800 0.300 0.600 0.150 0.150 0.600 3 1.200 0.300
Grade of concrete
Cgrade
30
23 24
Grade of reinforcement Clear cover
Sgrade cov
500 0.040
25
Unit weight of concrete
wcon
2.500
26
Stress in concrete (compression)
fc
830
27 28
Stress in steel (tension) Modular ratio
ft m
20000 10
D RESULTS :
x x x
0.300 0.300 0.300
m degree m m m m m m m m m m m m m m m m m m m N/mm2 N/mm2 m t/m3 t/m2 t/m2
OUTER GIRDER SECTION
L/2 of span
DATA Moment (kN.m) D(m) Df Overall Depth of Structure bw (m) Effective Span Spacing of girder (m) Clear Clover Effective Cover (mm) Dia of Bar (mm) Stirrups (mm) Grade of concrete Fck Grade of reinforcement Fy Design Ultimate Stress Fyd Design Bond Stress Fbd k b1 lo
2400.34 1.8 0.21 2.2 0.3 21.40 3.175 45 250 32 10 30 500 434.7826086957 2.7 36 1.2 21.40 Output
Effective Depth (mm) Df/d Ratio
0.1076923077
Effective width Beff.1
2.38
Beff (m)
5.06
Bf (m)
2.5
Xumax
0.864
Df (m)
0.21
1950
Mu (N-mm)
13406635620
Mu (KN-m)
13406.63562
Ma (KN-m)
2400.34
Mu > Ma
OK
Ast (Required)
2853.0831262543
Ast(Provided) Lb.net (mm)
9847.04 1449.2753623188 966.1835748792
Length of Bearing (mm)
GIRDER 3L/8 of span
L/4 of span
2145.24 1.8 0.21 2.2 0.3 21.40 3.175 45 240 32 10 30 500 434.7826086957 2.7 36 1.2 21.40
1400.16 1.8 0.21 2.2 0.3 21.40 3.175 45 220 32 10 30 500 434.7826086957 2.7 36 1.2 21.40
1960
1980
0.1071428571
0.1060606061
2.38
2.38
5.06
5.06
2.5
2.5
0.864
0.864
0.21
0.21
13478644620
13622662620
13478.64462
13622.66262
2145.24
1400.16
put
OK
OK
2534.5787004901
1633.522895758
9847.04 1449.2753623188 966.1835748792
9847.04 1449.2753623188 966.1835748792
INNER GIRDER SECTION
L/2 of span
DATA Moment (kN.m) D(m) Df Overall Depth of Structure bw (m) Effective Span Spacing of girder (m) Clear Clover Effective Cover (mm) Dia of Bar (mm) Stirrups (mm) Grade of concrete Fck Grade of reinforcement Fy Design Ultimate Stress Fyd Design Bond Stress Fbd k b1 lo
3L/8 of span
5623.49 1.8 0.21 2.2 0.3 21.40 3 45 250 32 10 30 500 434.7826086957 2.7 36 1.2 21.40
4814.21 1.8 0.21 2.2 0.3 21.40 3 45 240 32 10 30 500 434.7826086957 2.7 36 1.2 21.40
Output Effective Depth (mm) Df/d Ratio
1950
1960
0.1076923077
0.1071428571
Effective width Beff.1
2.38
2.38
Beff (m)
5.06
5.06
Bf (m)
2.5
2.5
Xumax
0.864
0.864
Df (m)
0.21
0.21
Mu (N-mm)
12667687200
12735727200
Mu (KN-m)
12667.6872
12735.7272
Ma (KN-m)
5623.49
4814.21
Mu > Ma
OK
OK
Ast (Required)
6763.1482455596
5742.8083554637
Ast(Provided)
8616.16 1449.2753623188 966.1835748792
8616.16 1449.2753623188 966.1835748792
Lb.net (mm) Length of Bearing (mm)
L/4 of span 3925.46 1.8 0.21 2.2 0.3 21.40 3 45 220 32 10 30 500 434.7826086957 2.7 36 1.2 21.40
1980 0.1060606061 2.38 5.06 2.5 0.864 0.21 12871807200 12871.8072 3925.46 OK 4619.7604564391 8616.16 1449.2753623188 966.1835748792
DESIGN OF CANTILEVER SLAB At Intermediate Section Dead Laod Moment Summary of moments (DL+ SIDL) Sl. No. 1 2 3 4 Total
Items. Crash barrier Wearing coat Kerb Deck slab
Loads (kN) 8.125 1.65 4.05 6.16875 Total Load
= 8.125 = 1.650 = 4.050 = 6.169 = 19.99
Live Load Moment :Class A Loading
As Per IRC:6:2000, only Class A and Class B Vehicles can come to Cantilever Portio
Effective width (beff) = 1.2a + b1 Using IRC 112:2011, AN Where, a is the distance of load cg from support. b1 is tyre width + twice the thickness of wearing coat Effective width (beff) As beff <1.2m, hence overlaping won't oc Therefore, beff Impact factor
As Per IRC 112:2011
Therefore, live load /m width including impact Moment at the face of support due to live load =109.615*0.325 Design bending moment (DL + SIDL + live load ) Main Reinforcement Required effective depth Required effective depth Depth provided Spacing Required Ast Provided Ast
=(49.37/0.36*30*0.48*(1-0.416*0.48))^0.5
Dcan1-(Cover+ S=1000 *π/4×(16)^2
=(0.5*Fck)/Fy*(1-(√1-(4.6M///Fckbd^2))*bd) Provide 40mm Clear Cover and 16mm dia bars @ spa
Required Ast(446.02)
<
Distribution Reinforcement
Design bending moment [0.2 x (DL + SIDL)BM + 0.3 x live load BM]
Design B.M Required Ast Provide 12mm
=(0.5*Fck)/Fy*(1-(√1-(4.6M///Fckbd^2))*bd) @ 175 c/c at top & bottom
Provided Ast
Provided Ast(646.19) >Req
Hence Ok Check For Shear in Cantilever Portion Dead Load Shear Total Shear 19.99+1.5×(57/0.780) (dead load shear + liveload shear) Design Shear 1.5*129.6091346 Ved As Per Clause 10.3.2(2) of IRC 112:2011 Page No.88 Shear Resistance of a Structure is given by VRdc=[0.2k Subject to a Minimum of VRdc=(Vmin+0.15)bwd K=1+√(200/d) K=1+√(200/410)
<2.0 Where d= depth in mm 1.6984302958 <2.0 Hence OK
Vmin=0.031k3/2fck1/2 Vmin =0.031*(1.6942)^3/2*(30)^0.5 Vmin 1
=
0.3758321 0.3758321
=1058.22/(1000*410)
VRdc=(0.12*1.6942*(80*0.00255*30)^(1/3)*1000*410 VRdc(min)=Vmin*b*d = 0.374429*1000*410
Ved > Hence OK Also IRC 112:2011, Clause-10.3.2(5) Specified the Following Criteria VRdc(min
Ved ≤ 0.5bwdvfcd V So
= = 0.5bwdvfcd = = > Hence OK
0.6(1-Fck/310) 0.5 1199845.2 1199.8452 Ved
Lever arm (m) 0.8875 0.3625 0.7500 0.4691489362 Total B.M
Moment at the face of support (kN-m) 7.211 0.598 3.038 2.894 13.74
me to Cantilever Portion.
sing IRC 112:2011, ANNEXURE B.3.2 PAGE NO.279
a b1 beff nce overlaping won't occurs.
ng impact 109.615*0.325
48*(1-0.416*0.48))^0.5
Dcan1-(Cover+d/2) 1000 *π/4×(16)^2
bd^2))*bd) 16mm dia bars @ spacing of 190 mm c/c
= = =
0.33 0.39 0.780
m m m
=
0.780
m
=
1.5
= 109.62 kN/m = 35.63 kN/m =
49.37
kN/m
= = = =
109.08 109.08 mm 262.00 mm 207.60 mm
= 446.02 mm2/m = 1058.09 mm2/m
Provided Ast(1058.09)
+ 0.3 x live load BM]
=
Design B.M
20.56
kN-m
= 30.84094
bd^2))*bd)
= 275.57 mm2/m = 646.19 mm2/m
ded Ast(646.19) >Required Ast (275.57) Hence Ok
= 19.99 kN 129.6091346154 kN
194.4137019231 kN 112:2011 Page No.88
Where d= depth in mm
=
0.0025807035 153367.01439 N 153.36701439 kN 154091.17607 N 154.09117607 kN
ollowing Criteria
6(1-Fck/310) N kN
Near Expansion Joint
5.7 t
0.21
1.050 m 0.25 0.5 Tyre size
Class A
Dead Laod Moment Summary of moments (DL+ SIDL) Sl. No. 1 2 3 4 Total
Items. Crash barrier Wearing coat Kerb Deck slab
Loads (kN) 8.125 1.65 4.125 2.1 Total Load
Live Load Moment :Class A Loading
As Per IRC:6:200, only Class A and Class B Vehicles can come to Cantilever Portion
Effective width (beff) = 1.2a + b1 Where, a is the distance of load cg from support. b1 is tyre width + twice the thickness of wearing coat Effective width (beff) As beff < 1.2m, hence overlaping won't oc Therefore, beff Impact factor
As Per IRC 112:2011
Therefore, live load /m width including impact Moment at the face of support due to live load Design bending moment (DL + SIDL + live load ) Main Reinforcement Required effective depth Required effective depth
=(47.06/0.36*30*0.48*(1-0.416*0.48))^0.
Depth provided Spacing
S=1000 *π/4×(16)^2
=(0.5*Fck)/Fy*(1-(√1-(4.6M///Fckbd^2))*bd) Provide 40mm Clear Cover and 16mm dia bars @ spac
Required Ast Provided Ast
Required Ast(424.61) Distribution Reinforcement
Design bending moment [0.2 x (DL + SIDL)BM + 0.3 x live loa
Required Ast Provide 12mm
=(0.5*Fck)/Fy*(1-(√1-(4.6M///Fckbd^2))*bd) @ 225 c/c at top & bottom
Provided Ast
Provided Ast(502.59) >Requ
Check For Shear in Cantilever Portion Dead Load Shear Total Shear 16+1.5×(57/0.790) (dead load shear + liveload shear) Design Shear 1.5*124.2278481 As Per Clause 10.3.2(2) of IRC 112:2011 Page No.88 Shear Resistance of a Structure is given by VRdc=[0.2k VRdc=(Vmin+0.15)bwd
K=1+√(200/d)
<2.0
K=1+√(200/410)
1.6984302958 Hence OK
Vmin=0.031k fck 3/2
1/2
Vmin =0.031*(1.6942)^3/2*(30)^0.5 Vmin 1
=
=893.50/(1000*410)
VRdc=(0.12*1.6984302*(80*0.00255*30)^(1/3)*1000*410 VRdc(min)=Vmin*b*d = 0.37583*1000*410
VRdc(min
> Hence OK
Also IRC 112:2011, Clause-10.3.2(5) Specified the Following Criteria Ved ≤ 0.5bwdvfcd V So
0.5bwdvfcd
= = = = > Hence OK
N) = 8.125 = 1.650 = 4.125 = 2.100 = 16.00
Lever arm (m) 0.8875 0.3625 0.7500 0.4691489362 Total B.M
Moment at the face of support (kN-m) 7.211 0.598 3.094 0.985 11.89
n come to Cantilever Portion Using IRC 112:2011, ANNEXURE B.3.2 PAGE NO.279
port. earing coat
a b1 beff m, hence overlaping won't occurs.
= 0.33 m = 0.40 m = 0.790 m = 0.790 m =
1.5
ncluding impact =108.228*0.325
= 108.23 kN/m = 35.17 kN/m = 47.06 kN/m
*30*0.48*(1-0.416*0.48))^0.5
= 106.51 = 106.51 mm
Dcan1-(Cover+d/2) S=1000 *π/4×(16)^2
Fckbd^2))*bd) r and 16mm dia bars @ spacing of 225 mm c/c
= 262.00 mm = 207.60 mm = 424.61 mm2/m
= 893.50 mm2/m Provided Ast(893.50)
<
L + SIDL)BM + 0.3 x live load BM] Design B.M
Fckbd^2))*bd)
19.96 kN-m = 29.94695 = 267.44 mm2/m = 502.59 mm2/m
rovided Ast(502.59) >Required Ast (267.44) Hence Ok
= 16.00 kN 124.2278481013 kN Ved 186.3417721519 kN IRC 112:2011 Page No.88
Where d= depth in mm <2.0
0.3758321368 0.3758321368 =
3)*1000*410
Ved
d the Following Criteria
0.6(1-Fck/310) 0.5 1199845.1613 N 1199.8451613 kN Ved
0.002179261 144970.6659 N 144.9706659 kN 154091.1761 N 154.0911761 kN
SHEAR RESISTANCE CHECK Let us Provide 1 bent up bar at 645 mm interval Maximum Spacing of Bent up bars as Per Clause-16.5.2(8) of IRC 112:2011 Sbmax=0.6d(1+cot∝)
=
0.6*1950*2
=
Now =
1*(∏/4)*30*30
=
706.5
=
1*(∏/4)*28*28
=
615.44
As per clause 10.3.3.3 of IRC:112-2011, Now
z
S = =(0.9d) = =0.8fy = = =
0.645 m 1755 mm 24 N/mm2 bw
300
65246.29 N 65.24629 kN
= =1×300×0.9×1950×0.6×0.36×30×2/2 = 3411720 = 3411.72 > 65.2463 Hence OK = =
56836.77 N 56.83677 kN
<
3411.72
Hence OK Design shear resistance of member without shear reinforcement is given by VRdc =
=0 vmin=
K=
=
1.32026 Hence OK
vmin= (VRdc)min
0.25758 = = 150683.5 N = 150.6835 kN ( )O.G
Now
( )I.G (VRdc)O.G
(VRdc)I.G
= =
0.00842 < 0.00736 <
= =
249893.3 N 249.8933 kN > Hence OK
(VRdc)min
= =
239120.8 N 239.1208 kN > Hence OK
(VRdc)min
IRC 112:2011 2.34 > 0.645 Hence OK mm2
(Outer Girder)
mm2
(Inner Girder)
mm
nt is given by
< Hence OK
2
0.02 0.02
SHEAR REINFORCEMENT DISTRIBUTION ON OUTER GIRDER Outer Girder Total Shear Design Shear
= =
458.69 kN 688.035 kN
(VRdc)O.G Shear resisted by girder without shear reinforcement Hence design shear for which shear reinforcement will be provided Ved
As per clause -10.3.3.3(2)& clause-16.5.2(3) of IRC :112-2011 only 50% of the shear will be re Let’s provide 4-legged 8mmф vertical stirrups
4 legged 8 mmф
Asw =
200.96 mm2 Using clause-10.3.3.2 of IRC:112-2011, Vrd.max=
=
Vrd.max=
1022690.584 N 1022.690584 kN > 219.0708477 Hence OK As per same clause ,spacing of vertical stirrups given by S=
= 643.965 mm = 321.982 mm Provide 4-legged 8mm ф vertical stirrups@ 300mm c/c starting/end of girders. As per cl-16.5.2 of IRC:112-2011, Min. Shear reinforcement ratio is
w.min =
=
0.00079
0.00208 >
0.00079
Provided shear reinforcement ratio is (w)=
=
Hence OK
UTER GIRDER
SHEAR REINFORCEMENT DIS Outer Girder Total Shear Design Shear
=
249.893 kN
= 438.142 kN 50% of the shear will be resisted by the bent up bars =
of girders.
Shear resisted by girder without shear rei Hence design shear for which shear reinf
As per clause -10.3.3.3(2)& clause-16.5.2
219.071 kN
Let’s provide 4-legged 8mmф vertical sti Asw =
200.96 Using clause-10.3.3.2 of IRC:112-2011, 0.59952
Vrd.max= Vrd.max=
924466.0645 924.4660645 Hence OK As per same clause ,spacing of vertical st S=
Provide 4-legged 8mm ф vertical stirrups As per cl-16.5.2 of IRC:112-2011, Min. Shear reinforcement ratio is
Provided shear reinforcement ratio is (w)=
R REINFORCEMENT DISTRIBUTION ON INNER GIRDER
r Total Shear
= =
412.36 kN 618.54 kN
(VRdc)O.G = d by girder without shear reinforcement 239.121 kN n shear for which shear reinforcement will be provided Ved = 379.419 kN e -10.3.3.3(2)& clause-16.5.2(3) of IRC :112-2011 only 50% of the shear will be resisted by the bent up bars
=
e 4-legged 8mmф vertical stirrups
4 legged 8 mmф
mm2 e-10.3.3.2 of IRC:112-2011, =
0.54194
N kN > 189.71 Hence OK clause ,spacing of vertical stirrups given by =
743.631 mm
gged 8mm ф vertical stirrups@ 200mm c/c starting/end of girders. .5.2 of IRC:112-2011,
einforcement ratio is
w.min =
=
0.00079
ear reinforcement ratio is =
0.0009 > 0.00079 Hence OK
189.71 kN
y the bent up bars
Design of Cross Girder(Intermediate) Maximum L.L Moment Maximum D.L Moment Total Moment
= = =
84.25 kN-m 586.23 kN-m 670.48 kN-m
Asuuming Effective Depth
=
1700 mm
Ast
=(792.9*10^6)/0.87*500.1700*(1-0.416*(250/1700)) Ast(Req) =
965.7477 mm2
Provide 4 bars of 20mm dia No. of bars Dia of bars
= =
4 20 mm
Ast(Prov) =
1256.6368 mm2
Ast(Prov) > Ast(Req) Hence OK Side Face Reinforcement (As Per clause 31.4 of IS456:2000) 0.1% of web area on either face with Spacing not more than 450 mm Ast(Req) = 360 mm2 Provide 4-12mm dia bars each face uniformly as side reinforcement. Shear Check for Intermediate Cross Girder Clause-10.3.2 of IRC-112:2011 K vmin=
= = = = = =
1.3429972 0.2642622 0 1256.6368 mm2 300 mm 0.002464
VRdc
= =
147753.34 N 147.75334 kN
(VRdc)min
=
134773.7 N
vmin=
Ast Bw VRdc = VRdc (VRdc)min
=
(VRdc)min VRdc
Dead Load Shear from STAAD Live Load Shear from STAAD Design Shear Ved Provide 8 mm dia and 4 legged Stirrups
Asw
= 134.7737 kN (VRdc)min > Hence OK = 241.042 kN = 34.634 kN =
413.514 kN 4 legged 8 mmф
=
Min. Shear reinforcement ratio is
201.06189 mm2 w.min =
=
0.0007887
Provided shear reinforcement ratio is (w)=
=
0.002681 > 0.0007887 Hence OK
As Per Clause 16.5.2 of IRC:112-2011(6, 7, 8, 9) Specifies that Smin
= = =
dg+10
40
Whichever is Largest
2øs
Maximum Longitudinal Spacing Smax 0.75d(1+cotα) =
=
Maximum Longitudinal Spacing for Bent-up bars Sbmax 0.6d(1+cotα) = =
1275 mm
1020 mm
Design of Cross Girder(End) Maximum L.L Moment Maximum D.L Moment Total Moment
= = =
Asuuming Effective Depth
=
Ast
=(792.9*10^6)/0.87*500.1700*(1-0.416*(250/1700)) Ast(Req)
=
Provide 4 bars of 20mm dia No. of bars Dia of bars
= = Ast(Prov) =
Ast(Prov) > Hence OK Side Face Reinforcement (As Per clause 31.4 of IS456:2000) 0.1% of web area on either face with Spacing not more than 450 mm Ast(Req) = Provide 4-12mm dia bars each face uniformly as side reinforcement. Shear Check for End Cross Girder Clause-10.3.2 of IRC-112:2011 K vmin=
vmin=
Ast Bw
= = = = = =
VRdc = VRdc (VRdc)min
VRdc
= =
(VRdc)min
=
=
(VRdc)min VRdc
Dead Load Shear from STAAD Live Load Shear from STAAD Design Shear Ved Provide 8 mm dia and 4 legged Stirrups
Asw
= > Hence OK = = =
=
Min. Shear reinforcement ratio is
w.min =
= Provided shear reinforcement ratio is (w)=
=
0.0026808 > Hence OK
As Per Clause 16.5.2 of IRC:112-2011(6, 7, 8, 9) Specifies that Smin
= = =
dg+10
40
Whichever is Largest
2øs
Maximum Longitudinal Spacing Smax 0.75d(1+cotα) =
=
Maximum Longitudinal Spacing for Bent-up bars Sbmax 0.6d(1+cotα) = =
25.98 kN-m 24.63 kN-m 50.61 kN-m 1700 mm
6*(250/1700)) 72.897762 mm2
4 20 mm 1256.6368 mm2 Ast(Req)
nce OK 1.4 of IS456:2000) pacing not more than 450 mm
360 mm2 mly as side reinforcement.
rder
1.3429972 0.2642622 0 1256.6368 mm2 300 mm 0.002464
147753.34 N 147.75334 kN 134773.7 N
134.7737 kN (VRdc)min
nce OK 74.242 kN 25.615 kN 149.7855 kN 4 legged 8 mmф 201.06189 mm2
0.0007887 40.249224 0.0007887
nce OK
) Specifies that
Whichever is Largest
1275 mm
1020 mm