S. Jaubert - CFAI-CENTRE
TD2 Suites Numériques 1. Trouver la limite des suites suivantes : a. n
n
u n ∑ 1 k−1 3
;
vn
k1
∑ 23 k k3
b. n
k u n ∑ 5 3k−1 7 k30
n
;
vn
∑ 4 k
k100
c. n
un
∑ sink k1
n
;
vn
∑ cosk k1
2. In his book Liber Abaci (book of the Abacus), Leonardo of Pisa, also know as Fibonacci, posed the following question : How many pairs of rabbits will be produced in a year, beginning with a single pair, if in every month each pair bears a new pair which becomes productive from the second month on ? (A History of Mathematics by Carl B. Boyer, Princeton University Press, 1985, page 281). a. Let f n be the number of pairs of rabbits in the nth month. Explain why f 1 1 and f2 1 b. Explain why f n2 f n1 f n for n 1, 2, 3 c. Compute f n for n 3, 4, 5 d. What’s lim n→ f n ? fn e. Compute r n f n1 for n 1, 2, 3. Do you think lim n→ r n exist ? f. Can you find lim n→ r n exactly ? 3. Etudier les suites suivantes : a. 3u n1 − 1 u n , n ≥ 0 où u 0 1 b. u n2 4u n1 − 4u n , n ≥ 0 où u 0 0 et u 2 5 c. u n1
u n , n ≥ 0 où u 2 0 3 − 2u n
d. u n1 3u n − 1 , n ≥ 0 où u 0 2 un 1