Tampines Prelim 2009 Am 2 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tampines Prelim 2009 Am 2 Solutions as PDF for free.

More details

  • Words: 1,134
  • Pages: 3
Answer scheme for Prelim 4E 2009 Add Math Paper 2 1(i) (ii)

M = 24g M = 24 x ( ½ )0.03472 x 45 = 8.13 g (iii) 10 = 24 x ( ½ )0.03472t 5 1 lg  lg( ) 0.03472t 12 2 5 lg 12  0.03472t 1 lg 2 t = 36.4 years

A1 M1 A1 M1 M1

   2.

2 3

B2

4   3

2 2      2   3(   )  3( )  2 B1 3 (2   )(  2  )

 2 2  4    2  2 2

A1

B1

2

 5  2(   ) 4 2 4  5( )  2[( ) 2  2( )] 3 3 3 20  9

B1 B1

20 0 9 or 9x2 – 18x + 20 = 0 x2  2x 

B1

3(i)

LHS 

(cos A  sin A)(cos A  sin A)  (cos A  sin A)(cos A  sin A) (cos A  sin A)(cos A  sin A)

2

2

2

 cos  2 sin A cos A  sin A  cos A  2 sin A cos A  sin A cos 2 A  sin 2 A 2 cos 2 A  2 sin 2 A  cos 2 A 2  cos 2 A  2 sec 2 A

(ii) 2sec2A = 5 2 B1 5 B1  = 66.40 2A = 66.4, 293.6, 426.4, 653.6 A = 33.2o , 146.8o , 213.2o , 326.8o

B1

2

cos 2A =

M1 A1

M1 B1 A1

4a) f(m) = 0 m2 – (m-2)m – m2 + 4m – 8 = 0 B1 m2 – m2 + 2m – m2 + 4m – 8 = 0 M1 6m – m2 – 8 = 0 m2 – 6m + 8 = 0 (m – 4)(m – 2) = 0 m = 4 or 2 A1, A1 4b) subst x = 1, -2 = D subst x = -2, 3 = -3C C = -1 subst x = 0, -2 = -2B B = -1 Subst x = 2, 7 = 2A + 1 A=3 Remainder = - x – 1

5a) Area = (3  4 3 )(5  = 15 

18 3

6 3

)

 20 3  24

=  9  20 3 

18



3 =  9  20 3  6 3 = 14 3  9

B1

3

M1

3

A1

B1 B1 B1 B1 A1

6ai) FDE = FCE (s in same segment) B1 FCE = NAF (alternate s, EC // AB) B1 NDA =  NAF B1 AND = FNA (common angles) B1 NFA and NAD are similar as all corresponding angles are equal. NA ND  aii) NF NA NA 2  ND  NF b) By Tangent-secant theorem, AB2 = AF X FC (2NB)2 = AF X FC 4NB2 = AF X FC NB2 = ¼ AF X FC

5b) log4(3x+5) – log4(y-2) = 2 3x  5 log 4 ( )2 M1 y2 3x  5  16 B1 y2 3x + 5 = 16y – 32 3 x  37 y= A1 16 log 2 8 5c)  2 log 2 x  7 M1 log 2 x 3 M1  2w  7 w 3 + 2w2 – 7 = 0 (2w -1)(w – 3) = 0 w = ½ or 3 B1 x = 1.41 or 8 A1 A1 dy M1  x( 2)( x  3)  ( x  3) 2 dx 7a)  ( x  3)( 2 x  x  3)  ( x  3)(3 x  3) B1  3( x  3)( x  1) dy 0 x = 1 or 3 dx P(1,4) Q(3,0) A1 A1

B1 7b) Area of triangle = ½ x 1 x 4 = 2 units2 Area under curve = B1 B1 B1



3

1

B1

x( x  3) 2 dx

B1

3

=

  ( x 3  6 x 2  9 x)dx 1

x 4 6 x3 9x 2 3 [   ]1 4 3 2 = 4 units2 Shaded area = 6 units2

B1 B1 A1

AO  cos 3 AO = 3 cos  COB = 90o -  OCB =  OB  sin  7 OB = 7sin  AB = AO + OB = 3cos  + 7 sin 8ii) R = 9  49 8i)

=

B1

A1

B1

B1

M1

58

3 tan  = 7  = 23.2 o AB = 58 sin ( + 23.2o)

9)(i) 3 A1 (ii) 180o o (iii) max pt (45 , 2) A1 min pt (135 o, -4) A1 (iv)

(v) M1

A1

58 sin ( + 23.2 o) = 6.5 sin ( + 23.2o) = 0.85349 B1 basic angle = 58.6o B1  + 23.2 o = 58.6o  = 35.4 o A1 1 10i) 1  2  3 M1 2x x2 = ¼ B1 x = ½ or – ½ P( ½ , 2 ½ ) A1 1 2 10ii) y =  (1  x )dx 2 1 x 1 = x c M1 2 1 1 =x+c 2x subst x = ½ , y = 2 ½ c=3 M1 1 y= x+3 A1 2x 10iii) y – 2 ½ = - 13 (x – ½ ) M1 1 2 y= - 3x+2 3 A1 dx 10iv) 0.15 = [ 1 + ½ (0.5)-2 ] x M1 dt dx 0.15 = 3 x B1 dt dx = 0.05 A1 dt

8iii)

range : 0  y  4 (vi) 5

A1

A1

8  4  6  10 , ) 2 2 = (2, 2)

11i) C = (

M1

length AD = 16 2  (12) 2 = 20 units radius = 10 units (x-2)2 + (y-2)2 = 100 x2 + y2 – 4x – 4y – 92 = 0

M1

11ii) grad AD = 

4 3

B1 A1 B1

grad BE = ¾ eqn BE: y – 2 = ¾ (x -2) M1 y= ¾x+ ½ B1 solving eqn BE and eqn of circle: (x – 2)2 + ( ¾ x + ½ - 2)2 = 100 M1 9 9 9 x 2  4 x  4  x 2  x   100 M1 16 4 4 2 2 16x – 64x + 64 + 9x – 36x + 36 = 100 M1 x2 – 4x – 60 = 0 x = -6 or 10 y = -4 or 8 E(-6, -4) B(10, 3) A1 A1

Related Documents