Taylors And Maclaurins Series

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Taylors And Maclaurins Series as PDF for free.

More details

  • Words: 7,089
  • Pages: 19
EXPANSION OF FUNCTIONS OF ONE & SEVERAL VARIABLES OBJECTIVES At the end of this session, you will be able to understand: Maclaurin’s Theorem Some Important Expression Taylor’s Theorems Function of Two Variables Total Differential Coefficients

MACLAURIN’S THEOREM: If f(x) can be expanded in ascending powers of x, then

x2 x3 xn n f ( x) = f (0) + xf '(0) + f ''(0) + f '''(0) + ...... + f (0) + ....... 2! 3! n! Proof. Suppose

f ( x) = a0 + a1 x + a2 x 2 + a3 x 3 + ........................an x n + ................ (1)

Where a0 , a1 , a2 , a3 ,........................an are constant to be evaluated. By successive differentiation (1) w.r.t. x, we get

f '( x) = a1 + 2a2 x + 3a3 x 2 + 4a4 x 3 .......................nan x n −1 + ................(2) f ''( x) = 2a2 + 3.2a3 x + 4.3a4 x 2 .......................n(n − 1)an x n − 2 + ...........(3) f '''( x) = 3.2a3 + 4.3.2a4 x....................... + n(n − 1)(n − 2)an x n −3 + .......(4) In general, f ''( x) = n(n − 1)(n − 2)............3.2.1an + term containing

x

...........(5)

Now putting x = 0 in (1) to (5), we get a0 = f (0); a1 = f '(0); a2 =

f ''(0) f '''(0) f n (0) ; a3 = ;.........; an = ,....... 2! 3! n!

1

Putting these values of constants in (1), we get

x2 x3 xn n f ( x) = f (0) + xf '(0) + f ''(0) + f '''(0) + ...... + f (0) + ....... 2! 3! n! If we take f(x) = y; f(0) = (y)0; f’(0) = (y1)0, f”(0) = (y2)0, f’’’(0) = (y3)0;……..f’’(0) = (yn)0, then the above theorem takes the form as x2 x3 xn y = (y)0 + x (y1)0 + ( y 2 ) 0 + ( y 3 ) 0 + ......... + ( y n ) 0 + ...... 2! 3! n! or

y = (y)0 + xy1(0) +

x2 x3 xn y 2 (0) + y 3 (0) + ......... + y n (0) + ...... 2! 3! n!

SOME IMPORTANT EXPANSIONS: 1. Expansion of ex. (Exponential series): Let f(x) = e x Then f(0) = e0 = 1;

f ( n ) ( x ) = e x so that f ( n ) ( 0 ) = e0 = 1, where n = 1, 2, 3, ............ Substituting these values in Maclaurin’s series

x2 x3 f ( x) = f (0) + xf '(0) + f ''(0) + f '''(0) + ....... 2! 3! x2 x3 xn We get e = 1 + x + + + ...... + + ..... 2! 3! n! x

2. Expansion of sin x. (Sine series): Let f(x) = sinx. Then f(0) = 0, f ’(x) = cosx so that f ’(0) = 1, f ’’(x) = sinx so that f ’’(0) = 0, f ’’’(x) = -cosx so that f ’’’(0) = -1, and so on.

1  1   In general, f n (x) = sin  x + nπ  so that f n (x) = sin  nπ  2   2  When n = 2m, f n (0) = sin m π = 0 and when n = 2m + 1,

2

1  1   1  f n (0) = sin  (2m + 1)π  = sin  mπ + π  = (−1) m sin  π  = (−1) m 2  2   2  Substituting these values in Maclaurin’s series, we get Sinx = 0 + x.1 + 0 +

or Sinx = x -

x3 x 2 m +1 (−1) + 0 + ...... + 0 + (−1) m + ...... 3 (2m + 1)!

x3 x5 x 2 m +1 + − ...... + (−1) m + ...... 3! 5! (2m + 1)!

Similarly, we may obtain the Cosine series: Cosx = 1 -

x2 x4 x5 x 2m + − + ....... + (−1) m + ..... 2! 4! 6! (2m)!

3. Expansion of log (1+x):

Let f (x) = log (1+x). Then f (0) = log 1 = 0; f n (x) =

(−1) n −1 (n − 1)! ( x + 1) n

So that f n (0) = (-1)n-1(n-1)!, where n = 1, 2, 3…..

∴ f ’(0) = (-1)1-1 (1-1)! = 1, f ’’(0) = (-1)2-1(2-1)! = -1!, f ’’’(0) = (-1)3-1(3-1)! = 3!, f iv (0)= (-1)4-1(4-1)! = 3!, and so on. Substituting the values of f (0), f ’(0),f ’’(0), etc. in Maclaurin’s series, we have f (x) = f(0) + x f ’(0) +

x2 xn n f ' ' (0) + ..... + f (0) + ...., 2! n!

we get log (1 + x) = 0 + x.1 -

x2 x3 x4 xn .1!+ .2!− .3!+..... + (−1) n −1 (n − 1)!+..... 2! 3! 4! n!

n x2 x3 x4 n −1 x or log (1 + x) = x + − + ...... + (−1) + ..... 2 3 4 n

3

4. Expansion of (1 + x)n. (Binomial series):

Let f(x) = (1 + x )n. Then f (0) = 1; f m (x) = n(n – 1)(n – 2)….(n – m + 1) (1 + x) n - m so that f m (0) = n(n - 1)….(n - m + 1), where m = 1, 2, 3, ……

∴ f’(0) = n, f ’’(0) = n(n – 1), f ’’’(0) = n (n-1) (n-2) and so on. Substituting the values of f (0), f ’(0), f ’’’(0) etc. in Maclaurin’s series for (x), we get (1+x) n =1 + nx +

n(n − 1) 2 n(n − 1).....(n − m + 1) x m + x + ..... + …… 2! m!

Example: Expand the following by Maclaurin’s theorem: (i) tanx (ii) log secx Solution: (i) Let y = tanx. Then (y) 0 = tan0 = 0

y1 = sec2x = 1 + tan2x = 1 + y2 so that (y1)0 = 1 + (y)20 = 1 + 0 = 1, y2 = 2yy1, so that (y2)0 = 2 (y)0 (y1)0 = 2 × 0 × 1 = 0, y3 = 2y1y1 + 2yy2 = 2y12 + 2yy2 so that (y3)0 = 2 × 12 + 0 = 2 ,

y4 = 4y1y2 + 2y1y2 + 2yy3 = 6 y1y2 + 2yy3 so that (y4)0 = 6× 1 × 0 + 2 × 0 × 2 = 0, y5 = 6y22 + 6y1y3 + 2y1y3 + 2yy4 = 6y22 + 8y1y3 + 2yy4 so that (y5)0 = 0+8 × 1 × 2 + 0 = 16 and so on. Now by Maclaurin’s we get x2 x3 x4 x5 y = ( y )0 + x( y1 )0 + ( y2 )0 + ( y3 )0 + ( y4 )0 + ( y5 ) 0 +................ 2! 3! 4! 5! 2 3 4 5 x x x x ∴ tan x = 0 + x.1 + .0 + .2 + .0 + .16 + ............... 2! 3! 4! 5! 3 2 x = x + + x5 + ........ 3 15

4

(ii)

Let y = log sec x. then (y) 0 = log sec 0 = log 1 = 0,

1 .sec xtanx = tanx so that ( y1 )0 = 0. sec x y2 = sec 2 x = 1 + tan 2 x = x = 1 + y 21 so that ( y2 )0 = 1 + ( y1 )02 = 1 y1 =

y3 = 2 y1 y2 so that ( y3 )0 = 2( y1 )0 ( y2 )0 = 0, y4 = 2 y22 + 2 y1 y3 so that ( y4 )0 = 2 × 12 + 0 = 2 y5 = 4 y2 y3 + 2 y2 y3 + 2 y1 y4 = 6 y2 y3 + 2 y1 y4 so that ( y5 )0 = 6 × 1 × 0 + 2 × 0 × 2 = 0 y6 = 6 y32 + 6 y2 y4 + 2 y2 y4 + 2 y1 y5 = 6 y32 + 8 y2 y4 + 2 y1 y5 so that , ( y6 )0 = 0 + 8 × 1 × 2 + 0 = 16, and so on. Now by Maclaurin’s theorem, we get

y = ( y ) 0 + x( y1 ) 0 +



x2 x3 x4 ( y 2 ) 0 + ( y3 ) 0 + ( y 4 ) 0 + ........... 2! 3! 4!

x2 x3 x4 x5 x6 .1 + .0 + .2 + .0 + .16............ 2! 3! 4! 4! 4! 2 4 6 x x x = + + + ........ 2 12 45

log sec x = 0 + x.0 +

Example 2: By Maclaurin’s theorems show that

e x cos x = 1 + x −

n 2 x 3 2 2 x 4 2 2 x 5 23 x 7 nπ x n . + ........... − − + + ......... + 2 2 cos 3! 4! 5! 7! 4 n!

Solution.

Let y = e x cos x. then ( y )0 = e0 cos 0 = 1 y1 = e x cos x − e x sin x = e x (cos x − sin x), so that ( y1 )0 = 1, y2 = e x (cos x − sin x) + e x (− sin x − cos x) = −2e x sin x, so that ( y2 )0 = 0, y3 = −2e x sin x − 2e x cos x = −2e x (sin x + cos x), so that ( y3 )0 = −2, y4 = −2e x (sin x + cos x) − 2e x (cos x − sin x) = −4e x cos x = −22 y so that ( y 4 )0 = −2, y5 = −22 y1 , so that ( y5 )0 = −22 , y6 = −22 y2 so that ( y6 )0 = 0, y7 = −22 y3 so that ( y7 )0 = 23 and so on. In general,

5

n

n

yn = (1 + 1) 2 cos( x + n tan −1 1) = (2) 2 cos( x + nπ / 4) n 1 so that ( yn )0 = (2) 2 cos( nπ ) 4

Now by Maclaurin’s theorem, we get

x2 xn ( y2 )0 + ............. + ( yn )0 + ................... 2! n! 2 3 4 x x x x5 x6 x7 = 1 + x.1 + .0 + (−2) + (−22 ) + (−22 ) + .0 + 23 + .... 2! 3! 4! 5! 6! 7! n x 1  + 2n 2 cos  π n  + ...... n! 4 

y = ( y )0 + x( y1 )0 +

n n 2 x 3 2 2 x 4 2 2 x 5 23 x 7 1 x 2 = 1+ x − − − − + .......2 cos  nπ  + ........... 3! 4! 4! 7!  4  n!

TAYLOR’S THEOREM: If f ( x + h ) can be expanded in ascending powers of x, then.

f ( x + h) = f ( x) + hf '( x) +

h2 hn f "( x) + ..... + f "( x) + ....... n! 2!

Proof.

Let f ( x + h) = A0 + A1 h + A2 h 2 + A3 h3 + A4 h 4 + .......... + An h n + ..........

......(1)

By successive differentiation of (1) w.r.t., h, we have f '( x + h) = A1 + 2 A2 h + 3 A3 h 2 + 4 A4 h 4 + ...................

...........(2)

f "( x + h) = 2 A2 + 3.2 A3 h + 4.3 A4 h 2 + ...................

...........(3)

f "'( x + h) = 3.2.1. A3 + 4.3.2. A4 h + ........................

............(4)

........................................ ........................................ Putting h = 0 in (1), (2), (3) and (4), we get

f ( x) = A0 : f '( x) = A1 : f ''( x) = 2 A2 : f '"( x) = 3.2.1. A3 ⇒ A0 = f ( x); A1 = f '( x); A2 =

1 1 f "( x); A3 = f "'( x) and so on. 2! 3!

Substituting these values in (1) we get the Taylor’s theorem as

f ( x + h) = f ( x) + hf ' ( x) +

h2 hn f " ( x) + ........... + f " ( x) + ....... 2! n!

...(5)

6

Cor.1. Putting a = 0 in (5) we get

f (a + h) = f (a) + hf ' (a ) +

h2 hn f " (a ) + ........ + f " (0) + ......................... n! 2!

Corl.2 Putting a = 0and h = x in Cor.1we get the Maclaurin’s theorem x2 hn f ( x) = f (0) + xf '(0) + f "(0) + ........ + f "(0) + .................. n! 2! Cor.3 Putting x = h and h = a in (5), we get a2 xn n f (a + h) = f (h) + af '( h) + f "(h) + ............ + f (h) + ...... n! 2! Cor.4 Putting h = x - a in Cor.1, we get

f ( x) = f [a + ( x − a )] = f (a) + ( x − a) f ' (a ) +

( x − a) 2 ( x − a)" n f " (a) + .......... + f (a) + ......... n! 2!

Example: Expand log sin(x + h) in powers of h by Taylor’s Theorem Solution:

f ( x + h) = log sin( x + h)



1 cos x = cot x, sin x f " = − cos ec 2 x, f '"( x) = 2 cos ec 2 x cot x,

f ( x) = log sin x. Futher f '( x) =

............................. ......................... By Taylor’s Theorem, we get h2 h3 f "( x) + f "'( x) + ............. 2! 3! h2 2h 3 2 cos ec 2 x cot x + .................. ⇒ log sin( x + h) = log sin x + h cot x − cos ec x + 2! 3! f ( x + h) = f ( x) + hf '( x) +

x x2 x3 + − .......... ..... Example: Show that log( x + h) = log h + − h 2h 2 3h 3 Solution: Since we are to expand log ( x + h ) in power of x, therefore we are to use the from given in Cor3. putting x for a in Cor3, we get.

7

f ( x + h) = f ( x) + xf '(h) +

x2 f "(h) + ................ 2!

(1)

Now f ( x + h) = log( x + h) 1 1 2 ∴ f (h) = log h; f '(h) = ; f "(h) = − 2 ; f ''(h) = 3 ,............. h h h Putting these value in (1) we get log( x + h) = log h +

x x2 x3 − 2 + 3 + .............. h 2h 3h

FUNCTION OF TWO VARIABLES: Taylor’s Theorem for function of two variables. “To expand f ( x + h , y+ k ) in powers of h and k, in case f (x , y) and all its parietal derivatives are continuous in a certain domain of the point (x, y)”

Taking f (x+h ,y+k) as a function of one variable, say x i.e.x varies while y remains constant then expanding by Taylor’s theorem we have

f ( x + h, y + k ) = f ( x , y + k ) + h

∂f ( x, y + k ) h 2 ∂f ( x, y + k + + ......(1) ∂v 2! ∂x 2

Further, expanding each term on the right hand side of (1) by Taylor’s theorem taking y as variable and x as constant, we have  ∂f ( x, y ) k 2 f ( x, y ) ∂  ∂f ( x, y ) f ( x + h, y + k ) = f ( x , y ) + k + + ...... + h  f ( x, y ) + k + ....... 2 ∂y ∂x  ∂y 2! ∂y 

 ∂f ( x, y ) h2 ∂ 2  + .......  + ............ f ( x, y ) + k 2  ∂y 2! ∂y    ∂f ∂2 f  ∂f  1  ∂ 2 f ∂2 f ⇒ f ( x + h, y + k ) = f ( x, y ) +  h + k  +  h 2 2 + 2hk + k 2 2  + ...... ∂y  2!  ∂x ∂x∂y ∂y   ∂x Or in symbolic from, we get " 2  ∂f ∂f  1 ∂ ∂  1 ∂ ∂  f ( x + h, y + k ) = f ( x, y ) +  h + k  f +  h + k  f + ..... +  h + k  f + ...... where ∂y  ∂y  ∂y  2!  ∂x n !  ∂x  ∂x f = f(x ,y) +

n

n n  ∂ n(n − 1) n − 2 2 ∂ n f ∂  ∂n f n ∂ f n −1 n ∂ f. h + k  f = h h k + nh k n −1 + + ..... + k 2! ∂y  ∂x n ∂x ∂y ∂x n −1∂ 2 y ∂y n  ∂x [by Binomial Theorem]

8

We now give an accurate statement of Taylor’s Theorem for function of two variables. If f (x, y) th possesses continuous partial derivates upto n order for all points (x,y) in the region ( a ≤ x ≤ a + h, b ≤ y ≤ b + k ) , then we have 2

 ∂ ∂  ∂  1 ∂ f (a + h, b + k ) = f (a, b) +  h + k  f (a, b) +  h + k  f (a, b) + .......... ∂y  ∂y  2!  ∂x  ∂x ∂  1  ∂ .... + h + k  ∂y  (n − 1)!  ∂x

n −1

n

∂  1 ∂ f (a, b) +  h + k  f (a + θ h, b + θ k ) n !  ∂x ∂y  where 0 < θ < 1

If u = f( y ); then to show that du =

∂u ∂u dx + dy : ∂x ∂y

Give u = (y); then u + δ u = f ( x + δ x, y + δy ).

 ∂ f ∂f ∴ δu = f ( x + δx, y + δy ) − f ( x, y ) =  f ( x, y ) +  δ x+ δ ∂y  ∂x 

=

  y  + ...... − f ( x, y )  

∂u ∂u δ x + δ y to first order of approximation (replacing f by u) ∂y ∂x

Thanking limits, we have du =

∂u ∂u dx + dy. ∂x ∂y

TOTAL DIFFERENTIAL COEFFICIENTS:

If u = f ( x, y ) where x = φ (t ) and y = φ (t ) , then we know that ∂u ∂u du = dx + dy. ∂x ∂y du dx dy But .dt du = dx = .dt , dy = .dt dt dt dt du ∂u dx ∂u dy ∴ = . + dt ∂x dt ∂y dt

.........(1)

Again if u = f =(x, y) where x = φ (t1 ,t2)then

and

∂u ∂u ∂x ∂u ∂y  = + ∂t1 ∂x ∂t1 ∂y ∂t1   ∂u ∂u ∂x ∂u ∂y  = + ∂t2 ∂x ∂t2 ∂y ∂t2 

9

Example: Expand f ( x, y ) = x y + 3 y − 2 in power of (x - 1) and ( y + 2 ) by Taylor’s theorem. 2

Solution: By Taylor’s theorem

1 {( x − a ) 2 f xx (a, b) 2! 1 + 2( x − a )( y − b) f xy (a, b) + ( y − b) 2 f xy (a, b)} + ( x − a )3 f xxx (a, b) 3! 2 2 + 3( x − a ) ( y − b) f xxy (a, b) + 3( x − a )( y − b) f xyz (a, b)

f ( x, y ) = f (a, b) + {( x − a ) f x (a, b) + ( y − b) f y (a, b)} +

+ ( y − b)3 f yyy (a, b)

} + ...............

.......(1)

Given a = 1, b = -2

f ( x, y ) = x 2 y + 3 y − 2 ⇒ f (1, −2) = −10 f x ( x, y ) = 2 xy ⇒ f x (1, −2) = 2(−1)(−2) = −4 f y ( x, y ) = x 2 + 3 ⇒ f y (1, −2) = +4 f xx ( x, y ) = 2 y ⇒ f xx (1, −2) = −4 f xy ( x, y ) = 2 y ⇒ f xy (1, −2) = 2 f yy ( x, y ) = 0 ⇒ f yy (1, −2) = 0 f xxx ( x, y ) = 0 ⇒ f xxx (1, −2) = 0 f xxy ( x, y ) = 2 ⇒ f xxy (1, −2) = 2 f xyy ( x, y ) = 0 ⇒ f xyy (1, −2) = 0 f yyy ( x, y ) = 0 ⇒ f yyy ( x, y ) = 0 Putting a = 1, b = -2 and values in (1), we get

1 [ x − 1) 2 (−4) 2! 1 + 2( x − 1)( y + 2)(2) + ( y + 2) 2 (0)] + [( x − 1)3 (0) 3! 2 + 3( x − 1) ( y + 2)(2) + 3( x − 1)( y + 2) 2 (0) + ( y + 2)3 (0)].

x 2 y + 3 y − 2 = 10[( x − 1)(−4) + ( y + 2)(4)] +

or x 2 y + 3 y − 2 = −10 − 4( x − 1) + 4( y + 2) − 2( x − 1) 2 + 2( x − 1)( y + 2) + ( x − 1) 2 ( y + 2). Example: Expand eax by Maclaurin’s theorem. Solution: y = e ax, them (y)0 = e0 = 1 (by putting x = 0),

10

y1 = ae ax , ⇒

( y1 )0 = ae0 = a,

y 2 = a 2 e ax ⇒ ( y2 )0 = a 2 e0 = a 2



............... ...............

.................... .....................

yn = a n e ax

⇒ ( yn ) 0 = a n e 0 = a n .

By Maclaurin’s theorem, we get

x2 x3 xn y = ( y )0 + x( y1 )0 + ( y2 )0 + ( y3 )0 + ....... + ( yn )0 + ............. n! 2! 3! 2 3 n x x x ⇒ e ax = 1 + xa + a 2 + a 3 + ....... + a n + ........... n! 2! 3! Note: If a = 1, then

ex = 1 + x +

x 2 x3 xn + + ......... + .... 2! 3! n!

This is known as Exponential series. Example: Expand ex sex x by Maclaurin’s theorem. Solution : Let y = ex sec x then (y)0 = e0 sec (0) = 1

y1 = e x sec x + e x sec x tan x = e x sec x(1 + tan x) = y (1 + tan x), ( y1 )0 = ( y )0 [1 + tan(0)] = 1 y2 = y sec 2 x + y1 (1 + tan x), ( y2 )0 = ( y )0 sec 2 (0) + ( y1 )0 (1 + tan 0) = 1 + 1 = 2, y3 = y1 sex 2 x + 2 y sec 2 x tan x + y2 (1 + tan x) + y1 sec2 x =2 y1 sec 2 x + 2 y sec 2 x tan x + y2 (1 + tan x) ( y3 )0 = 2( y1 )0 1 + 2( y )0 (0) + ( y2 )0 .1 = 4 ∴By Maclaurin’s theorem, we get

x2 x2 e sec x = ( y )0 + x( y1 )0 + ( y2 )0 + ( y3 )0 + ............ 2! 3! 3 x2 x = 1 + x.1 + .2 + .4 + ........ 2! 3! 2 ⇒ e x sec x = 1 + x + x 2 + x3 + .......... 3 x

11

Example: Use Maclaurin’s theorem to find the expansion of log(l + e ) in ascending powers of x to the containing x 4 . x

0 x Solution: Let y = log(1 + e ). then ( y ) 0 = log(l + e ) = log 2

ex e0 1 = = , ( y ) 1 0 l + e0 2 1 + ex ex (1 + e x )e x − e x .e x e x [1 + e x − e x ] 1 = = y2 = . (l + e x ) 2 (1 + e x ) 2 (l + e x ) (1 + e x )

y1 =

= y1

 ex  1 = − y 1 1  x  1 + ex  1+ e  1  1 1 = 1− 2  2  2 ( y3 )0 = ( y2 )0 − 2( y1 )0 ( y2 )0

⇒ y 2 = y1 (1 − y1 ),

( y2 )0 = ( y1 )0 [1 − ( y1 )0 ] =

y3 = y2 (1 − y1 ) + y1 (− y2 ),

1 1 1 − 2. . = 0 2 2 4 ( y4 )0 = ( y3 )0 − 2( y3 ) 0 ( y1 ) 0 − 2( y2 2 ) 0

= y2 − 2 y1 y2

=

y4 = y3 − 2 y3 y1 − 2 y2 2 ,

= 0 − 0 − 2. ∴By Maclaurin’s theorem, we get

log(1 + e x ) = ( y ) 0 + x ( y1 ) 0 +

1 1 =− 16 8

x2 x2 ( y2 ) 0 + ( y 3 ) 0 + ........ 2! 3!

x4  1  1 x2 1 x2 = log 2 + x. + . + .0 + . −  + ............ 4!  8  2 2! 4 3! 1 1 1 4 ⇒ log(1 + e x ) = log 2 + x + x 2 − x + .......... 2 8 192 Example: Expand log(1 + sin x ) by Maclaurin’s theorem Solution: Let y = log(1 + sin x), then

( y) 0 = log1 = 0.

….(1)

1 1 x − sin 2 x 1 cos x 2 2 y1 = .cos x = = 1 1 1 1 1 + sin x 1 + sin x   2 2  cos x + sin x  + 2sin x cos x 2 2  2 2  cos 2

12

1 1 1 1 1 x − sin 2 x cos x − sin x 1 − tan x 2 2 = 2 2 = 2 = 2 1 1 1 1 1   cos x + sin x 1 + tan x  cos x + sin x  2 2 2 2 2   cos 2

1 (by dividing Num. and Den. By cos x ) 2

1  1 ⇒ y1 = tan  π − x  2  4 1  1 1 y 2 = sec 2  π − x . − , 4  2 4

1 ∴ ( y1 ) 0 = tan π = 1 4 1 1 ∴( y 2 ) 0 = − sec 2 π = −1 2 4

……(2) ……(3)

1 1  1  1   1  1 1 y3 = −  2sec 2  π − x   −  × tan  π − x   −   2 2  2  2   2  4 4  1  1  1  1 1 = −  −  sec 2  π − x  × tan  π − x   2  2  4 4  2 

∴ ( y3 )0 = −( y2 )0 ( y1 )0 = +1

= − y 2 , y1 ,

y4 = −[ y4 y1 + y2 2 ], …. …. ….. ….. …. …. ….. …..

…….(4)

2

∴ ( y 4 ) 0 = −( y 3 ) 0 ( y1 ) − ( y 2 ) 0 = −1 − 1 = −2 …..(5)



By Maclaurin’s theorem, we get. x2 x3 x4 log(1 + sin x ) = ( y ) 0 + x ( y1 ) 0 + ( y 2 ) 0 + ( y3 ) 0 + ( y 4 ) 0 + ....... 2! 3! 4!

x2 x3 x4 = 0+ x− + − (−2) + .......... 2! 3! 4! x2 x3 x4 = x− + − + ....... 2 3 12 Example: Expand sin Solution: Let y =

−1

x by Maclaurin’s theorem.

sin −1 x

…..(1)

Differentiating it with respect to x, we get

13

y1 =

1

2

(1 − x ) 2

⇒ y1 (1 − x 2 ) = 1

…..(2)

Differentiating it again, we have 2

y1 (−2 x) + 2 y1 y 2 (1 − x 2 ) = 0 ⇒ − xy1 + y 2 (1 − x 2 ) = 0 ⇒ y 2 (1 − x 2 ) − xy1 = 0

……(3)

Differentiating (3) n times by Leibnitz’s theorem, we have

 yn + 2 (1 − x 2 ) + n c1 yn +1 (−2 x) + n c2 yn (−2)  −  yn +1 .x + n c1 yn .1 = 0    

(

)

⇒ y n + 2 1 − x 2 − ny n +1 (−2 x) +

n(n − 1) y n (−2) − y n +1 .x − ny n = 0 2!

⇒ (1 − x 2 ) y n+2 − (2n + 1) xyn+1 − n 2 y n = 0

…..(4)

Putting x = 0 in (1), (2), (3), we get

( yn+2 ) 0 - n2 ( yn)0 = 0 Putting n = 1, 2, 3…… , we have

( y3 ) 0 − 1( y1 ) 0 = 0 ⇒ ( y3 ) 0 = ( y1 ) 0 ⇒ ( y3 ) 0 = 1 ( y 4 ) 0 − 4( y 2 ) 0 = 0 ⇒ ( y 4 ) 0 = 4( y 2 ) 0 ⇒ ( y 4 ) 0 = 0. ( y 5 ) 0 − 9( y 3 ) 0 = 0 ⇒ ( y 5 ) 0 = 9( y 3 ) 0 ⇒ ( y 5 ) 0 = 9 = 3 2 ( y6 ) 0 − 16( y 4 ) 0 = 0 ⇒ ( y6 ) 0 = 16( y 4 ) 0 ⇒ ( y 6 ) 0 = 0

( y 7 ) 0 − 25( y 5 ) 0 = 0 ⇒ ( y 7 ) 0 = 25( y 5 ) 0 ⇒ ( y 7 ) 0 = 25 × 9 = 3 2.5 2 Hence by Malaria’s theorem, we have

x2 x3 sin x = ( y ) 0 + x( y1 ) 0 + ( y 2 ) 0 + ( y 3 ) 0 + ....... 2! 3! 2 3 4 x x x x5 x6 x7 2 2 2 = 0 + x.1 + .0 + .1 + .0 + (3) + .0 + .(3 5 ) + ......... 2! 3! 4! 5! 6! 7! 3 2 5 2 2 7 x 3 .x 3 .5 .x = x− + + . + ............. 3! 5! 7! −1

14

1 1 1 3 1 1 3 5 1 ⇒ sin −1 x = x + . x 3 + . . x 5 + . . . x 7 + ....... 2 3 2 4 5 2 4 2 7 Example: Expand (sin

−1

x)2 in ascending powers of x.

−1 2

Solution: Let y = (sin )

y1 = 2 ( sin −1 x )

(y1) 0 = 0

1

(1 − x ) 2

2

⇒ (1 − x 2 ) y1 = 4(sin −1 x) 2 = 4 y

( ) ∴(y ) = 0 ⇒ (1 − x )2 y y − 2 xy = 4 y ⇒ (1 − x )y − xy − 2 = 0 ∴(y ) = 2 2

⇒ 1 − x 2 y1 = 4 y

1 0

2

2

1

2

1

1

2

2

1

2 0

Differentiating n times by Leibnitz’s theorem, we get

n(n − 1)   2 − + − + ( 1 ) ( 2 ) y x ny x y n (2) − [ y n +1 x + ny n ] = 0 n + 2 n + 1  2!  

⇒ (1 − x 2 ) y n + 2 − (2n + 1) xy n +1 − n 2 y n = 0

∴ ( y n + 2 ) = n2 ( y n ) 0

…(1)

Putting n = 1,2,3,….., in (1), we get

( y3 )0 = 1. ( y1 )0 = 0 ( y5 )0 = 32. ( y3 )0 = 0

( y4 )0 = 22. ( y2 )0 = 22.2; ( y6 )0 = 42. ( y4 )0 = 22.24.2;

Hence

x2 x3 (sin x) = ( y0 ) + x( y1 )0 + ( y2 )0 + ( y3 )0 + ...... 2! 3! 2 2 4 2 2 6 2.x 2 .2.x 4 .2 .2.x = + + + ................ 2! 4! 6! −1

2

......(2)

Deductions:

1. If we put x = sin θ in the above result, we get.

15

θ2 =

2 sin 2 θ sin 4 θ 2 2.2 sin 6 θ + 2 2 .2 + 4 2. + ....... 2! 4! 6!

2. If we differentiate both sides of (2) w.r.t x, we get

2 sin −1 x

(1 − x ) 2



x3 x5 2 2 = 2 x + 2 .2 + 4 .2 .2 + ......... 3! 5! 2

sin −1 x

(1 − x ) 2

2 3 2.4.x 5 = x+ x + + ......... 3 3.5

Example: Expand sin-1 (x + h) in power of x as far as the term in x3. Solution: First we observe that we are to expand sin-1 (x + h) in ascending powers of x. so let

f(h) = sin -1h. Then f(h + x) = sin-1 ( h + x) Thus we are to expand f (h + x) in power of x. So by Taylor’s theorem, we have x2 x3 f " ( h) + f " ' (h) + .... …….(1) f( h + x) = f (h) + xf’(h)+ 2! 3! Now f(h) = sin –1h.. Therefore f ’(h) =

f ’’ (h) =

1 1− h

2

= (1 − h2 )−1/ 2

h(1 − h2 )−3 / 2

f '''(h) = (1 − h2 )−3 / 2 + h(−3/ 2)(1 − h2 )−5 / 2 (−2h) = (1 − h2 )−3 / 2 + 3h2 (1 − h2 )−5 / 2 = (1 − h2 )−5 / 2 [(1 − h2 ) + 3h2 ) =(1 − h2 )−5 / 2 (1 + 2h2 ), etc.

Substituting these values in (1), we have Sin-1 (h + x ) = Sin-1 h + (1-h2)1/2 x + (x2/2!) h (1-h2)-3/2 + (x3/3!) (1-h2)-5/2 (1-2h2)+…

16

Example: Use Taylor’s theorem to prove that sin θ sin 2θ sin 3θ tan-1(x + h) = tan-1x +(hsin θ ) − (h sin θ ) 2 + (h sin θ )3 − ..... 1 2 3 sin nθ ….+(-1)n-1(hsin θ )n + ....., where 0 = cot-1x n Solution: Let f(x) = tan-1x. then

f (x + h) = tan-1 (x + h ). Expanding f (x + h) in power of h by Taylor’s theorem we have f ( x + h) = f (x) +

h h2 hn f '( x) + f ''( x) + ..... + f ''( x) + .... n! 1! 2!

…….(1)

Now f ( x ) = tan-1x. Therefore f ’’(x) = Dn tan-1x = (-1) n-1 (n-1)! sinn θ sin n θ . Where θ = cot-1x Putting n= 1, 2, 3, ……..in it , we get f ’(x)= sin θ sin θ , f ’’(x) = -1! sin2 θ sin2 θ f ’’’(x) = 2! Sin3 θ sin3 θ .etc. Substituting these values in (1), we have h2 h3 sin 2 θ sin 2θ + 2!sin 3 θ sin 3θ − ....... 2! 3! n h + (−1) n −1 (n − 1)!sin n θ sin nθ + .... n! sin θ sin 2 θ sin 3θ sin nθ = tan-1 x + hsin θ − ( h sin θ ) 2 + ( h sin θ )3 + ....... ..... + ( −1) n −1 ( h sin θ ) n 1 2 3 n tan-1 (x + y) = tan-1 x +hsin θ sin θ -

 π Example: Expand ex cosy near the point 1,  by Taylor’s Theorem.  4 Solution: By Taylor’s theorem 2

3

 ∂ 1 ∂ 1 ∂ ∂  ∂  ∂  F(x + h, y + k) = F (x, y) +  h + k  F +  h + k  F +  h + k  F + .....(1) 2!  ∂x 3!  ∂x ∂y  ∂y  ∂y   ∂x

Again ex cosy = F(x, y)  π π  π  π   = F 1 + h + k  =F 1 + ( x − 1). +  y − , where h = x -1, k = y 4 4  4  4   

17

F(x, y) = ex cosy

∂F = e x cos y ∂y ∂F = −e x sin y ∂x ∂2F = e x cos y 2 ∂x

∂2F = −e x cos y 2 ∂y

∂2F = −e x cos y ∂x∂y

e  π = 2  4 ∂F  π  e 1.  = ⇒ ∂y  4  2 2 e ∂ F π

⇒ F 1.

1.  = ∂x 2  4  2 2 e ∂ F π 1.  = ⇒ 2  ∂x  4  2 2 ∂ F  π  −e  1.  = ⇒ ∂y 2  4  2 ⇒

∂2F  π  − e ⇒ 1.  = ∂x∂y  4  2

Substituting these values in Taylor’s theorem, we get

e  e  π  − e + ( x − 1) +y−  4  2  2  2  2 1 π   −e   π   −e    2 e + 2( x − 1)  y −   +y−   + ( x − 1)  + .......... 2!  4   2   4   2   2 

ex cosy =

18

ADDITIONAL PROBLEMS:

1. Show that by Maclaurin’s theorem, n x 2 x3 x 4 n −1 x log(1 + x) = x − + − + ........... + (−1) 2 3 4 n!

2. By Maclaurin’s theorem, prove that

a 2 + b2 ) ( 3a 2 b − b3 3 2 ax e sin bx = bx + abx + x + .......... + 3! n!

n/2

b x n sin(n tan −1 ) + ... a

3. Apply Maclaurin’s theorem to obtain the term upto x 4 in the expansion of log(1 + sin 2 x) 4. If

y = ea sin

−1

x

, show that (1 − x 2 ) yn + 2 − (2n + 1) xyn +1 − ( n 2 + a 2 ) yn = 0

Hence by Maclaurin’s theorem show that

a 2 x 2 a(12 + a 2 ) 3 e = 1 + ax + + x + ........ 2! 3! 1 1 Also deduce that eθ = 1 + sin θ + sin 2 θ + sin 3 θ + ..... 2! 3! a sin −1 x

5. By Maclaurin’s theorem, show that

e

a cos −1 x

  a2π a 2 x 2 a(1 + a 2 ) 3 a(22 + a 2 ) 4 = 1 − ax + − x + x ........  e 2! 3! 4!  

19

Related Documents