Supplement (Basic and Technical Data) 1
Supplem ent (Basic and Technical Data)
Table of Contents ■ Operating Conditions ......................................... 3 ■ Selection Table of Bearings ................................ 4 ■ Friction Characteristics ..................................... 5 ■ Installation ........................................................ 6 ■ Calculations of Punching Force ........................... 7 ■ Steel Materials .................................................. 8 ■ Non-ferrous Materials ......................................... 9 ■ Quenching / Surface Treatment and Hardness Tests ................................................. 10 ■ Conversion Table of Hardness ............................ 11 ■ Surface Roughness ........................................... 13 ■ General Dimensional Tolerance of Cutting ........... 15 ■ Tolerances of Commonly Used Hole Fits ............. 16 ■ Tolerances of Commonly Used Shaft Fits ............. 17 ■ Oilless Bearings ............................................... 18 ■ Areas of Plane Figures ....................................... 23 ■ Volumes, Surface Area, Centers of Gravity of Solids ............................... 24 ■ SI Units ............................................................ 26 ■ Table of Unit Conversion Factors ........................ 32 ■ Hexagon Socket Head Cap Screw ...................... 33 ■ Compression and Extension Coil Spring Design Data ..................... 34 ■ Coefficients of Linear Thermal Expansion ........... 36 ■ Average Specific Gravity ................................... 36
Supplement (Basic and Technical Data) 2
Operating Conditions ■ Note - ( ) Static allowable loads (without sliding or very low speed) - (Sl4): Solid lubricant for underwater or extremely high load application Properties
Products
Allow able Range Lubrication status
Allowable Pressure (kgf/cm )
Allowable Velocity (m/min)
Allowable PV value (kgf/cm ㆍ m/min)
Allowable Temperature (℃ )
300
(1,000)
30
1,000
+300
500(SL4)
(1,000)
15
1,000
+ 80
300
(1,000)
60
2,000
+150
No Lubrication
#500SP Periodic Lubrication No Lubrication
150(500)
50
600
+400
Periodic Lubrication
150
100
1,000
+150
No Lubrication
50(750)
50
500
+400
Periodic Lubrication
80
100
1,000
+150
#100
No Lubrication
200
70
1,500
+ 80
#200A+Gr
No Lubrication
200
25
1,000
+ 80
#200A
Periodic Lubrication
200
100
1,500
+120
#200B
Underwater
150
1,000
3,000
+ 60
LB Series
No Lubrication
500(2,800)
30
1,080(2,160)
+270
LX Series
Periodic Lubrication
500(1,400)
70
1,080(2,760)
+110
LI
Series
Periodic Lubrication
350(1,000)
120
2,500
+150
LD Series
Periodic Lubrication
300
150
2,000
+150
#500B
#500F
Supplement (Basic and Technical Data) 3
Selection Table of Bearings ●: Excellent , ○: Good , △: Possible, ×: Not Good
Products
DDU01 (LB)
DBX01 (LX)
#500SP
#200
#100
LI & LD
Medium Speed
○ ○ ● ● ● ● △
○ ○ ● ○ ○ ● ●
● ○ ● ● ● ● △
× × ● ● ○ ● ○
○ ○ ● ● ● ○ ●
High Speed
×
○
×
△ ● ● ● ● ● ○ ○
△
○
High/Load Temperature
Reduction/Transmission
○ ○ △ × ● ○ ● ● ● ● ○ ○ △ ○ ○ ● ● ● ● ● × ○ ○ △
× × × × ○ ○ ○ ○ ○ ○ ○ △ △ ○ △ ● ● ○ ○ ○ × × ○ ●
● ● ○ ○ △ × △ × ● ● ○ ● ● ● ● ○ ○ ● ● ○ ● ● ● ○
× ○ ● ○ △ × ○ × ● ● ○ ● ○ × × ○ △ △ ○ ● ○ ● ● △
× × ○ × ● ● ○ ● × × △ × × × × ○ ○ △ × ○ × × × ×
× △ △ × ○ △ ● ○ ○ ○ ○ ○ △ △ △ ○ ● ○ ○ ○ × × ○ ○
Waste-water Treatments/Water Pumps
×
×
○
●
×
×
○ ● ○ ● ●
● ○ ○ ● ●
● △ ● ● ○
● ○ ○ △ ○
○ ● ○ △ ●
● ○ ○ ● ●
Applications High Load Impact/Oscillating Load Rotational Motion Reciprocating Motion Angular Rocking Motion
Operating Conditions
Low Speed
Chemical Resistance Underwater(marine) Harsh Environments Automobiles Home Appliances Agricultural Machinery Office Equipments Transportation Machinery Construction Machinery Machine Tools Vessels Water Gates/Generators Steel Mills
Machinery
Press Dies(Stamping Tools) Textile Machinery Printing/Packaging Machinery Injection Molding Machinery Tire Manufacturing Hydraulic/Pneumatic Machinery Bridges/Structures Chemical Machinery Paper Mills
With Lubrications Price
Miscellaneous
Dimension Stability Standard Size Light Weight/Compact Design
(Water)
Supplement (Basic and Technical Data) 4
Friction Characteristics
Supplement (Basic and Technical Data) 5
Installation ■ Bearing Retention Please use following methods when retaining bushings within a housing.
■ Press Fit -A screw or hydraulic press is used for press fitting. -Press fitting is accomplished by using a jig, which is perpendicular to the center of bushing. -Insert-end of housing ID is chamfered to 15˚ ~20˚.
15 ~20
˚
O.D (H7)
O.D
I.D
I.D
-0.1 ~ -0.2
˚
Force
3.2
(Jig-Mandrel)
(Bushing)
(Press Fitting)
(Housing)
■ Conversion Table of Units Indication
Conversion
Length
1mm = 0.03937inch,
1inch = 25.4mm
Mass
1kg = 2.2046lb
1lb = 0.4536kg
Force
1N = 1.0197 × 10 -1 kgf 1N = 0.2248lbf,
1Kgf = 9.8N 1lbf = 4.448N
Pressure
1N/mm 2 = 1Mpa = 1.0197 × 10kgf/cm 1kgf/cm 2 = 9.8 × 10 -2 N/mm 2 1N/mm 2 = 145psi
Velocity
1m/sec = 60m/min, 1m/sec = 196.85f/min,
2
= 10bar
1m/min = 0.01667m/sec 1f/min = 0.00508m/sec
Revolutions per Minute
1S
-1
= 60RPM
1RPM = 0.01667S
Frequency
1S
-1
= 60CPM
1CPM = 0.01667S
Angle Temperature
1rad = ℉ =
180°
π
9 ℃+ 32 5
1° = ℃ =
π 180 5 9
-1
-1
rad
( ℉- 32)
■SI Units : Consistent unit recommended and adopted in the general meeting of weights and measures.
Supplement (Basic and Technical Data) 6
Calculations of Punching Force
P=
<Meaning of Symbols >
ℓ×t×τ 1000
P : Punching Force (KN)
ℓ : Punching profile length (mm) t : Material Thickness (mm)
τ: Shearing Strength of Material
(N/mm2)
■ Shearing and Tensile Strength of Various Materials Shearing Strength (N/mm )
Material Lead
Tensile Strength (N/mm )
Soft
Hard
Soft
Hard
20 ~ 30
-
25 ~ 40
-
Tin
30 ~ 40
-
40 ~ 50
-
Aluminum
70 ~ 110
130 ~ 160
80 ~ 120
170 ~ 220
120
200
150
250
Copper
180 ~ 220
250 ~ 300
220 ~ 280
300 ~ 400
Brass
220 ~ 300
350 ~ 400
280 ~ 350
400 ~ 600
Bronze
320 ~ 400
400 ~ 600
400 ~ 500
500 ~ 750
Nickel Silver
280 ~ 360
450 ~ 600
350 ~ 450
550 ~ 700
190
-
260
-
Zinc
Silver Hot-Rolled Soft Steel Plates, Sheets, Strips
260 over
280 over
Cold-Rolled Carbon Steel Plates, Sheets, Strips
260 over
280 over
330 ~ 420
410 ~ 520
Steel Plates for structural use (SS400) Steel (0.1% C)
250
320
320
400
Steel (0.2% C)
320
400
400
500
Steel (0.3% C)
360
480
450
600
Steel (0.4% C)
450
560
560
720
Steel (0.6% C)
560
720
720
900
Steel (0.8% C)
720
900
900
1100
Steel (1.0% C)
800
1050
1000
1300
Stainless Steel
520
560
650 ~ 700
-
Nickel Steel
250
-
440 ~ 500
570 ~ 630
Supplement (Basic and Technical Data) 7
Steel Materials Korea Industrial Standards Name(No.) Rolled Steels for General Structural Use (KS D 3503) Carbon Steels Bars for General Structural Use (KS D 3566) Carbon Steels Bars for Machine Structural Use (KS D 3517)
Code
Tensile Elongation Hardness Strength (%) (HB) (N/mm )
JIS
AISI ㆍ ASTM
DIN
SS400
400~510
17~24
-
SS400
ASTM 45~65
St44-2, -3
SPS400
400 over
23 over
-
STK400
-
St44-2
STKM11A 290 over
30 over
-
STKM11A
ASTM 1008
St34-2
SM20C
400 over
28 over
116~174
S20C
AISI 1020
CK22
SM45C
570 over
20 over
167~229
S45C
AISI 1045
CK45
Nickel-Chromium Steels (KS D 3708)
SNC415
780 over
17 over
-
SNC415
-
-
SNC418
980 over
12 over
-
SNC418
-
-
Chromium-Molybde num Steels (KS D 3711)
SCM420
830 over
14 over
262~352
SCM420
-
-
SCM435
930 over
15 over
269~331
SCM435
AISI 4135
34CrMo4
SCM440
980 over
12 over
285~352
SCM440
AISI 4140
42CrMo4
STC1
-
-
217 under
SK1
ASTM W1-13
-
STC3
-
-
212 under
SK3
ASTM W1-10
C105W1
-
207 under
SK5
ASTM W1-8
C80W1
269 under
SKH3
ASTM T4
S18-1-2-5 S12-1-4-5
Carbon Steels for Machine Structural Use (KS D 3752)
Carbon Tool Steels (K S D 3751) High-Speed Tool Steels (KS D 3522)
Alloy Tool Steels (KS D 3753) Spring Steels (KS D 3071) High Carbon Chromium Steels (KS D 3525) Carbon Steel Castings (KS D 4101) Gray Iron Castings (KS D 4301) Spheroidal Graphite Iron Castings (KS D 4302)
STC5
-
SKH3
-
SKH10
-
-
285 under
SKH10
ASTM T15
SKH55
-
-
277 under
SKH55
-
S6-5-2-5
SKH59
-
-
277 under
SKH59
ASTM M42
S2-10-1-8 105WCr6
STS2
-
-
217 under
SKS2
-
STD11
-
-
255 under
SKD11
ASTM BD2
-
STD6
-
-
299 under
SKD6
ASTM H11
X38CrMoV51
SPS3
1226 over
9 over
341~401
SUP3
AISI 1075
-
SPS7
1230 over
9 over
363~429
SUP7
AISI 9260
-
SPS9
1230 over
9 over
363~429
SUP9
-
55Cr3
STB2
-
-
217 under
SUJ2
ASTM 52100
100Cr6
STB3
-
-
217 under
SUJ3
-
-
SC450
450 over
19 over
-
SC450
ASTM 65-35
GS-45
GC200
200 over
-
223 under
FC200
ASTM Class35
-
GC250
250 over
-
241 under
FC250
ASTM Class40
-
GCD450
450 over
10 over
143~217
FCD450
ASTM 65-45-12
GGG-45
GCD600
600 over
3 over
192~269
FCD600
ASTM 80-55-06
GGG-60
Supplement (Basic and Technical Data) 8
Nonferrous Metal Materials ● ( ) : Old Codes Tensile Strength (N/mm )
Elongation (%)
Hardness (HB)
CAC202 (YBsC2)
195 over
20 over
CAC203 (YBsC3)
245 over
CAC301 (HBsC1)
Korea Industrial Standards Name(No.) Brass Castings (KS D 6024)
High Strength Brass Castings (KS D 6024)
Bronze Castings (KS D 6024)
Phosphor Bronze Castings (KS D 6024)
Lead Bronze Castings (KS D 6024)
Aluminium Bronze Castings (KS D 6024)
Silicon Bronze Castings (KS D 6024)
Code
Related to Foreign Standards JIS
UNS(ASTM)
DIN
-
CAC202
C85400
CuZn33Pb
20 over
-
CAC203
C85700
CuZn37Pb
430 over
20 over
90 over
CAC301
C86500
CuZn35Al1
CAC302 (HBsC2)
490 over
18 over
100 over
CAC302
C86400
CuZn34Al1
CAC303 (HBsC3)
635 over
15 over
165 over
CAC303
C86200
CuZn25Al5
CAC304 (HBsC4)
755 over
12 over
200 over
CAC304
C86300
CuZn25Al5
CAC401 (BC1)
165 over
15 over
-
CAC401
C84400
-
CAC402 (BC2)
245 over
20 over
-
CAC402
C90300
-
CAC403 (BC3)
245 over
15 over
-
CAC403
C90500
CuSn10Zn
CAC406 (BC6)
195 over
15 over
-
CAC406
C83600
CuSn5ZnPb
CAC407 (BC7)
215 over
18 over
-
CAC407
C92200
-
CAC502A (PBC2)
195 over
5 over
60 over
CAC502A
-
CuSn10
CAC502B (PBC2B)
295 over
5 over
80 over
CAC502B
C90700
CuSn12
CAC503B (PBC3B)
265 over
3 over
90 over
CAC503B
C91000
CuSn12
CAC602 (LBC2)
195 over
10 over
65 over
CAC602
-
CuPb5Sn
CAC603 (LBC3)
175 over
7 over
60 over
CAC603
C93700
CuPb10Sn
CAC604 (LBC4)
165 over
5 over
55 over
CAC604
C93800
CuPb15Sn
CAC605 (LBC5)
145 over
5 over
45 over
CAC605
-
CuPb20Sn
CAC701 (AIBC1)
440 over
25 over
80 over
CAC701
C95200
CuAl10Fe
CAC702 (AIBC2)
490 over
20 over
120 over
CAC702
C95400
CuAl9Ni
CAC703 (AIBC3)
590 over
15 over
150 over
CAC703
C95800
CuAl10Ni
CAC704 (AIBC4)
590 over
15 over
160 over
CAC704
C95700
-
CAC801 (SzBC1)
345 over
25 over
-
CAC801
C87400
-
CAC802 (SZBC2)
440 over
12 over
-
CAC802
C87500
CuZn15Si4
CAC803 (SzBC3)
390 over
20 over
-
CAC803
-
-
Supplement (Basic and Technical Data) 9
■ Heat Treatment for Steels Type
Vickers Hardness (HV)
Quenching Depth (mm)
Strain
Applicable Material
Typical Material
Quenching
Max.750
Full Depth
Varies according to material
High Carbon Steels (C>0.45%)
STB2 SKH55 STC4 SM45C
Max.750
Standard:0.5 Max.:2
Moderate
Low Carbon Steel (C<0.3%)
SCM415 SNCM220
Carburizing and Quenching
High Frequency Quenching
Max.500
1~2
High
Medium Carbon Steel (0.3%<0.5%)
SM45C
Remarks * Not recommended ded for long or precision parts * Quenching depth and area specified on drawings * Applicable to precision parts * Quenching depth and area specified on drawings * Expensive in small volume * Good Strain resistance * Applicable to precision parts
Nitriding
900~1000
0.1~0.2
Nitralloy Steel
Low
SACM645
* Obtains highest hardness of all quenching techniques * Applicable to spindles for radial bearings * Low temperature annealing
Bluing
-
-
-
Wire Rods
SWP-B
* Removes internal stress in forming to enhance elasticity
■ Hardness Tests and Applicable Parts Test Method
Principles
Brinell Hardness
* A known load applied through a harden steel ball will make permanent indentation in the metal. The Brinell hardness number is found as a number equal to the applied load divided by the spherical surface area of indentation
Rockwell Hardness
* The Rockwell hardness tester will measure hardness by determining the depth of penetration of penetrator, a steel ball or a diamond spheroconical penetrator, into specimen under certain fixed condition of test
Vickers Hardness
* Similar in principle to the Brinell hardness test. The standard Vickers penetrator is a square-based diamond pyramid with 136. The Vickers hardness number equals the applied load in kilograms divided by the area of pyramidal impression
Applicable Heat Treated Parts * Annealed Parts
Characteristics * Applicable to uneven materials due to large indentation
* Normalized Parts * Not applicable to small or thin specimens * Quenched-Tempered Parts
* Hardness number is obtained very quickly
* Carburized/Nitrided Surfaces
* Suitable for intermediate test to actual products
* Thin Sheets, such as Copper, Brass, Bronze, etc.
* Be cautious because various types of tests are available
* Parts with High Frequency quenching
* Applicable to small and thin specimens
* Harden layer depth in carburized/nitrided parts
* Applicable to all materials because of diamond penetrators
Supplement (Basic and Technical Data) 10
Conversion Table of Hardness ■ Conversion table for approximate values for steel according to Rockwell hardness 'C' scale ①
Rockwell C-Scale Hardness (HRC)
Brinell Hardness (HB) Load: 3000kgf, 10mm Ball Vickers Hardness (HV)
③
Standard Ball
Tungsten Carbide Ball
Rockwell Hardness ③ A-Scale D-Scale B-Scale 60-kgf Load 100-kgf Load 100-kgf Diamond Diamond Load 1.6mm Conical Conical (1/16 inch) Penetrator Penetrator Ball (HRB) (HRA) (HRD)
Shore Hardness (HS)
Tensile Strength (Approximate value) Mpa (kgf/mm2) ②
Rockwell C-Scale Hardness (HRC) ③
68
940
-
-
85.6
-
76.9
97
-
68
67
900
-
-
85.0
-
76.1
95
-
67
66
865
-
-
84.5
-
75.4
92
-
66
65
832
-
(739)
83.9
-
74.5
91
-
65
64
800
-
(722)
83.4
-
73.8
88
-
64
63
772
-
(705)
82.8
-
73.0
87
-
63
62
746
-
(688)
82.3
-
72.2
85
-
62
61
720
-
(670)
81.8
-
71.5
83
-
61
60
697
-
(654)
81.2
-
70.7
81
-
60
59
674
-
(634)
80.7
-
69.9
80
-
59
58
653
-
615
80.1
-
69.2
78
-
58
57
633
-
595
79.6
-
68.5
76
-
57
56
613
-
577
79.0
-
67.7
75
-
56
55
595
-
560
78.5
-
66.9
74
2075 (212)
55
54
577
-
543
78.0
-
66.1
72
2015 (205)
54
53
560
-
525
77.4
-
65.4
71
1950 (199)
53
52
544
(500)
512
76.8
-
64.6
69
1880 (192)
52
51
528
(487)
496
76.3
-
63.8
68
1820 (186)
51
50
513
(475)
481
75.9
-
63.1
67
1760 (179)
50
49
498
(464)
469
75.2
-
62.1
66
1695 (173)
49
48
484
451
455
74.7
-
61.4
64
1635 (167)
48
47
471
442
443
74.1
-
60.8
63
1580 (161)
47
46
458
432
432
73.6
-
60.0
62
1530 (156)
46
45
446
421
421
73.1
-
59.2
60
1480 (151)
45
44
434
409
409
72.5
-
58.5
58
1435 (146)
44
43
423
400
400
72.0
-
57.7
57
1385 (141)
43
42
412
390
390
71.5
-
56.9
56
1340 (136)
42
41
402
381
381
70.9
-
56.2
55
1295 (132)
41
40
392
371
371
70.4
-
55.4
54
1250 (127)
40
39
382
362
362
69.9
-
54.6
52
1215 (124)
39
Supplement (Basic and Technical Data) 11
Conversion Table of Hardness
Rockwell C-Scale Vickers Hardness Hardness (HRC) (HV) ③
Brinell Hardness (HB) Load: 3000kgf, 10mm Ball
Rockwell Hardness ③
Standard Ball
Tungsten Carbide Ball
A-Scale 60-kgf Load Diamond Conical Penetrator (HRA)
B-Scale 100-kgf Load 1.6mm (1/16 inch) Ball (HRB)
D-Scale 100-kgf Load Diamond Conical Penetrator (HRD)
Shore Hardness (HS)
Tensile Strength Rockwell (Approximate C-Scale value) Hardness 2 Mpa (kgf/mm ) (HRC) ②
③
38
372
353
353
69.4
-
53.8
51
1180 (120)
38
37
363
344
344
68.9
-
53.1
50
1160 (118)
37
36
354
336
336
68.4
(109.0)
52.3
49
1115 (114)
36
35
345
327
327
67.9
(108.5)
51.5
48
1080 (110)
35
34
336
319
319
67.4
(108.0)
50.8
47
1055 (108)
34
33
327
311
311
66.8
(107.5)
50.0
46
1025 (105)
33
32
318
301
301
66.3
(107.0)
49.2
44
1000 (102)
32
31
310
294
294
65.8
(106.0)
48.4
43
980 (100)
31
30
302
286
286
65.3
(105.5)
47.7
42
950 (97)
30
29
294
279
279
64.7
(104.5)
47.0
41
930 (95)
29
28
286
271
271
64.3
(104.0)
46.1
41
910 (93)
28
27
279
264
264
63.8
(103.0)
45.2
40
880 (90)
27
26
272
258
258
63.3
(102.5)
44.6
38
860 (88)
26
25
266
253
253
62.8
(101.5)
43.8
38
840 (86)
25
24
260
247
247
62.4
(101.0)
43.1
37
825 (84)
24
23
254
243
243
62.0
100.0
42.1
36
805 (82)
23
22
248
237
237
61.5
99.0
41.6
35
785 (80)
22
21
243
231
231
61.0
98.5
40.9
35
770 (79)
21
20
238
226
226
60.5
97.8
40.1
34
760 (77)
20
(18)
230
219
219
-
96.7
-
33
730 (75)
(18)
(16)
222
212
212
-
95.5
-
32
705 (72)
(16)
(14)
213
203
203
-
93.9
-
31
675 (69)
(14)
(12)
204
194
194
-
92.3
-
29
650 (66)
(12)
(10)
196
187
187
-
90.7
-
28
620 (63)
(10)
(8)
188
179
179
-
89.5
-
27
600 (61)
(8)
(6)
180
171
171
-
87.1
-
26
580 (59)
(6)
(4)
173
165
165
-
85.5
-
25
550 (56)
(4)
(2)
166
158
158
-
83.5
-
24
530 (54)
(2)
(0)
160
152
152
-
81.7
-
24
515 (53)
(0)
Note) ① The values in correspond to Table 1 of ASTM E 140 (Adjusted by SAE, ASM, and ASTM in collaboration) ② The values and units in parentheses have been converted from psi based on conversion tables of JIS Z 8413 and Z 8438 ③ The Values in parentheses are beyond the normal range and are given for reference only
Supplement (Basic and Technical Data) 12
Surface Roughness ■ Typical methods for measuring surface roughness
m
Rv
Rmax
Rp
ℓ
Rmax=Rp+Rv
Supplement (Basic and Technical Data) 13
Surface Roughness ■ Reference : Relationship between arithmetical mean roughness(Ra) and conventional symbols Max. height (Rmax)
Arithmetical mean roughness (Ra) Preferred number series 0.012a
Cut-off
π
value C(mm)
Indication of surface texture on drawings
0.08
Ten-point mean roughness (Rz)
Preferred number series 0.05s
0.05z
0.1s
0.1z
0.2s
0.2z
Standard length of Rmaxㆍ Rz (mm)
Triangular indication
0.08 0.025a 0.25 0.05 a
0.012
~
0.2
0.25 0.1
a
0.4s
0.4z
0.2
a
0.8s
0.8z
0.4
a
1.6s
1.6z
0.8
0.8 0.8
a
1.6
a
3.2
a
0.4
0.25 6.3
a
12.5
a
3.2
12.5 25
a
50
a
100
a
~
1.6
~
3.2s
3.2z
6.3s
6.3z
2.5s
12.5z
25s
25z
50s
50z
100s
100z
200s
200z
400s
400z
6.3
~
2.5
25
8
8
50 -
~
100
~ -
■ The interdependence for 3 classes is not strictly enforced. ■ The evaluation lengths of Ra, Rmax and Rz : Five times the cut-off value and standard length respectively.
Supplement (Basic and Technical Data) 14
General Dimensional Tolerance of Cutting 1. General dimensional tolerance of cutting (excluding chamfered parts) Length dimensional tolerance
unit : mm
Degree
Symbol
Standard Dimension
Explanation
0.5(') to 3 incl.
Over 3 to 6 incl.
Over 6 Over 30 to to 30 incl. 120 incl.
Over 120 to 400 incl.
Over 400 Over 1000 Over 2000 to to to 1000 incl. 2000 incl. 4000 incl.
Tolerance
f
Fine
± 0.05
± 0.05
± 0.1
± 0.15
± 0.2
± 0.3
± 0.5
-
m
Medium
± 0.1
± 0.1
± 0.2
± 0.3
± 0.5
± 0.8
± 1.2
± 2
c
Coarse
± 0.2
± 0.3
± 0.5
± 0.8
± 1.2
± 2
± 3
± 4
■ Note (') : Tolerance for standard dimensions of less than 0.5mm shall be specified individually.
2. Length dimensional tolerance in chamfered parts (corner roundness or chamfer dimension) Degree
unit : mm
Standard Dimension
Symbol
Explanation
f
Fine
m
Medium
c
Coarse
0.5(') to 3 incl.
Over 3 to 6 incl.
Over 6
Tolerance
± 0.2
± 0.5
± 1
± 0.4
± 1
± 2
■ Note (') : Tolerance for standard dimensions of less than 0.5mm shall be specified individually.
3. Tolerance of angle dimension Degree Symbol
unit : mm Shorter Side of Corner
Explanation
10 or less
Over 10 to 50 incl.
Over 50 to 120 incl.
Over 120 to 400 incl.
Over 400
Tolerance f
Fine
m
Medium
c
Coarse
± 1°
± 30'
± 20'
± 10'
± 5'
± 1 ° 30'
± 1°
± 30'
± 15'
± 10'
Supplement (Basic and Technical Data) 15
Tolerances of Commonly Used Hole Fits ■ Tolerances of holes to be used in commonly used fits Basic Over Size Step or (mm) less
―
3
6
10
14
18
24
3
6
10
14
18
24
30
+188 +208 B10 +180 +140 +140 +150
30
40
50
65
80
100
120
140
160
180
200
225
250
280
315
355
400
450
40
50
65
80
100
120
140
160
180
200
225
250
280
315
355
400
450
500
+220 +150
+244 +160
+270 +280 +310 +320 +360 +380 +420 +440 +470 +525 +565 +605 +690 +750 +830 +910 +1010 +1090 +170 +180 +190 +200 +220 +240 +260 +280 +310 +340 +380 +420 +480 +540 +600 +680 +760 +840
+100 +116 +70 +80
+138 +95
+162 +110
+182 +192 +214 +224 +257 +267 +300 +310 +330 +355 +375 +395 +430 +460 +500 +540 +595 +120 +130 +140 +150 +170 +180 +200 +210 +230 +240 +260 +280 +300 +330 +360 +400 +440
+635 +480
+118 +138 C10 +100 +60 +70 +80
+165 +95
+194 +110
+220 +230 +260 +270 +310 +320 +360 +370 +390 +425 +445 +465 +510 +540 +590 +630 +690 +120 +130 +140 +150 +170 +180 +200 +210 +230 +240 +260 +280 +300 +330 +360 +400 +440
+730 +480
C9
To leranc e Zo ne Cla ss of Ho le
Unit : ㎛
+85 +60
D8
+34 +20
+48 +30
+62 +40
+77 +50
+98 +65
+119 +80
+146 +100
+174 +120
+208 +145
+242 +170
+271 +190
+299 +210
+327 +230
D9
+45 +20
+60 +30
+763 +40
+93 +50
+117 +65
+142 +80
+174 +100
+207 +120
+245 +145
+285 +170
+320 +190
+350 +210
+385 +230
D10 +60 +20
+78 +30
+98 +40
+120 +50
+149 +65
+180 +80
+220 +100
+260 +120
+305 +145
+355 +170
+400 +190
+440 +210
+480 +230
E7
+24 +14
+32 +20
+40 +25
+50 +32
+61 +40
+75 +50
+90 +60
+107 +72
+125 +85
+146 +100
+162 +110
+182 +125
+198 +135
E8
+28 +14
+38 +20
+47 +25
+59 +32
+73 +40
+89 +50
+106 +60
+126 +72
+148 +85
+172 +100
+191 +110
+214 +125
+232 +135
E9
+39 +14
+50 +20
+61 +25
+75 +32
+92 +40
+112 +50
+134 +60
+159 +72
+185 +85
+215 +100
+240 +110
+265 +125
+290 +135
F6
+12 +6
+18 +10
+22 +13
+27 +16
+33 +20
+41 +25
+49 +30
+58 +36
+68 +43
+79 +50
+88 +56
+98 +62
+108 +68
F7
+16 +6
+22 +10
+28 +13
+34 +16
+41 +20
+50 +25
+60 +30
+71 +36
+83 +43
+96 +50
+108 +56
+119 +62
+131 +68
F8
+20 +6
+28 +10
+35 +13
+43 +16
+53 +20
+64 +25
+76 +30
+90 +36
+106 +43
+122 +50
+137 +56
+151 +62
+165 +68
G6
+8 +2
+12 +4
+14 +5
+17 +6
+20 +7
+25 +9
+29 +10
+34 +12
+39 +14
+44 +15
+49 +17
+54 +18
+60 +20
G7
+12 +2
+16 +4
+20 +5
+24 +6
+28 +7
+34 +9
+40 +10
+47 +12
+54 +14
+61 +15
+69 +17
+75 +18
+83 +20
H6
+6 0
+8 0
+9 0
+11 0
+13 0
+16 0
+19 0
+22 0
+25 0
+29 0
+32 0
+36 0
+40 0
H7
+10 0
+12 0
+15 0
+18 0
+21 0
+25 0
+30 0
+35 0
+40 0
+46 0
+52 0
+57 0
+63 0
H8
+14 0
+18 0
+22 0
+27 0
+33 0
+39 0
+46 0
+54 0
+63 0
+72 0
+81 0
+89 0
+97 0
H9
+25 0
+30 0
+36 0
+43 0
+52 0
+62 0
+74 0
+87 0
+100 0
+115 0
+130 0
+140 0
+155 0
H10 +40 0
+48 0
+58 0
+70 0
+84 0
+100 0
+120 0
+140 0
+160 0
+185 0
+210 0
+230 0
+250 0
JS6 ±3
±4
±4.5
±5.5
±6.5
±8
±9.5
±11
±12.5
±14.5
±16
±18
±20
JS7 ±5
±6
±7
±9
±10
±12
±15
±17
±20
±23
±26
±28
±31
K6
0 -6
+2 -6
+2 -7
+2 -9
+2 -11
+3 -13
+4 -15
+4 -18
+4 -21
+5 -24
+5 -27
+7 -29
+8 -32
K7
0 -10
+3 -9
+5 -10
+6 -12
+6 -15
+7 -18
+9 -21
+10 -25
+12 -28
+13 -33
+16 -36
+17 -40
+18 -45
M6
-2 -8
-1 -9
-3 -12
-4 -15
-4 -17
-4 -20
-5 -24
-6 -28
-8 -33
-8 -37
-9 -41
-10 -46
-10 -50
M7
-2 -12
0 -12
0 -15
0 -18
0 -21
0 -25
0 -30
0 -35
0 -40
0 -46
0 -52
0 -57
0 -63
N6
-4 -10
-5 -13
-7 -16
-9 -20
-11 -24
-12 -28
-14 -33
-16 -38
-20 -45
-22 -51
-25 -57
-26 -62
-27 -67
N7
-4 -14
-4 -16
-4 -19
-5 -23
-7 -28
-8 -33
-9 -39
-10 -45
-12 -52
-14 -60
-14 -66
-16 -73
-17 -80
P6
-6 -12
-9 -17
-12 -21
-15 -26
-18 -31
-21 -37
-26 -45
-30 -52
-36 -61
-41 -70
-47 -79
-51 -87
-55 -95
P7
-6 -16
-8 -20
-9 -24
-11 -29
-14 -35
-17 -42
-21 -51
-24 -59
-28 -68
-33 -79
-36 -88
-41 -98
-45 -108
R7
-10 -20
-11 -23
-13 -28
-16 -34
-20 -41
-25 -50
-30 -60
-32 -62
-38 -73
-41 -76
S7
-14 -24
-15 -27
-17 -32
-21 -39
-27 -48
-34 -59
-42 -72
-48 -78
-58 -93
-66 -77 -85 -93 -105 -113 -123 -101 -117 -125 -133 -151 -159 -169
-64 -94
-78 -91 -107 -119 -131 -113 -126 -147 -159 -171
T7
―
―
―
―
― -33 -54
-39 -64
-45 -70
-55 -85
U7
-18 -28
-19 -31
-22 -37
-26 -44
-33 -40 -54 -61
-51 -76
-61 -86
-76 -91 -111 -131 -106 -121 -146 -166
X7
-20 -30
-24 -36
-28 -43
-33 -38 -46 -56 -51 -56 -67 -77
―
―
―
-48 -88
-50 -90
-53 -93
-60 -63 -67 -74 -78 -87 -93 -103 -106 -109 -113 -126 -130 -144 -150 -166
-109 -172
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
―
Supplement (Basic and Technical Data) 16
Tolerances of Commonly Used Shaft Fits ■ Tolerances of Shafts to be used in commonly used fits Unit : ㎛ Basic Over Size Step (mm) or
less
b9 c9
To leranc e Zo ne Cla ss of Ho le
d8
―
3
6
10
14
18
24
3
6
10
14
18
24
30
-140 -140 -150 -165 -170 -186 -60 -70 -80 -85 -100 -116 -20 -30 -40 -34 -48 -62
30
40
40
50
50
65
65
80
-150 -193 -95 -138 -50 -77
-160 -212 -110 -162 -65 -98
-170 -180 232 -242 -120 -130 -182 -192 -80 -119
-190 -200 -264 -274 -140 -150 -214 -224 -100 -146
d9
-20 -45
-30 -60
-40 -76
-50 -93
-65 -117
-80 -142
-100 -174
e7
-14 -24
-20 -32
-25 -40
-32 -50
-40 -61
-50 -75
-60 -90
e8
-14 -28
-20 -38
-25 -47
-32 -59
-40 -73
-50 -89
-60 -106
e9
-14 -39
-20 -50
-25 -61
-32 -75
-40 -92
-50 -112
-60 -134
f6
-6 -12
-10 -18
-13 -22
-16 -27
-20 -33
-25 -41
-30 -49
f7
-6 -16
-10 -22
-13 -28
-16 -34
-20 -41
-25 -50
-30 -60
f8
-6 -20
-10 -28
-13 -35
-16 -43
-20 -53
-25 -64
-30 -76
g5
-2 -6
-4 -9
-5 -11
-6 -14
-7 -16
-9 -20
-10 -23
g6
-2 -8
-4 -12
-5 -14
-6 -17
-7 -20
-9 -25
-10 -29
h5
0 -4
0 -5
0 -6
0 -8
0 -9
0 -11
0 -13
h6
0 -6
0 -8
0 -9
0 -11
0 -13
0 -16
0 -19
h7
0 -10
0 -12
0 -15
0 -18
0 -21
0 -25
0 -30
h8
0 -14
0 -18
0 -22
0 -27
0 -33
0 -39
0 -46
0 -25 ±2 ±3 ±5
0 -30 ±2.5 ±4 ±6
0 -36 ±3 ±4.5 ±7
0 -43 ±4 ±5.5 ±9
0 -52 ±4.5 ±6.5 ±10
0 -62 ±5.5 ±8 ±12
0 -74 ±6.5 ±9.5 ±15
k5
+4 0
+6 +1
+7 +1
+9 +1
+11 +2
+13 +2
+15 +2
k6
+6 0
+9 +1
+10 +1
+12 +1
+15 +2
+18 +2
+21 +2
m5
+6 +2
+9 +4
+12 +6
+15 +7
+17 +8
+20 +9
+24 +11
m6
+8 +2
+12 +4
+15 +6
+18 +7
+21 +8
+25 +9
+30 +11
n5
+8 +4
+13 +8
+16 +10
+20 +12
+24 +15
+28 +17
+33 +20
n6
+10 +4
+16 +8
+19 +10
+23 +12
+28 +15
+33 +17
+39 +20
+12 +6 +16 +10 +20 +14
+20 +12 +23 +15 +27 +19
+24 +15 +28 +19 +32 +23
+29 +18 +34 +23 +39 +28
h9 js5 js6 js7
p6 r6 s6 t6 u6 x6
―
―
―
+24 +18 +26 +20
+31 +23 +36 +28
+37 +28 +43 +34
+35 +22 +41 +28 +48 +35 ― ― +54 +41 +44 +54 +61 +33 +41 +48 +51 +56 +67 +77 +40 +45 +54 +64
+42 +51 +26 +32 +50 +60 +62 +34 +41 +43 +59 +72 +78 +43 +53 +59 +64 +70 +85 +94 +48 +60 +66 +75 +76 +86 +106 +121 +60 +70 +87 +102 ―
―
80
100
120 140 160 180 200 225 250
280
100 120
140 160 180 200 225 250 280
315
-220 -240 -307 -327 -170 -180 -257 -267 -120 -174 -120 -207 -72 -107 -72 -126 -72 -159 -36 -58 -36 -71 -36 -90 -12 -27 -12 -34 0 -15 0 -22 0 -35 0 -54 0 -87 ±7.5 ±11 ±17
-260 -360 -200 -300
+18 +3 +25 +3 +28 +13 +35 +13 +38 +23 +45 +23 +59 +37 +73 +76 +51 +54 +93 +101 +71 +79 +113 +126 +91 +104 +146 +166 +124 +144 ―
-280 -310 -380 -410 -210 -230 -310 -330 -145 -208 -145 -245 -85 -125 -85 -148 -85 -185 -43 -68 -43 -83 -43 -106 -14 -32 -14 -39 0 -18 0 -25 0 -40 0 -63 0 -100 ±9 ±12.5 ±20
-340 -455 -240 -355
-380 -420 -459 -535 -260 -280 -375 -395 -170 -242 -170 -285 -100 -146 -100 -172 -100 -215 -50 -79 -50 -96 -50 -122 -15 -35 -15 -44 0 -20 0 -29 0 -46 0 -72 0 -115 ±10 ±14.5 ±23
+21 +3 +28 +3 +33 +15 +40 +15
+88 +63 +117 +92 +147 +122
―
― +60 +31 +79 +50 +109 +80 +159 +130
+93 +68 +133 +108 +171 +146
+106 +77 +151 +122
355
355
400
400
450
450
500
-480 -540 -610 -670 -300 -330 -430 -460 -190 -271 -190 -320 -110 -162 -110 -191 -110 -240 -56 -88 -56 -108 -56 -137 -17 -40 -17 -49 0 -23 0 -32 0 -52 0 -81 0 -130 ±11.5 ±16 ±26
-600 -680 -740 -820 -360 -400 -500 -540 -210 -299 -210 -350 -125 -182 -125 -214 -125 -265 -62 -98 -62 -119 -62 -151 -18 -43 -18 -54 0 -25 0 -36 0 -57 0 -89 0 -140 ±12.5 ±18 ±28
-760 -840 -915 -995 -440 -480 -595 -635 -230 -327 -230 -385 -135 -198 -135 -232 -135 -290 -68 -108 -68 -131 -68 -165 -20 -47 -20 -60 0 -27 0 -40 0 -63 0 -97 0 -155 ±13.5 ±20 ±31
+27 +4 +36 +4 +43 +20 +52 +20
+29 +4 +40 +4 +46 +21 +57 +21
+32 +5 +45 +5 +50 +23 +63 +23
―
―
―
+24 +4 +33 +4 +37 +17 +46 +17
+52 +27 +68 +43 +90 +65 +125 +100 +159 +134
315
+66 +73 +80 +34 +37 +40 +88 +98 +108 +56 +62 968 +113 +126 +130 +144 +150 +166 +172 +84 +94 +98 +108 +114 +126 +132 +169 ― ― ― +140
―
―
―
―
―
―
―
―
―
―
―
―
―
―
Supplement (Basic and Technical Data) 17
Oilless Bearings
■ The general concept and description of Bearing. Concept. All elements that transfer the power under the condition of rotation, linear motion, thrust load, or angular pitching motion using it's own sliding or rolling character with ball, roller or self lubricating character regardless it's shape and material.
Description. -Rolling bearing It has more merits in velocity and load capacity under the general condition.
1. Ball bearing (Under high speed condition by using it's point contact working) 2. Roller bearing (Under high load condition by using it's line contact working)
● Spherical Roller (
)
● Tapered Roller (
)
● Cylindrical Roller (
)
● Needle Roller
)
(
3. Thrust Bearings (for Thrust Motion) ● Ball Thrust
● Tapered Roller Thrust
-Sliding B earing Operation proceed under contact onto Shaft or Sliding surface directly, small gap is required when it is working. It is more ideal than Ball & Roller bearing for a light and small shape, vibration and impact. 1. Oilless bearings (Using without oiling) 2. Simple oiling type sliding bearing (Oil or grease will be needed)
■ What is an oilless bearing A bearing which can improve productivity and enable the saving cost and time by using in condition of high & low temperature, corrosion environment, alien sub stance, impactive load, or by using in where oiling is not easy or useless. There are various kind of shape or material for oilless bearing such as various metal, wooden material, plastic and ceramic.
Supplement (Basic and Technical Data) 18
Oilless Bearings
■ Advantage & Disadvantage of Oilless bearing and Oiling method. General lubricating of oilless bearing ● Dry lubrication = Using solid lubricant
EX) DDU01 dry bearing (PTFE + lead compound lubricant) LuBo #500SP (natural graphite + PTFE lubricant)
* Solid lubricant : Powder or solid type lubricant that is supposed to be used in harsh environments such as high & low temperature, corrosion environment and where can not use oil or grease. Generally it is made with natural graphite, Mo S 2 , PTFE, Pb.
● Liquid lubricant (lubricating with oil or water)
EX) - Sintered metal bearing (Oiling into sintered metal) - LuBo #200B (Water lubricating by performing water film when it is using in the water.
■ Advantage & Disadvantage of each lubricating method Dry lub ricating (Using solid lubricant)
Advantage
Disadvantage
- Possible to being used in high & low temperature. - Possible to being used in corrosion environment - High load and low speed condition where oiling is useless, linear motion, angular pitching motion, impactive load, and ideal in discontinuous motion.
- Not supposed to be used in high speed when it is using in oilless condition. * Using it in high speed condition may occur melting or shorten life cycle of bearing because solid lubricant has higher friction coefficient than liquid lubricant.
Liquid lub ricating (Using oil or w ater) - Light or medium load and high speed * Liquid lubricating prevent friction between metal to metal by forming oil film with continuously rotating by centrifugal force in the clearance of shaft and housing. - Regular oiling is required - Can not be used in high & low temperature. - Can not be used in corrosion environment. - Not proper to be used in high load & low speed as oil film is hard to be formed, impactive load, angular pitching motion, discontinuous motion.
Supplement (Basic and Technical Data) 19
Oilless Bearings ■ Bearing life and wear amount The life of bearing is basically dependent on the acceptable amount of wear, which is mainly affected by friction conditions. Friction is influenced by load and velocity, foreign particles, condition of mating material, operational temperature, different modes of operation, type of lubricant used, etc. Therefore, it may not be possible to accurately estimate the life of bearing without sufficient application data. However, the wear amount may be estimated by the following method:
W : Wear amount (mm) V : Velocity (m/min) P : Surface pressure (kgf/cm ² ) T : Running time (hr) K : Coefficient of specific wear amount (mm / kgf/cm²ㆍ m/minㆍhr)
W=K.P.V.T
● Table (Experimental K value under different lubricating) Lubrication condition
K value
No lubricant (Dry)
1X10 -3~-5
Boundary lubrication under low speed (LuBo #500, DDU01 Dry Bearing)
1X10 -5~-7
Periodic lubrication (DX)
1X10 -6~-8
Continuous lubrication under water application (#200B, Miscellaneous)
1X10 -8~-10
■ PV value The PV value is a very important reference for selecting bearings and it can be obtained simply 2 by multiply P to V, where P is bearing surface pressure per unit area (Kgf/Cm , Estimation of bearing surface pressure per unit area will be obtained by multiply inner diameter to length), V is velocity per unit time.
● Rotary Motion Bushing
Pmax P PV-Value Limit
Thrust Washer
V (m/min) =
V m/min =
P (kgf/cm²) =
P kgf/cm²= PV kgf/cm²ㆍm/min =
PV (kgf/cm²ㆍ m/min) = V
max
W : Radial Load[kgf] L : Length[mm]
D : Outside-Dia.[mm]
N : RPM
d : Inside-Dia.[mm]
The allowable PV value is listed in the catalog. Please note that PV value can vary depending on its working condition temperature or lubrication. PV value of thrust washer & wear plate must not exceed 1/2 of bushing PV value.
Supplement (Basic and Technical Data) 20
Oilless Bearings ■ Frictional heat The frictional heat(Q) generated per unit time and unit area is as follows:
Q=
μㆍ P ㆍ V J
(kcal/min)
J : Heat equivalent of work (≒427kgf-m/kcal) μ: Coefficient of friction P : Pressure in kilograms per square centimeter (kgf/cm²) V : Velocity in meter per minute (m/min)
Since velocity is the main factor which limits bearing performance, the friction heat is mainly affected by velocity rather than pressure. Therefore, for similar PV values, additional lubrication should be considered for a higher velocity application to prevent damage to the bearing or the mating shaft.
■ Mating Shaft Type
Shaft Material
General use
General structural metal with S35C and higher strength
High Temperature
Stainless steel or Chrome plating
Corrosive Environment
Chrome plating
Hardness
Shaft Roughness
Rockwell "C 35" and above(higher strength material is recommended when foreign particles are present)
3~12 ㎛
* For applications above 100 C, the mating shaft dimensions should be reduced to account for the t hermal expansion of the material.
Thermal expansion= Thermal expansion coefficient( α)×diameter(d)×(application temperature-ambient temperature) -5 F or example) low carbon steel α :1.12×10 /℃ * 2, 3 Chrome plating is ideal for sea water and liquid medicine * Nitrification of the mating shaft effectively reduces friction for high load and low speed applications.
■ Additional Lubrication Additional lubrication with grease or oil reduces frictional heat and wear. Also it increases the bearing life and performance by reducing the amount of worn particles, preventing foreign particle interference (sealing effect), and reducing the noise as well as anti-rust effect of the shaft operation. Oil lubrication applied at the inner surface of a bearing in the installation stage, though no lubrication is required, reduces, the drastic wear th at occurs during initial operation.
Low load, High speed
Low Viscosity
Medium load, Medium speed
Medium Viscosity
8~17cst (30
High Load, Low speed
High Viscosity
) Spindle Oil, Miscellaneous
7~15cst (98.9 ) Motor Oil, Turbine Oil, Miscellaneous
100~1,000cst (37 ) Gear Oil, Cylinder Oil , Miscellaneous
* Grease containing MoS 2 that is highly recommended for the better life time and performance because this is very effective under high load, excessive wear, and high frictional heat condition.
Supplement (Basic and Technical Data) 21
Oilless Bearings ■ Oil groove and Lubrication h ole design - Oil g roove : Distribute the oil grooves around the maximum load point as shown below. The length of an oil groove is approximately 80% of the bearing length. The radius (R and r) and height (H) of an oil g roove is selected based on the inner diameter (ID) of the bearing as shown in the table below. Use a circular oil groove on the inner surface of a housing or the outer surface of the bearing when oil is supplied from outside of the housing. (Unit : mm)
Detail of A Oil Groove
R H
r
A
Lubricating Hole
I.D.
R
r
H
Q'ty
30 under
1.5
1.5
1.2
1~2
30 ~ 50
2.0
2.0
1.8
3
50 ~ 80
3.0
3.0
2.5
3
80 ~ 120
3.5
3.5
3.5
4
120 ~ 180
4.0
4.0
5.0
4
180 ~ 250
5.0
5.0
6.0
5
250 ~ 315
6.0
6.0
7.0
6
315 ~ 400
7.0
7.0
8.0
8
400 ~ 500
8.0
8.0
8.0
8
- Lubricating hole : One hole is recommended in an area where the load is not concentrated. Two holes on each side of the maximum load point are suggested for rotational motion. Use two holes along the length of each groove for longer bearing.
■ Edge(angle) chamfering It is ideal to chamfer the oilless bearing as the chart on the right. ID/Chamfering level
I.D.
Chamfer
ø80 under
0.5C
ø80 ~ 200
1.0C
ø200 ~ 300
1.5C
ø300 over
2.0C
■ The formula of calculating ideal thickness t = (0.05 ~ 0.07)d+(2 ~ 5mm)
■ How to insert into the housing Per drawing on the right, you can insert the bushing into housing with a little pressure using a guide bar. It will be easier to oil after cutting the edge of OD and ID.
C
Inside-Dia. Chamfer
■ Attention - S haft must be ground. ( 3S ) - P lease follow the tolerance as shown at the dimension table in case of housing and shaft. - Please maintain the shaft horizontally to prevent the shaft from eccentricity. - Sealing is recommended because of possible inflow of foreign objects . - Hardening is not required, but the life of bearing will be extended if it is c hrome plated.
Guide Bar
Bushing
Supplement (Basic and Technical Data) 22
Housing
Areas of Plane Figures Circular Sector
Hyperbola r × α× 3 .1 4 1 6 = 0.01745 r α 180 = 2A r 1 A = r ℓ = 0 .0 0 8 7 2 7 α r 2 2
ℓ=
α r
D b
ℓ
r = 2A
ℓ
=
C
c
α
r
h= r - 1 2
p 2
2x 2x p 1+ p 2x 2x p + 1+ p
+ ln y
A close approximation when x is small in proportion to y
c 2+ 4 h2 , ℓ= 0 . 0 1 7 4 5 αr 8h
r=
ℓ =Length of Arc=
ℓ
h(2 r-h)
1 A = [ r ℓ-c ( r - h ) ] 2
h
y x a + b
x
Parabola c = 2
xy ab ln 2 2
57.296 ℓ α
Circular Segment ℓ
A=
B
a
5 7 .2 9 6 ℓ r
α =
A = Area BCD
y
P/2
x
ℓ = y 1+
57.296 ℓ 4 r 2 - c2 , α = r
2 3
또는
x y
2
-
2 5
y2+
ℓ=
4
x y
4 2 x 3
Parabola
Circular Ring
A = Area A = π ( R2 - r 2 ) = 3 .1 4 1 6 ( R 2 - r 2 )
y
A=
2
D
d
R
r
= 3.1416(R + r ) ( R - r )
(The area is equal to two-third of a rectangle which has x for base and y for its height)
2
= 0 .7 8 5 4 ( D - d )
x
= 0.7854(D+d)(D-d)
Circular Ring Sector
Segment of Parabola
A = Area, α= Angle in Degree A=
α
R
D
D
A = Area
C
F
απ 2 2 (R - r ) 360
A = BFC 2 = ( Area of parallelogram BCDE)× 3 If FG is the height of the segment and measured at right angle to BC, then 2 A = BFC = BC ×FG 3
G E
2 2 = 0 .0 0 8 7 3 α( R - r ) απ 2 2 d (D ) = 4 ×360
d
2 xy 3
B
2 2 = 0 .0 0 2 1 8 α (D - d )
Cycloid
Spandrel or Fillet
A = Area
ℓ = Length of Cycloid
A = Area c
r
πr2 A= r24 = 0.1075c 2
A = 3 πr 2 = 9.454 8 r
ℓ = 0 .2 1 5 r 2
d r
Ellipse A = Area , P = Perimeter of circumference A = π a b = 3.1416a b Approximate formulas for P are: α
b
1. P = 3.1416
2 (α 2+ b 2 )
2. P = 3.1416
2 ( α 2 + b2 ) -
2
2
= 2.3562d = ( Area of generating circle )× 3 ℓ = 8r = 4d
(α - b)2 2.2
Supplement (Basic and Technical Data) 23
V= Volum S= Surface Area
As= Lateral Surface Area
Ab=Base Area
χ= Distance from the base to the center of gravity
Prizm (Regular Hexagon Base)
Square Prizm
Cubic
G d
1.7321a
G
a
h
d
a
a
h
G χ
χ
χ
b
a
a
a
2a V = αbh
V = α3 S = 6α
As = 4a
S = 5.196 3α2+6 αh
As = 2h(α+b) h χ= 2
2
α χ= 2 d=
V = 2.59 8 α2 h
S = 2 (αb+αh+ bh)
2
χ =
α2+ b 2 + h 2
d=
3 α = 1.7321 α
A s = 6 αh
h 2 h 2 +4 α2
d=
Cone
Frustum of Cone
ℓ
r
ℓ
h
h
G
h
χ
G
χ
R
χ
G
Ab V= V=
πR2 h 3
=
As = πR ℓ
ℓ=
h 4
2
πα +
χ=
h 4
2 1 πb 3
V=
α = R +r
b= R- r ,
χ = h 4
a
πh 2 ( R + Rr + r 2 ) 3
As = πℓ α ,
R2+ h2
a
R
ℓ=
Ab =
b2+ h2
χ=
R2+ 2Rr +3 r 2 R2 +Rr +r 2
Ab h 3 3 3 α2 = 2.598α2 2 h 4
Spherical Segment
Sphere
Regular Polygon r
h
G
Length of side
d
χ
r
a
Number of sides Area of base
4 πr 3 = 4 .1 88 790 20 5r 3 3
V=
πh (3 α2 πh 2 (3 r - h) +h 2 ) = V= 3 6
πd 3 = 0.52359877d 3 6
=
As = 2 π r h = π ( α2+ h 2 ) α2 = h (2r - h)
S = 4πr 2 = πd 2 r=
3
3v = 0.6 203 51 4π
3
V=
d 2
χ=
2 3 (2 r - h) 4 (3 r - h)
V = Ab h S = 2A b + nh α A s = nhα h χ = 2
Supplement (Basic and Technical Data) 24
Cylinder/Hollow Cylinder
Portion of Cylinder
Frustum of Pyramid
A
D
G
h
h
h2
χ
h1 r
Ab
R
V = πr 2 h = Ash
r
χ= h
Frustum of Pyramid with retangular base
h ( A b+ A b1+ A b A b1 ) 3
As = πR( h1+ h2)
Ab =
3 3 2 α = 2.59 8α2 2
χ =
h A b+ 2 A b A b1+3 A b1 4 A b+ A b A b1+A b1
4R2+(h2- h1)2
Torus
Spherical Sector
R
R
h
b1
a1
r G
G χ
a r
b
χ
a
V=
D=
2
2
A b
h1+h2 2
2 V = πR
= πht (2 r +t)
χ = h
G
R
= π ht ( 2R - t)
AS = 2πr h
χ
t
V = πh (R 2- r 2 )
S = 2πr (r +h)
h
b1
D a
h ( 2 α+α1)b + (2α +α) b 1 6 h αb = +( α+α1) (b +b1)+α1 b1 6
V=
χ = h αb +αb1+α1b + 3α1b1
2 2 αb +αb1+α1b +2 α1b 1
V = 2π2 Rr 2 = 19.739 Rr 2
V=
1 2 2 π Dd = 2.4674Dd 2 = 4 S = 4π Rr = 39.478Rr 2
= π2 Dd = 9.8696Dd
= 2.09 439510 24r 2 h S = πr ( 2h + α)
χ = 3 (2 r - h)
Spherical Zone b
h
a
r
V=
πh (3α2+3b2 +h 2 ) 6
As = 2πr h r
2
= α2+
α2 - b2 - h 2 2h
2πr 2 h 3
2
Supplement (Basic and Technical Data) 25
8
SI Units ■ Overview of the International System of Units (SI Units) th ' ' ' The International System of Units was established by the 11 Conference Generale des Poids et ' Mesures (CGPM) in 1960. Universally abbreviated SI (from the French Le Systeme International ' d'Unites), it is the modern metric system of measurement used throughout the world. It is the responsibility of the CGPM to ensure that SI is widely disseminated and that it reflects the latest advances in science and technology.
SI Units are currently divided into three classes, Base Units, Derived Units, and Supplementary Units, which together form what is called "the coherent system of SI units." The SI also includes prefixes to form decimal multiples and submultiples of SI units. Also certain units that are not part of SI units are essential and used so widely that they are accepted by the International Committee for Weights and Measures (CIPM) for use with SI units.
■ SI Units Base Units : The SI base units on which the SI is founded are seven base quantities assumed to be mutually independent. Table 1 gives the names, symbols, and definitions of SI base units. Supplementary Units : Table 2 gives the names, symbols, and definitions of the SI supplementary units. They are now interpreted as so-called dimensionless derived units. SI derived Units : The SI derived units are expressed algebraically in terms of base units or other derived units including two supplementary units. Table 3 gives examples of derived units expressed in terms of SI base units only. Table 4 gives certain SI derived units expressed in terms of other SI units, which have special names and symbols. Also example of SI derived units that can be expressed with the aid of SI derived units having special names and symbols are given in table 5 SI prefixes : Table 6 gives the SI prefixes that are used to form decimal multiples and submultiples of SI units. They allow very large or very small numerical values to be avoided. Units outside SI units : Table 7 shows examples of units that are not part of SI units but accepted for use with SI units because they are used so widely.
■ Rules and Style conventions for printing and using SI units and Values of Quantities (1) Print in roman (upright) type regardless of the type used in the surrounding text. But symbols for quantities and variables are printed in italic (Example: t=3 s (t time, s second)) (2) Print in lower-case letters except when the name of the unit is derived from the name of a person. (Examples: m (meter), Pa (pascal), s (second), lm (lumen), V (volt), Wb (weber)) (3) Unaltered in the plural. (Example: 1= 75 cm, but not 1 = 75 cms) (4) Not followed by a period unless at the end of a sentence. (5) Symbols for units formed from other units by multiplication are indicated by means of either a half-high (that is, centered) dot or a space. (Example: Nㆍm or N m )
Supplement (Basic and Technical Data) 26
SI Units (6) In the expression for the value of a quantity, the unit symbol is placed after the numerical value and a space is left between the numerical value and the unit symbol. The only exceptions to this rule are for the unit symbols for degree, minute, and second for plane angle: ˚ , ' , and," respectively, in which case no space is left between the numerical value and the unit symbol. ( 7) Digits should be separated into groups of three, counting from the decimal marker towards the left and right, by the use of a thin, fixed space, not by a comma. (Examples: 76 483 522, 43 279.168 29 but not 76,483,522, 43,279.168 29) (8) Symbols for units formed from other units by division are indicated by means of a solidus -1 (oblique stroke, /), a horizontal line, or negative exponents. (Example : m/s, m s , or mㆍ s ) However, to avoid ambiguity, the solidus must not be repeated on the same line unless parentheses are used. 2
-2
(Examples: m/s or, m ㆍ s , but not: m/s/s) (9) Unit symbols and unit names are not used together. -1
(Example: C/kg or coulomb per kilogram, but not coulomb/kg, C/kilogram; coulombㆍ kg , C per kg, or coulomb/kilogram) (10) not permissible to use abbreviations for their unit symbols or names 3
(Example: sec (for either s or second), cc (for either cm or cubic centimeter), mins (for either min or minutes), amps(for either A or amperes))
■ Rules and Style conventions for SI prefixes (1) Prefix symbols are printed in roman (upright) type regardless of the type used in the surrounding text, and are attached to unit symbols without a space between the prefix symbol and the unit symbol. This last rule also applies to prefixes attached to unit names. (Examples: mL(milliliter), pm(picometer), THz(terahertz)) (2) Prefixes are normally printed in lowercase letters except for prefix symbols Y(yotta), Z (zetta), E(exa), P(peta), T(tera), G(giga), and M(mega) (3) Compound prefix symbols, that is, prefix symbols formed by the juxtaposition of two or more prefix symbols, are not permitted. This rule also applies to compound prefixes. (Example: nm (nanometer), but not m μ m (millimicrometer)) (4) Prefix symbols cannot stand-alone and thus cannot be attached to the number 1, the symbol for the unit one. (Example: the number density of Pb atoms is 5 x 106/m 3, but not the number density of Pb 3 atoms is 5 M/m ) (5) It is often recommended that, for ease of understanding, prefix symbols should be chosen in such a way that numerical values are between 0.1 and 1000 7
6
(Examples: 3.3 x 10 Hz, may be written as 33 x 10 Hz = 33 Mhz)
Supplement (Basic and Technical Data) 27
SI Units Table 1. SI base units Base Quantity
SI base units Name
Symbol
Definition
Length
Meter
m
The meter is the length of the path traveled by light in vacuum during a time interval of 1/299 792 458 of a second.
Mass
Kilogram
kg
The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
Time
Second
s
The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
Electric Current
Ampere
A
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 7 2 × 10 newton per meter of length.
Thermodynamic Temperature
Kelvin
K
The Kelvin, unit of thermodynamic temperature, is the fraction 1/273. 16 of the thermodynamic temperature of the triple point of water.
Amount of Substance
Mole
mol
1. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12 2. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
Luminous Intensity
Candela
cd
The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 12 540 × 10 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.
Table 2. SI supplementary units
Quantity
SI supplementary units Name
Symbol
Definition
Plane Angle
Radian
rad
The radian is the plane angle between two radii of a circle that cut off an the circumference an arc equal in the length to the radius
Solid Angle
Steradian
sr
The steradian is the solid angle that, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere
Supplement (Basic and Technical Data) 28
SI Units Table 3. Examples of SI derived units expressed in terms of SI base units SI derived units
Derived Quantity
Name
Symbol
square meter
m
2
cubic meter
m
3
meter per second
m/s
meter per second squared
m/s
Area Volume Speed, Velocity Acceleration
2
-1
Wave Number
reciprocal meter
m
Mass Density
kilogram per cubic meter
kg/m
Specific Volume
cubic meter per kilogram
3
m /kg
Electric Current Density
ampere per square meter
A/m
Magnetic Field Strength
ampere per meter
A/m
Molar Mass
kilogram per mole
kg/mol
mole per cubic meter
mol/m
candela per square meter
cd/m
Amount-of-substance concentration Luminance
3
2
3
2
Table 4. SI derived units with special names and symbols SI derived units Special Name
Special Symbol
Expression in terms of other SI units
Expression in terms of SI base units
hertz
Hz
-
s
Force
newton
N
-
Pressure, Stress
pascal
Pa
N/m
Derived Quantity
Frequency
-1 -2
m· kg· s 2
-1
-2
2
-2
2
-3
m · kg· s
Energy, Work, Quantity of Heat
joule
J
N· m
m · kg· s
Power, Radiant Flux
watt
W
J/s
m · kg· s
Electric Charge, Quantity of Electricity
coulomb
C
-
s· A
Electric Potential Difference, Electromotive Force
volt
V
W/A
m · kg· s · A
farad
F
C/V
m · kg · s · A
Capacitance Electric Resistance Electric Conductance
2
-3
-2
-1
2
-1
4
-3
2
-2
ohm
Ω
V/A
m · kg· s · A
siemens
S
A/V
m · kg · s · A
-2
-1
2
3
-2
2
-1
Magnetic Flux
weber
Wb
V· s
m · kg· s · A
Magnetic Flux Density
tesla
T
Wb/m2
kg· s · A
Inductance Celsius Temperature Luminous Flux Illuminance
henry
H
Wb/A
degree Celsius
°C
-
-2
2
-1
-2
-2
m · kg· s · A K 2
-2
lumen
lm
cd· sr
m · m · cd = cd
lux
lx
lm/m2
m · m · cd = m · cd
Supplement (Basic and Technical Data) 29
2
-4
-2
SI Units Table 5. SI derived units expressed with the aid of SI derived units having special names and symbols
Derived Quantity
SI derived units Name
Symbol
Dynamic Viscosity
pascal second
Pa· s
Moment of Force
newton meter
N· m
Surface Tension
newton per meter
N/m
Angular Velocity
radian per second
rad/s
radian per second squared
rad/s
watt per square meter
W/m
joule per kelvin
J/K
joule per kilogram kelvin
J/(kg· K)
joule per kilogram
J/kg
Thermal Conductivity
watt per meter kelvin
W/(m· K)
Energy Density
joule per cubic meter
J/m
volt per meter
V/m
coulomb per cubic meter
C/m
coulomb per square meter
C/m
Permittivity
farad per meter
F/m
Permeability
henry per meter
H/m
joule per mole
J/mol
Molar Entropy, Molar Feat Capacity
joule per mole kelvin
J/(mol· K)
Molar Entropy, Molar Heat Capacity
coulomb per kilogram
C/kg
gray per second
Gy/s
watt per steradian
W/sr
watt per square meter steradian
W/(m · sr)
Angular Acceleration Heat Flux Density, Irradiance Heat Capacity, Entropy Specific Heat Capacity, Specific Entropy Specific Energy
Electric Field Strength Electric Charge Density Electric Flux Density
Molar Energy
Absorbed Dose Rate Radiant Intensity Radiance
Supplement (Basic and Technical Data) 30
2
2
3
3
2
2
SI Units Table 6. SI prefixes SI prefixes
Factor 24
10
Name 3 8
= (10 )
3 7
1021 = (10 )
3 6
1018 = (10 )
3 5
1015 = (10 )
3 4
1012 = (10 )
3 3
109 = (10 )
3 2
106 = (10 )
3 1
103 = (10 ) 2
yotta zetta exa peta tera giga mega kilo hecto
10
1
deka
10
SI prefixes
Factor
Symbol
-1
Y
10
-2
Z E
10
-6
P
10
-9
T
10
-12
G
10
-15
M
10
-18
k
10
-21
h
10
-24
da
10
Symbol
deci
d
centi
c
3 -1
milli
m
3 -2
micro
µ
3 -3
nano
n
3 -4
pico
p
3 -5
femto
f
3 -6
atto
a
3 -7
zepto
z
3 -8
yocto
y
10 -3
Name
= (10 ) = (10 ) = (10 )
= (10 ) = (10 ) = (10 ) = (10 ) = (10 )
Table 7. Units accepted for use with SI units Name
Symbol
Value in SI units
Hour
h
1 h = 60 min = 3600 s
Day
d
1 d = 24 h = 86 400 s
Degree (Angle)
˚
1° = (/180) rad
Minute (Angle)
'
1'= (1/60)° = (/10 800) rad
Second (Angle)
"
1"= (1/60) = (/648 000) rad
Liter
L
1 L = 1 dm = 10
Metric Ton
t
1 t = 10 kg
Electron Volt
eV
Unified Atomic Mass Unit
u
3
-3
3
m
3
-19
1 eV = 1.602 18 x 10
-27
1 u = 1.660 54 x 10
Supplement (Basic and Technical Data) 31
J, approximately
kg, approximately
Table of Unit Conversion Factors ■ Table of Conversion Factors to SI Units Pa
Pressure
kgf/cm ²
bar
1
1X10
1X10
5
9.806 65X10
4
1.013 25X10
5
1.019 72X10
1 -1
1
1.013 25
2
-5
1.019 72
9.806 65X10
9.806 65 1.333 22X10
-5
atm
mmH 2 O
9.869 23X10
-6
9.869 23X10
-1
9.678 41X10
-1
1.033 23
1
9.806 65X10
-5
1.000 0X10
-4
1.333 22X10
-3
1.359 51X10
-3
9.678 41X10
-5
1.315 79X10
-3
mmHg or Torr
1.019 72X10
-1
7.500 62X10
-3
1.019 72X10
4
7.500 62X10
2
1.000 0X10
4
7.355 59X10
2
1.033 23X10
4
7.600 00X10
2
7.355 59X10
-2
1 1.359 51X10
1
Note) 1Pa=1N/m 2
Force
N
dyn
1
1X10
1X10
-5
kgf 5
1
9.806 65
9.806 65X10
1.019 72X10
-1
1.019 72X10
-6
5
Viscosity
1
Paㆍ s
cP
1
1X10
1X10
-3
1X10
-1
P 3
1X10
1
1X10
1X10
2
-2
1
Note) 1P=1dyn ㆍs/cm2=1g/cmㆍ s 1Pa ㆍ s=1N ㆍ s/m 2 1cP=1mPa ㆍ s
MPa or N/mm ²
Pa 1
Stress
1X10
1X10
6
9.806 6 5 X 1 0
6
9.806 6 5 X 1 0
4
1
1.019 7 2 X 1 0
1.019 7 2 X 1 0
-1
1.019 7 2 X 1 0
-2
1X10
1X10
kW ㆍ h 2.777 78X10
3.600X10
kgf/cm ²
-7
1
9.806 6 5 X 1 0
1
-2
1 2.724 07X10
-6
4.186 05X10
1.162 79X10
-3
2
kcal
1.019 72X10
-1
3.670 98X10
5
1
2.388 89X10
-4
8.600
2
0X10
2.342 70X10
4.268 58X10
-5
1
kgf ㆍ m -7
9.806 65
2
-3
1
1 W ㆍ h = 3600W ㆍ s 1cal = 4.18605J
Note) 1J = 1W ㆍ s
Thermal Conductivity
kgf/mm ² 1.019 7 2 X 1 0
9.806 65
J Work, Energy, Quantity of Heat
-6
W/(mㆍ K) 1
kcal */(mㆍ hㆍ℃ ) 8.600 0 X1 0
1.162 79
-1
1
kW kgf ㆍ m/s PS -1 Power, -3 1 1.359 62X 1 0 1.019 7 2 X 1 0 Heat -3 -2 1 1.333 3 3 X 1 0 Flow 9.806 6 5 X 1 0 1 Rate 7.5 X 1 0 1 7.3 5 5 X 1 0
Note ) 1W = 1J/s PS : French Horsepower 1PS = 0.7355kW
Thermal Conductivity
ㆍ K) W/ (m ²
ㆍ h ㆍ℃ ) kcal */ (m²
1
8.600 0X10
1.162 79
Kinematic Viscosity
-1
1
m²/s
cSt
1
1X10
1X10
-6
1X10
-4
Note) 1St = 1cm ² /S
Supplement (Basic and Technical Data) 32
St 6
1 1X10 2
1X10 1X10 1
4
-2
Hexagon Socket Head Cap Screw ■ Nominal Length ( ℓ ) Nominal Size
Nominal Length
Nominal Size
Nominal Length
Nominal Size
Nominal Length
M1.6
2.5~16
M2
3~20
M2.5
4~25
M3
5~30
M4
6~40
M12
Nominal Size
Nominal Length
Nominal Size
Nominal Length
M5
8~50
(M14)
M6
10~60
M16
25~140
M24
40~200
(M39)
65~300
25~160
(M27)
45~300
M42
65~300
M8
12~80
(M18)
M10
16~100
M20
30~180
M30
45~300
(M45)
80~300
30~200
(M33)
55~300
M48
20~120
(M22)
80~300
40~200
M36
55~300
(M52)
90~300
Notes 1) The size shown in ( ) is non-preferred 2) Standard nominal length
2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 30, 35, 40, 45 50, 55, 60, 65, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200, 220, 240, 260, 280, 300
■ Dimensions of counter-boring and bolt hole for hexagon socket head cap screws D
D'
H
H'
H"
M3
3
3.4
5.5
6
3
2.7
3.3
M4
4
4.5
7
8
4
3.6
4.4
M5
5
5.5
8.5
9.5
5
4.6
5.4
M6
6
6.6
10
11
6
5.5
6.5
M8
8
9
13
14
8
7.4
8.6
M10
10
11
16
17.5
10
9.2
10.8
M12
12
14
18
20
12
11
13
M14
14
16
21
23
14
12.8
15.2
M16
16
18
24
26
16
14.5
17.5
M18
18
20
27
29
18
16.5
19.5
M20
20
22
30
32
20
18.5
21.5
M22
22
24
33
35
22
20.5
23.5
M24
24
26
36
39
24
22.5
25.5
M27
27
30
40
43
27
25
29
M30
30
33
45
48
30
28
32
M33
33
36
50
54
33
31
35
M36
36
39
54
58
36
34
38
M39
39
42
58
62
39
37
41
M42
42
45
63
67
42
39
44
M45
45
48
68
72
45
42
47
M48
48
52
72
76
48
45
50
M52
52
56
78
82
52
49
54
D'
D'
D
D
d1
H H"
d'
H
d₁
H'
Bolt Nominal Size (d)
d'
Supplement (Basic and Technical Data) 33
d1
d'
1. Symbols used in designing springs Symbol
Unit
Symbol
d
Diameter of wire
Meaning
mm
Load acting on spring
D₁
Inside diameter of coil
mm
P δ
D₂
Outside diameter of coil
mm
κ
Spring constant
N/mm(kgf/mm)
D
Mean diameter of coil:
τo
Tensional Stress
N/mm (kgf/mm )
Nt
Total number of turns
Na Nf Hs
D1+D2 2
mm
Meaning
Unit N(kgf)
Deflection of spring
mm
τ
Corrected torsional stress
-
τi
Number of active turns
-
χ
Torsional stress due to initial tension Stress correction factor
Number of inactive turns
-
∫
Natural frequency
Solid Height
mm
u
Energy stored in spring
P
Pitch
mm
r
Weight per unit volume of wire
Pi
Initial Tension
W
Weight of Spring (Active Coils)
g*
Gravitational acceleration
D C= d
N (kgf)
Spring Index
-
2
2
2
2
2
N/mm (kgf/mm ) N/mm (kgf/mm ) Hz Nㆍmm (kgfㆍmm) 3
3
N/mm (kgf/mm ) N(kgf) mm/s
2
2
N/mm (kgf/mm2) 2
G
2
Modulus of elasticity in torsion
* Gravitational acceleration is round off as 9800mm/s in 2 designing springs though prescribed as 9.80665 m/s in the regulation of measure.
2. Basic formulas used in designing springs For compression springs and extension springs without initial tension α
For extension springs with initial tension (P>Pi)
δ=
8N D P Gd⁴
δ=
8Na D (P-Pⅰ) Gd⁴
κ=
P Gd⁴ = δ 8N αD³
κ=
P-Pⅰ Gd⁴ = δ 8N α D³
3
3
τ =
8DP π d³
τ =
8DP πd ³
τ=
Gdδ π NαD²
τ=
Gdδ +τⅰ π NαD²
0
0
0
0
τ= κ τ
τ = κτ
0
d =
3
8DP = πτ
3
0
8 κ DP πτ
d =
3
0
8DP = πτ
3
0
Nα=
Gd ⁴ δ 8 D³ P
Nα=
Gd ⁴ δ 8 D ³ (P-Pⅰ)
U =
Pδ 2
U =
(P + Pⅰ)δ 2
8 κ DP πτ
■ Modulus of rigidity G Material
G N/mm 2 (kgf/mm2 )
Spring Steel
78X10 3 (8X10 3 )
Hard Drawn Steel Wire
78X10 3(8X10 3 )
Music Wire
78X10 3 (8X10 3)
Oil-Tempered Wire
78X10 3(8X10 3)
Material
G N/mm2 (kgf/mm2 )
Material
69X10 3 (7X10 3 )
Spring Brass Wire Phosphor Bronze Wire BerylliumCopper Wire
SUS 302 Stainless Steel Wire
SUS 304 SUS 316 SUS 631 J 1
74X10 3 (7.5X10 3 )
Supplement (Basic and Technical Data) 34
G N/mm2 (kgf/mm 2) 39X10 3 (4X10 3 ) 42X10 3 (4.3X10 3) 44X10 3 (4.5X10 3)
■ Number of Active Turns The number of active turns in designing springs should be chosen as equal to the number of free coils. For compression springs, N=N t ( x 1+ x 2), x1 and x 2 indicate each number of coils of both ends. When only the tip of the coil touches the next free coil, x 1= x 2 =1. therefore, N a=Nt 2 When only the tip of the coil does not touch the next free coil and the length of end turn part is 3/4 length, x 1= x 2 =0.75. 1.6
Stress correction factor ( χ )
therefore, N a=N t - 1.5 For extension springs, N a=N t
■ Stress correction factor (χ) Stress correction factor which corrects for both curvature and direct shear is given by following formula or graph at the right χ= (4c-1)/(4c-4) + 0.615/c Wahl's factor
■ Range of Spring Index
1.5 1.4
1.3 1.2 1.1
1.0 4
3
5
6
7
9
8
10 11 12 1 3 14 1 5 16 1 7 1 8 19 2 0 21 22
D spring index C= d
In general, it is recommended to have the spring index within the range of 4 and 22.
■ Range of Slenderness Ratio In general, it is recommended to have the slenderness ratio (the ratio of free height against average diameter of coil) within the range of 0.8 and 4.
■ Range of Number of Active Turns
220
In general, it is recommended to have the number of active turns of 4 or more.
■ Range of Pitch In general, it is recommended to have the pitch of 0.5D or less.
■ Solid Height The solid height of compression spring can be estimated by following formula.
200
(2 0)
180
(18)
160
(1 6)
140
(1 4)
120
(1 2)
100
(1 0)
80
(8 )
60
(6)
40
(4 )
20
(2) (0)
0
τ1
3
4
5
6
8
9
10 11 1 2 13 14 15 16 17 18 19 20 2 1 22
D spring index C= d
N/mm²
HS = (N t - 1)d+χ
7
Note: x : Sum of the thickness of both ends of the coil
■ Initial Tension of Extension Spring The initial tension P i is generated in the solid-wound, cold-formed extension spring. In this case, the torsional stress due to the initial tension shall be within the shaded range shown in figure above. Pⅰ=
(Note) Following empirical formula can be applied to get P i and I
πd ³ τⅰ 8D
τⅰ =
πd³τⅰ G = Pi = 100c , 8D
Gd⁴ 255D²
■ Effect of Spring Surge To avoid surging, natural frequency of the spring should be selected not to resonate to the frequency of applied force. Natural frequency of spring is
∫= α
κg W
70d =α πNαD ²
G
ω
Example) Steel's G=78× 10 ³ N/mm ² (8 × 10 ³kgf/mm ² ) -6 -6 ω = 76.93 × 10 N/mm ³ (7.85 ×10 kgf/mm ³ ) For both ends are free or fixed, primary natural frequency f is
α=
ⅰ For both ends are free or fixed 2
α=
2ⅰ-1 For one end is fixed and the other end is free ⅰ= 1, 2, 3 4
∫ = 3.56 × 10
5
d NαD²
Supplement (Basic and Technical Data) 35
■ Linear Thermal Expansion Coefficients of Various Metals a (Linear Mean Coefficients for the Temperature Range 0~100˚C) Metal
X10
-4
Metal
X10 - 4
Zinc
0.263 ~ 0.582
Copper
0.167
Lead
0.276
Gold
0.139
Aluminum, Cast
0.222
Nickel
0.128
Tin
0.214
Soft Steel
0.119
Aluminum, Sheet
0.207
Antimony
0.110
Brass, Rod
0.193
Steel
0.105 ~ 0.110
Type Metal
0.190
Iron, Cast
0.102
Silver
0.188
Platinum
0.089
■ Linear Thermal Expansion Coefficients of Various Substances a (Linear Mean Coefficients for the Temperature Range 0~100˚C) Substance
X10
-4
Substance
X10 - 4 0.08 ~ 0.05
Rubber
0.77
Wood
Ebonite
0.64 ~ 0.77
Brick
0.055
Concrete
0.10 ~ 0.14
Masonry, Brick
0.04 ~ 0.07
Slate
0.104
Marble
0.035 ~ 0.044
Glass
0.088
Granite
0.083
Ceramic
0.036
Average Specific Gravity
Material
Material
Specific Gravity
Steel
7.85
Iron, Cast
7.25
Lead
11.4
Copper
8.9
Zinc
6.9
Aluminum
2.7
Brass, Bronze
8.6
Supplement (Basic and Technical Data) 36
Remark